Search results for: predict precipitation and (FUTA) standard device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9662

Search results for: predict precipitation and (FUTA) standard device

9422 The Implementation of Special Grammar Circle (Spegraci) as the Media Innovation for Blind People to Learn English Tenses

Authors: Aji Budi Rinekso, Revika Niza Artiyana, Lisa Widayanti

Abstract:

English is one of the international languages in the world. People use this language to communicate with each other in the international forums, international events or international organizations. As same as other languages, English has a rule which is called grammar. Grammar is the part of english which has a role as the language systems. In grammar, there are tenses which provide a time period system for past, present and future. Sometimes it is difficult for some English learner to remember all of the tenses completely. Especially for those with special needs or exceptional children with vision restrictiveness. The aims of this research are 1) To know the design of Special Grammar Circle (Spegraci) as the media for blind people to learn english grammar. 2) To know the work of Special Gramar Circle (Spegraci) as the media for blind people to learn english grammar. 3) To know the function of this device in increasing tenses ability for blind people. The method of this research is Research and Development which consists of several testing and revision of this device. The implementation of Special Grammar Circle (Spegraci) is to make blind people easily to learn the tenses. This device is easy to use. Users only roll this device and find out the tense formula and match to the name of the formula in braille. In addition, this device also enables to be used by normal people because normal written texts are also provided.

Keywords: blind people, media innovation, spegraci, tenses

Procedia PDF Downloads 295
9421 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.

Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy

Procedia PDF Downloads 443
9420 Experimental Chevreul’s Salt Production Methods on Copper Recovery

Authors: Turan Çalban, Oral Laçin, Abdüsselam Kurtbaş

Abstract:

The experimental production methods Chevreul’s salt being a intermediate stage product for copper recovery were investigated by dealing with the articles written on this topic. Chevreul’s salt, Cu2SO3.CuSO3.2H2O, being a mixed valence copper sulphite compound has been obtained by using different methods and reagents. Chevreul’s salt has a intense brick-red color. It is a highly stable and expensive salt. The production of Chevreul’s salt plays a key role in hiydrometallurgy. In recent years, researchs on this compound have been intensified. Silva et al. reported that this salt is thermally stable up to 200oC. Çolak et al. precipitated the Chevreul’s salt by using ammonia and sulphur dioxide. Çalban et al. obtained at the optimum conditions by passing SO2 from leach solutions with NH3-(NH4)2SO4. Yeşiryurt and Çalban investigated the optimum precipitation conditions of Chevreul’s salt from synthetic CuSO4 solutions including Na2SO3. Çalban et al. achieved the precipitation of Chevreul’s salt at the optimum conditions by passing SO2 from synthetic CuSO4 solutions. Çalban et al. examined the precipitation conditions of Chevreul’s salt using (NH4)2SO3 from synthetic aqueous CuSO4 solutions. In light of these studies, it can be said that Chevreul’s salt can be produced practically from both a leach solutions including copper and synthetic CuSO4 solutions.

Keywords: Chevreul’s salt, ammonia, copper sulpfite, sodium sülfite, optimum conditions

Procedia PDF Downloads 268
9419 Optical and Electrochromic Properties of All-Solid-State Electrochromic Device Consisting of Amorphous WO₃ and Ni(OH)₂

Authors: Ta-Huang Sun, Ming-Hao Hsieh, Min-Chuan Wang, Der-Jun Jan

Abstract:

Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse. There are many transition metal oxides exhibiting electrochromism, e.g. oxides of W, Ni, Ir, V, Ti, Co and Mo. Organic materials especially some conducting polymers such as poly(aniline), poly(3, 4-propylene- dioxythiophene) also received much attention for electrochromic (EC) applications. Electrochromic materials attract considerable interest because of their potential applications, such as information displays, smart windows, variable reflectance mirrors, and variable-emittance thermal radiators. In this study, the EC characteristics are investigated on an all-solid-state EC device composed of a-WO₃ and Ni(OH)₂ with a Ta₂O₅ protective layer which is prepared by magnetron sputtering. It is found that the transmittance modulation increases with decreasing the film thickness of Ta₂O₅. On the other hand, the transmittance modulation is 57% as the Ni(OH)₂/ITO is prepared by the linear-sweep potential cycling of the sputter-deposited Ta₂O₅/NiO/ITO in a 0.5 M LiClO₄+H₂O electrolyte. However, when Ni(OH)₂/ITO is prepared by a 0.01 M HCl electrolyte, the transmittance modulation of EC device can be improved to 61%.

