Search results for: hole transport layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4471

Search results for: hole transport layer

4231 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation

Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi

Abstract:

Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.

Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation

Procedia PDF Downloads 500
4230 Luminescent and Conductive Cathode Buffer Layer for Enhanced Power Conversion Efficiency of Bulk-Heterojunction Solar Cells

Authors: Swati Bishnoi, D. Haranath, Vinay Gupta

Abstract:

In this work, we demonstrate that the power conversion efficiency (PCE) of organic solar cells (OSCs) could be improved significantly by using ZnO doped with Aluminum (Al) and Europium (Eu) as cathode buffer layer (CBL). The ZnO:Al,Eu nanoparticle layer has broadband absorption in the ultraviolet (300-400 nm) region. The Al doping contributes to the enhancement in the conductivity whereas Eu doping significantly improves emission in the visible region. Moreover, this emission overlaps with the absorption range of polymer poly [N -9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′- benzothiadiazole)] (PCDTBT) significantly and results in an enhanced absorption by the active layer and hence high photocurrent. An increase in the power conversion efficiency (PCE) of 6.8% has been obtained for ZnO: Al,Eu CBL as compared to 5.9% for pristine ZnO, in the inverted device configuration ITO/CBL/active layer/MoOx/Al. The active layer comprises of a blend of PCDTBT donor and [6-6]-phenyl C71 butyric acid methyl ester (PC71BM) acceptor. In the reference device pristine ZnO has been used as CBL, whereas in the other one ZnO:Al,Eu has been used as CBL. The role of the luminescent CBL layer is to down-shift the UV light into visible range which overlaps with the absorption of PCDTBT polymer, resulting in an energy transfer from ZnO:Al,Eu to PCDTBT polymer and the absorption by active layer is enhanced as revealed by transient spectroscopy. This enhancement resulted in an increase in the short circuit current which contributes in an increased PCE in the device employing ZnO: Al,Eu CBL. Thus, the luminescent ZnO: Al, Eu nanoparticle CBL has great potential in organic solar cells.

Keywords: cathode buffer layer, energy transfer, organic solar cell, power conversion efficiency

Procedia PDF Downloads 230
4229 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics

Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon

Abstract:

The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.

Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined

Procedia PDF Downloads 119
4228 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation

Authors: Sherif D. El Wakil, John Rice

Abstract:

The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.

Keywords: finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity

Procedia PDF Downloads 300
4227 Exploring Subjective Attitudes towards Public Transport of Intercity Travel and Their Relationships

Authors: Jiaqi Zhang, Zhi Dong, Pan Xing

Abstract:

With the continuous development of urban agglomerations, higher demands are placed on intercity public transport travel services. To improve these services, it is necessary to comprehensively understand the views and evaluations of travelers. Taking the Guanzhong Plain urban agglomeration in China as the object, this study explores subjective attitude indicators from self-administrated survey data and examines the relationship among perceived accessibility, preference, and satisfaction for intercity public transport using a structural equation model. The results show that perceived service quality has a direct positive impact on perceived accessibility and satisfaction. Perceived accessibility and preference significantly affect satisfaction. In addition, perceived accessibility mediates the effect of service quality on satisfaction. This study provides valuable insights from a policy perspective to improve the subjective evaluation of intercity public transport travelers while emphasizing the importance of subjective variables in transport system evaluation and advocates for their subdivision to more comprehensively improve the travel experience.

Keywords: intercity public transport, perceived accessibility, satisfaction, structural equation model

Procedia PDF Downloads 35
4226 Transport Emission Inventories and Medical Exposure Modeling: A Missing Link for Urban Health

Authors: Frederik Schulte, Stefan Voß

Abstract:

The adverse effects of air pollution on public health are an increasingly vital problem in planning for urban regions in many parts of the world. The issue is addressed from various angles and by distinct disciplines in research. Epidemiological studies model the relative increase of numerous diseases in response to an increment of different forms of air pollution. A significant share of air pollution in urban regions is related to transport emissions that are often measured and stored in emission inventories. Though, most approaches in transport planning, engineering, and operational design of transport activities are restricted to general emission limits for specific air pollutants and do not consider more nuanced exposure models. We conduct an extensive literature review on exposure models and emission inventories used to study the health impact of transport emissions. Furthermore, we review methods applied in both domains and use emission inventory data of transportation hubs such as ports, airports, and urban traffic for an in-depth analysis of public health impacts deploying medical exposure models. The results reveal specific urban health risks related to transport emissions that may improve urban planning for environmental health by providing insights in actual health effects instead of only referring to general emission limits.

Keywords: emission inventories, exposure models, transport emissions, urban health

Procedia PDF Downloads 363
4225 Integrating High-Performance Transport Modes into Transport Networks: A Multidimensional Impact Analysis

Authors: Sarah Pfoser, Lisa-Maria Putz, Thomas Berger

Abstract:

In the EU, the transport sector accounts for roughly one fourth of the total greenhouse gas emissions. In fact, the transport sector is one of the main contributors of greenhouse gas emissions. Climate protection targets aim to reduce the negative effects of greenhouse gas emissions (e.g. climate change, global warming) worldwide. Achieving a modal shift to foster environmentally friendly modes of transport such as rail and inland waterways is an important strategy to fulfill the climate protection targets. The present paper goes beyond these conventional transport modes and reflects upon currently emerging high-performance transport modes that yield the potential of complementing future transport systems in an efficient way. It will be defined which properties describe high-performance transport modes, which types of technology are included and what is their potential to contribute to a sustainable future transport network. The first step of this paper is to compile state-of-the-art information about high-performance transport modes to find out which technologies are currently emerging. A multidimensional impact analysis will be conducted afterwards to evaluate which of the technologies is most promising. This analysis will be performed from a spatial, social, economic and environmental perspective. Frequently used instruments such as cost-benefit analysis and SWOT analysis will be applied for the multidimensional assessment. The estimations for the analysis will be derived based on desktop research and discussions in an interdisciplinary team of researchers. For the purpose of this work, high-performance transport modes are characterized as transport modes with very fast and very high throughput connections that could act as efficient extension to the existing transport network. The recently proposed hyperloop system represents a potential high-