Keywords: electrochromic device, tungsten oxide, nickel, Ta₂O₅

Procedia PDF Downloads 291
9418 Audio-Visual Entrainment and Acupressure Therapy for Insomnia

Authors: Mariya Yeldhos, G. Hema, Sowmya Narayanan, L. Dhiviyalakshmi

Abstract:

Insomnia is one of the most prevalent psychological disorders worldwide. Some of the deficiencies of the current treatments of insomnia are: side effects in the case of sleeping pills and high costs in the case of psychotherapeutic treatment. In this paper, we propose a device which provides a combination of audio visual entrainment and acupressure based compression therapy for insomnia. This device provides drug-free treatment of insomnia through a user friendly and portable device that enables relaxation of brain and muscles, with certain advantages such as low cost, and wide accessibility to a large number of people. Tools adapted towards the treatment of insomnia: -Audio -Continuous exposure to binaural beats of a particular frequency of audible range -Visual -Flash of LED light -Acupressure points -GB-20 -GV-16 -B-10

Keywords: insomnia, acupressure, entrainment, audio-visual entrainment

Procedia PDF Downloads 429
9417 Solar-Powered Water Purification Using Ozone and Sand Filtration

Authors: Kayla Youhanaie, Kenneth Dott, Greg Gillis-Smith

Abstract:

Access to clean water is a global challenge that affects nearly one-third of the world’s population. A lack of safe drinking water negatively affects a person’s health, safety, and economic status. However, many regions of the world that face this clean water challenge also have high solar energy potential. To address this worldwide issue and utilize available resources, a solar-powered water purification device was developed that could be implemented in communities around the world that lack access to potable water. The device uses ozone to destroy water-borne pathogens and sand filtration to filter out particulates from the water. To select the best method for this application, a quantitative energy efficiency comparison of three water purification methods was conducted: heat, UV light, and ozone. After constructing an initial prototype, the efficacy of the device was tested using agar petri dishes to test for bacteria growth in treated water samples at various time intervals after applying the device to contaminated water. The results demonstrated that the water purification device successfully removed all bacteria and particulates from the water within three minutes, making it safe for human consumption. These results, as well as the proposed design that utilizes widely available resources in target communities, suggest that the device is a sustainable solution to address the global water crisis and could improve the quality of life for millions of people worldwide.

Keywords: clean water, solar powered water purification, ozonation, sand filtration, global water crisis

Procedia PDF Downloads 77
9416 A Simple Device for in-Situ Direct Shear and Sinkage Tests

Authors: A. Jerves, H. Ling, J. Gabaldon, M. Usoltceva, C. Couste, A. Agarwal, R. Hurley, J. Andrade

Abstract:

This work introduces a simple device designed to perform in-situ direct shear and sinkage tests on granular materials as sand, clays, or regolith. It consists of a box nested within a larger box. Both have open bottoms, allowing them to be lowered into the material. Afterwards, two rotating plates on opposite sides of the outer box will rotate outwards in order to clear regolith on either side, providing room for the inner box to move relative to the plates and perform a shear test without the resistance of the surrounding soil. From this test, Coulomb parameters, including cohesion and internal friction angle, as well as, Bekker parameters can be in erred. This device has been designed for a laboratory setting, but with few modi cations, could be put on the underside of a rover for use in a remote location. The goal behind this work is to ultimately create a compact, but accurate measuring tool to put onto a rover or any kind of exploratory vehicle to test for regolith properties of celestial bodies.

Keywords: simple shear, friction angle, Bekker parameters, device, regolith

Procedia PDF Downloads 509
9415 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on

Authors: Mahesh Kumar Jat, Manisha Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: remote sensing, GIS, object based, classification

Procedia PDF Downloads 130
9414 Trends of Seasonal and Annual Rainfall in the South-Central Climatic Zone of Bangladesh Using Mann-Kendall Trend Test

Authors: M. T. Islam, S. H. Shakif, R. Hasan, S. H. Kobi

Abstract:

Investigation of rainfall trends is crucial considering climate change, food security, and the economy of a particular region. This research aims to study seasonal and annual precipitation trends and their abrupt changes over time in the south-central climatic zone of Bangladesh using monthly time series data of 50 years (1970-2019). A trend-free pre-whitening method has been employed to make necessary adjustments for autocorrelations in the rainfall data. Trends in rainfall and their intensity have been observed using the non-parametric Mann-Kendall test and Theil-Sen estimator. Significant changes and fluctuation points in the data series have been detected using the sequential Mann-Kendall test at the 95% confidence limit. The study findings show that most of the rainfall stations in the study area have a decreasing precipitation pattern throughout all seasons. The maximum decline in the rainfall intensity has been found for the Tangail station (-8.24 mm/year) during monsoon. Madaripur and Chandpur stations have shown slight positive trends in post-monsoon rainfall. In terms of annual precipitation, a negative rainfall pattern has been identified in each station, with a maximum decrement (-) of 14.48 mm/year at Chandpur. However, all the trends are statistically non-significant within the 95% confidence interval, and their monotonic association with time ranges from very weak to weak. From the sequential Mann-Kendall test, the year of changing points for annual and seasonal downward precipitation trends occur mostly after the 90s for Dhaka and Barishal stations. For Chandpur, the fluctuation points arrive after the mid-70s in most cases.

Keywords: trend analysis, Mann-Kendall test, Theil-Sen estimator, sequential Mann-Kendall test, rainfall trend

Procedia PDF Downloads 80
9413 Discovering New Organic Materials through Computational Methods

Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner

Abstract:

Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.

Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings

Procedia PDF Downloads 253
9412 Device for Thermal Depolymerisation of Organic Substrates Prior to Methane Fermentation

Authors: Marcin Dębowski, Mirosław Krzemieniewski, Marcin Zieliński

Abstract:

This publication presents a device designed to depolymerise and structurally change organic substrate, for use in agricultural biogas plants or sewage treatment plants. The presented device consists of a heated tank equipped with an inlet valve for the crude substrate and an outlet valve for the treated substrate. The system also includes a gas conduit, which is at its tip equipped with a high-pressure solenoid valve and a vacuum relief solenoid valve. A conduit behind the high-pressure solenoid valve connects to the vacuum tank equipped with the outlet valve. The substrate introduced into the device is exposed to agents such as high temperature and cavitation produced by abrupt, short-term reduction of pressure within the heated tank. The combined effect of these processes is substrate destruction rate increase of about 20% when compared to using high temperature alone, and about 30% when compared to utilizing only cavitation. Energy consumption is greatly reduced, as the pressure increase is generated by heating the substrate. Thus, there is a 18% reduction of energy consumption when compared to a device designed to destroy substrate through high temperature alone, and a 35% reduction if compared to using cavitation as the only means of destruction.

Keywords: thermal depolymerisation, organic substrate, biogas, pre-treatment

Procedia PDF Downloads 565
9411 An Investigation of the Use of Visible Spectrophotometric Analysis of Lead in an Herbal Tea Supplement

Authors: Salve Alessandria Alcantara, John Armand E. Aquino, Ma. Veronica Aranda, Nikki Francine Balde, Angeli Therese F. Cruz, Elise Danielle Garcia, Antonie Kyna Lim, Divina Gracia Lucero, Nikolai Thadeus Mappatao, Maylan N. Ocat, Jamille Dyanne L. Pajarillo, Jane Mierial A. Pesigan, Grace Kristin Viva, Jasmine Arielle C. Yap, Kathleen Michelle T. Yu, Joanna J. Orejola, Joanna V. Toralba

Abstract:

Lead is a neurotoxic metallic element that is slowly accumulated in bones and tissues especially if present in products taken in a regular basis such as herbal tea supplements. Although sensitive analytical instruments are already available, the USP limit test for lead is still widely used. However, because of its serious shortcomings, Lang Lang and his colleagues developed a spectrophotometric method for determination of lead in all types of samples. This method was the one adapted in this study. The actual procedure performed was divided into three parts: digestion, extraction and analysis. For digestion, HNO3 and CH3COOH were used. Afterwards, masking agents, 0.003% and 0.001% dithizone in CHCl3 were added and used for the extraction. For the analysis, standard addition method and colorimetry were performed. This was done in triplicates under two conditions. The 1st condition, using 25µg/mL of standard, resulted to very low absorbances with an r2 of 0.551. This led to the use of a higher concentration, 1mg/mL, for condition 2. Precipitation of lead cyanide was observed and the absorbance readings were relatively higher but between 0.15-0.25, resulting to a very low r2 of 0.429. LOQ and LOD were not computed due to the limitations of the Milton-Roy Spectrophotometer. The method performed has a shorter digestion time, and used less but more accessible reagents. However, the optimum ratio of dithizone-lead complex must be observed in order to obtain reliable results while exploring other concentration of standards.

Keywords: herbal tea supplement, lead-dithizone complex, standard addition, visible spectroscopy

Procedia PDF Downloads 387
9410 Applicability of Soybean as Bio-Catalyst in Calcite Precipitated Method for Soil Improvement

Authors: Heriansyah Putra, Erizal Erizal, Sutoyo Sutoyo, Hideaki Yasuhara

Abstract:

This paper discusses the possibility of organic waste material, i.e., soybean, as the bio-catalyst agent on the calcite precipitation method. Several combinations of soybean powder and jack bean extract are used as the bio-catalyst and mixed with the reagent composed of calcium chloride and urea. Its productivity in promoting calcite crystal is evaluated through a transparent test-tube experiment. The morphological and mineralogical aspects of precipitated calcite are also investigated using scanning electromagnetic (SEM) and X-ray diffraction (XRD), respectively. The applicability of this material to improve the engineering properties of soil are examined using the direct shear and unconfined compressive test. The result of this study shows that the utilization of soybean powder brings about a significant effect on soil strength. In addition, the use of soybean powder as a substitution material of urease enzyme also increases the efficacy of calcite crystal as the binder materials. The low calcite content promotes the high strength of the soil. The strength of 300 kPa is obtained in the presence of 2% of calcite content within the soil. The result of this study elucidated that substitution of soybean to jack bean extract is the potential and valuable alternative to improve the applicability of calcite precipitation method as soil improvement technique.

Keywords: calcite precipitation, jack bean, soil improvement, soybean

Procedia PDF Downloads 127
9409 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 347
9408 A Comparative Study of Standard, Casted, and Riveted Eye Design of a Mono Leaf Spring Using CAE Tools

Authors: Gian Bhushan, Vinkel Arora, M. L. Aggarwal

Abstract:

The objective of the present study is to determine better eye end design of a mono leaf spring used in light motor vehicle. A conventional 65Si7 spring steel leaf spring model with standard eye, casted and riveted eye end are considered. The CAD model of the leaf springs is prepared in CATIA and analyzed using ANSYS. The standard eye, casted, and riveted eye leaf springs are subjected to similar loading conditions. The CAE analysis of the leaf spring is performed for various parameters like deflection and Von-Mises stress. Mass reduction of 62.9% is achieved in case of riveted eye mono leaf spring as compared to standard eye mono leaf spring for the same loading conditions.

Keywords: CAE, leaf spring, standard, casted, riveted eye

Procedia PDF Downloads 371
9407 Design and Implementation of a Nano-Power Wireless Sensor Device for Smart Home Security

Authors: Chia-Chi Chang

Abstract:

Most battery-driven wireless sensor devices will enter in sleep mode as soon as possible to extend the overall lifetime of a sensor network. It is necessary to turn off unnecessary radio and peripheral functions, especially the radio unit always consumes more energy than other components during wireless communication. The microcontroller is the most important part of the wireless sensor device. It is responsible for the manipulation of sensing data and communication protocols. The microcontroller always has different sleep modes, each with a different level of energy usage. The deeper the sleep, the lower the energy consumption. Most wireless sensor devices can only enter the sleep mode: the external low-frequency oscillator is still running to wake up the sleeping microcontroller when the sleep timer expires. In this paper, our sensor device can enter the extended sleep mode: none of the oscillator is running and the wireless sensor device has the nanoampere consumption and self-awaking ability. Finally, these wireless sensor devices were deployed in a smart home security network.

Keywords: wireless sensor network, battery-driven, sleep mode, home security

Procedia PDF Downloads 307
9406 New Modification Negative Stiffness Device with Constant Force-Displacement Characteristic for Seismic Protection of Structures

Authors: Huan Li, Jianchun Li, Yancheng Li, Yang Yu

Abstract:

As a seismic protection method of civil and engineering structures, weakening and damping is effective during the elastic region, while it somehow leads to the early yielding of the entire structure accompanying with large excursions and permanent deformations. Adaptive negative stiffness device is attractive for realizing yielding property without changing the stiffness of the primary structure. In this paper, a new modification negative stiffness device (MNSD) with constant force-displacement characteristic is proposed by combining a magnetic negative stiffness spring, a piecewise linear positive spring and a passive damper with a certain adaptive stiffness device. The proposed passive control MNSD preserves no effect under small excitation. When the displacement amplitude increases beyond the pre-defined yielding point, the force-displacement characteristics of the system with MNSD will keep constant. The seismic protection effect of the MNSD is evaluated by employing it to a single-degree-of-freedom system under sinusoidal excitation, and real earthquake waves. By comparative analysis, the system with MNSD performs better on reducing acceleration and displacement response under different displacement amplitudes than the scenario without it and the scenario with unmodified certain adaptive stiffness device.

Keywords: negative stiffness, adaptive stiffness, weakening and yielding, constant force-displacement characteristic

Procedia PDF Downloads 159
9405 Minimal Incision Cochlear Implantation in Congenital Abnormality: A Case Report

Authors: Munish Saroch, Amit Saini

Abstract:

Introduction: Many children with congenital malformation of inner ear have undergone cochlear implant (CI) surgery. The results for cochlear implant surgery in these children are very encouraging and provide a ray of hope for these patients. Objective: The main objective of this presentation is to prove that even in Mondini’s deformity Minimal incision cochlear implantation improves cosmesis, reduces post-operative infection and earliest switch on of device. Methods: We report a case of two-year-old child suffering from Mondini’s deformity who underwent CI with minimal incision cochlear implantation (MICI). MICI has been developed with the aims of reducing the impact of surgery on the patient without any preoperative shaving of hairs. Results: Patient after surgery with MICI showed better looking postauricular scar, low post-operative morbidity in comparison to conventional wider access approach and hence earliest switch on of device (1st post operative day). Conclusion: We are of opinion that MICI is safe and successful in Mondini’s deformity.

Keywords: CI, Cochlear Implant, MICI, Minimal Incision Cochlear Implantation, HL, Hearing Loss, HRCT, High Resolution Computer Tomography, MRI, Magnetic resonance imaging, SCI, Standard cochlear implantation

Procedia PDF Downloads 216
9404 Signal On-Off Ratio and Output Frequency Analysis of Semiconductor Electron-Interference Device

Authors: Tomotaka Aoki, Isao Tomita

Abstract:

We examined the on-off ratio and frequency components of output signals from an electron-interference device made of GaAs/AlₓGa₁₋ₓAs by solving the time-dependent Schrödinger's equation on conducting electrons in the channel waveguide of the device. For electron-wave modulation, a periodic voltage of frequency f was applied to the channel. Furthermore, we examined the voltage-amplitude dependence of the signals in time and frequency domains and found that large applied voltage deformed the output-signal waveform and created additional side modes (frequencies) near the modulation frequency f and that there was a trade-off between on-off ratio and side-mode creation.

Keywords: electrical conduction, electron interference, frequency spectrum, on-off ratio

Procedia PDF Downloads 121
9403 Statistical Estimation of Ionospheric Energy Dissipation Using ØStgaard's Empirical Relation

Authors: M. A. Ahmadu, S. S. Rabia

Abstract:

During the past few decades, energy dissipation in the ionosphere resulting from the geomagnetic activity has caused an increasing number of major disruptions of important power and communication services, malfunctions and loss of expensive facilities. Here, the electron precipitation energy, w(ep) and joule heating energy, w(jh) was used in the computation of this dissipation using Østgaard’s empirical relation from hourly geomagnetic indices of 2012, under the assumption that the magnetosphere does not store any energy, so that at the beginning of the activity t1=0 and end at t2=t, the statistical results obtained show that ionospheric dissipation varies month to month, day to day and hour to hour and estimated with a value ~3.6 w(ep), which is in agreement with experimental result.

Keywords: Ostgaard's, ionospheric dissipation, joule heating, electron precipitation, geomagnetic indices, empirical relation

Procedia PDF Downloads 293
9402 An Estimation Process for Progress Rate Based on Labor-Quantity in Republic of Korea

Authors: Dong-Ho Kim, Zheng-Xun Jin, Yong-Woon Cha, Su-Sang Lim, Sang-Won Han, Chang-Taek Hyun

Abstract:

As construction is a labor-intensive industry, it is important to identify and manage labor quantities for accurate progress management of the construction project. However, the progress management that focuses on construction cost calculated based on materials rather than labor quantities has led to a difference in the implementation of cost and progress of the actual construction. In addition, since it is not easy to predict accurate labor quantities in the estimation of labor quantity-based progress rate, there have been limited researches into the progress rate estimation based on labor quantity. Accordingly, this study proposed a process for labor quantity-based progress rate estimation using a standard of estimate to predict accurate progress rate of the construction project in Republic Korea. It is expected that the utilization of the proposed process will help to identify the progress rate closer to that of the actual site management and adjust the workforce in each construction type, thereby contributing to improving construction efficiency.

Keywords: labor based, labor cost, progress management, progress rate, progress payment

Procedia PDF Downloads 344
9401 Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Based on 2D Van Der Waals Heterostructures

Authors: Yunpeng Xia, Jiajia Zha, Haoxin Huang, Hau Ping Chan, Chaoliang Tan

Abstract:

Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe₂ in different phases as the charge trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where the metallic 1T′-MoTe₂ or semiconducting 2H-MoTe₂ nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T′-MoTe₂ presents much better performance, including a larger memory window, faster switching speed (100 ns) and higher extinction ratio (107), than that of the device based on MoS₂/h-BN/2H-MoTe₂ heterostructure. Moreover, the device based on MoS₂/h-BN/1T′-MoTe₂ heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.

Keywords: crystal Phase, 2D van der Waals heretostructure, flash memory device, floating gate

Procedia PDF Downloads 51
9400 A Parallel Implementation of Artificial Bee Colony Algorithm within CUDA Architecture

Authors: Selcuk Aslan, Dervis Karaboga, Celal Ozturk

Abstract:

Artificial Bee Colony (ABC) algorithm is one of the most successful swarm intelligence based metaheuristics. It has been applied to a number of constrained or unconstrained numerical and combinatorial optimization problems. In this paper, we presented a parallelized version of ABC algorithm by adapting employed and onlooker bee phases to the Compute Unified Device Architecture (CUDA) platform which is a graphical processing unit (GPU) programming environment by NVIDIA. The execution speed and obtained results of the proposed approach and sequential version of ABC algorithm are compared on functions that are typically used as benchmarks for optimization algorithms. Tests on standard benchmark functions with different colony size and number of parameters showed that proposed parallelization approach for ABC algorithm decreases the execution time consumed by the employed and onlooker bee phases in total and achieved similar or better quality of the results compared to the standard sequential implementation of the ABC algorithm.

Keywords: Artificial Bee Colony algorithm, GPU computing, swarm intelligence, parallelization

Procedia PDF Downloads 378
9399 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 118
9398 Monsoon Controlled Mercury Transportation in Ganga Alluvial Plain, Northern India and Its Implication on Global Mercury Cycle

Authors: Anjali Singh, Ashwani Raju, Vandana Devi, Mohmad Mohsin Atique, Satyendra Singh, Munendra Singh

Abstract:

India is the biggest consumer of mercury and, consequently, a major emitter too. The increasing mercury contamination in India’s water resources has gained widespread attention and, therefore, atmospheric deposition is of critical concern. However, little emphasis was placed on the role of precipitation in the aquatic mercury cycle of the Ganga Alluvial Plain which provides drinking water to nearly 7% of the world’s human population. A majority of the precipitation here occurs primarily in 10% duration of the year in the monsoon season. To evaluate the sources and transportation of mercury, water sample analysis has been conducted from two selected sites near Lucknow, which have a strong hydraulic gradient towards the river. 31 groundwater samples from Jehta village (26°55’15’’N; 80°50’21’’E; 119 m above mean sea level) and 31 river water samples from the Behta Nadi (a tributary of the Gomati River draining into the Ganga River) were collected during the monsoon season on every alternate day between 01 July to 30 August 2019. The total mercury analysis was performed by using Flow Injection Atomic Absorption Spectroscopy (AAS)-Mercury Hybride System, and daily rainfall data was collected from the India Meteorological Department, Amausi, Lucknow. The ambient groundwater and river-water concentrations were both 2-4 ng/L as there is no known geogenic source of mercury found in the area. Before the onset of the monsoon season, the groundwater and the river-water recorded mercury concentrations two orders of magnitude higher than the ambient concentrations, indicating the regional transportation of the mercury from the non-point source into the aquatic environment. Maximum mercury concentrations in groundwater and river-water were three orders of magnitude higher than the ambient concentrations after the onset of the monsoon season characterizing the considerable mobilization and redistribution of mercury by monsoonal precipitation. About 50% of both of the water samples were reported mercury below the detection limit, which can be mostly linked to the low intensity of precipitation in August and also with the dilution factor by precipitation. The highest concentration ( > 1200 ng/L) of mercury in groundwater was reported after 6-days lag from the first precipitation peak. Two high concentration peaks (>1000 ng/L) in river-water were separately correlated with the surface flow and groundwater outflow of mercury. We attribute the elevated mercury concentration in both of the water samples before the precipitation event to mercury originating from the extensive use of agrochemicals in mango farming in the plain. However, the elevated mercury concentration during the onset of monsoon appears to increase in area wetted with atmospherically deposited mercury, which migrated down from surface water to groundwater as downslope migration is a fundamental mechanism seen in rivers of the alluvial plain. The present study underscores the significance of monsoonal precipitation in the transportation of mercury to drinking water resources of the Ganga Alluvial Plain. This study also suggests that future research must be pursued for a better understand of the human health impact of mercury contamination and for quantification of the role of Ganga Alluvial Plain in the Global Mercury Cycle.

Keywords: drinking water resources, Ganga alluvial plain, india, mercury

Procedia PDF Downloads 145
9397 Reconciling the Modern Standard Arabic with the Local Dialects in Writing Literary Texts

Authors: Ahmed M. Ghaleb, Ehab S. Al-Nuzaili

Abstract:

This paper attempts to shed light on the question of the choice between standard Arabic and the vernacular in writing literary texts. Modern Standard Arabic (MSA) has long been the formal language of writing education, administration, and media, shred across the Arab countries. In the mid-20th century, some writers have begun to write their literary works in local dialects claiming that they can be more realistic. On the other hand, other writers have opposed this new trend as it can be a threat to the Standard Arabic or MSA that unify all Arabs. However, some other writers, like Tawfiq al-Hakim, Hamed Damanhouri, Najib Mahfouz, and Hanna Mineh, attempted to solve this problem by using what W. M. Hutchins called a 'hybrid language', a middle language between the standard and the vernacular. It is also termed 'a third language'. The paper attempts to examine some of the literary texts in which a combination of the standard and the colloquial is employed. Thus, the paper attempts to find out a solution by proposing a third language, a form that can combine the MSA and the colloquial, and the possibility of using it in writing literary texts. Therefore, the paper can bridge the gap between the different levels of Arabic.

Keywords: modern standard arabic, dialect or vernacular, diglossia, third language

Procedia PDF Downloads 129
9396 Preparation and Characterization of Copper-Nanoparticle on Extracted Carrageenan and Its Catalytic Activity for Reducing Aromatic Nitro Group

Authors: Vida Jodaeian, Behzad Sani

Abstract:

Copper nanoparticles were successfully synthesized and characterized on green-extracted Carrageenan from seaweed by precipitation method without using any supporter and template with precipitation method. The crystallinity, optical properties, morphology, and composition of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transforms infrared (FT-IR) spectroscopy. The effects of processing parameters on the size and shape of Cu- nanostructures such as effect of pH were investigated. It is found that the reaction at lower pH values (acidic) could not be completed and pH = 8.00 was the best pH value to prepare very fine nanoparticles. They as synthesized Cu-nanoparticles were used as catalysts for the reduction of aromatic nitro compounds in presence of NaBH4. The results showed that Cu-nanoparticles are very active for reduction of these nitro aromatic compounds.

Keywords: nanoparticles, carrageenan, seaweed, nitro aromatic compound

Procedia PDF Downloads 398
9395 Integrating Ergonomics at Design Stage in Development of Continuous Passive Motion Machine

Authors: Mahesh S. Harne, Sunil V. Deshmukh

Abstract:

A continuous passive motion machine improves and helps the patient to restore range of motion in various physiotherapy activities. The paper presents a concept for portable CPM. The device is used for various joint for upper and lower body extremities. The device is designed so that the active and passive motion is incorporated. During development, the physiotherapist and patient need is integrated with designer aspects. Various tools such as Analytical Higher Hierarchy process (AHP) and Quality Function Deployment (QFD) is used to integrate the need at the design stage. With market survey of various commercial CPM the gaps are identified, and efforts are made to fill the gaps with ergonomic need. Indian anthropomorphic dimension is referred. The device is modular to best suit for all the anthropomorphic need of different human. Experimentation is carried under the observation of physiotherapist and doctor on volunteer patient. We reported better results are compare to conventional CPM with comfort and less pain. We concluded that the concept will be helpful to reduces therapy cost and wide utility of device for various joint and physiotherapy exercise.

Keywords: continuous passive motion machine, ergonomics, physiotherapy, quality function deployment

Procedia PDF Downloads 185
9394 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment

Authors: Jana Petru, Marie Kudrnova

Abstract:

The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.

Keywords: corrosion, experimental device, molten salt, steel

Procedia PDF Downloads 119
9393 Modelling Hydrological Time Series Using Wakeby Distribution

Authors: Ilaria Lucrezia Amerise

Abstract:

The statistical modelling of precipitation data for a given portion of territory is fundamental for the monitoring of climatic conditions and for Hydrogeological Management Plans (HMP). This modelling is rendered particularly complex by the changes taking place in the frequency and intensity of precipitation, presumably to be attributed to the global climate change. This paper applies the Wakeby distribution (with 5 parameters) as a theoretical reference model. The number and the quality of the parameters indicate that this distribution may be the appropriate choice for the interpolations of the hydrological variables and, moreover, the Wakeby is particularly suitable for describing phenomena producing heavy tails. The proposed estimation methods for determining the value of the Wakeby parameters are the same as those used for density functions with heavy tails. The commonly used procedure is the classic method of moments weighed with probabilities (probability weighted moments, PWM) although this has often shown difficulty of convergence, or rather, convergence to a configuration of inappropriate parameters. In this paper, we analyze the problem of the likelihood estimation of a random variable expressed through its quantile function. The method of maximum likelihood, in this case, is more demanding than in the situations of more usual estimation. The reasons for this lie, in the sampling and asymptotic properties of the estimators of maximum likelihood which improve the estimates obtained with indications of their variability and, therefore, their accuracy and reliability. These features are highly appreciated in contexts where poor decisions, attributable to an inefficient or incomplete information base, can cause serious damages.

Keywords: generalized extreme values, likelihood estimation, precipitation data, Wakeby distribution

Procedia PDF Downloads 137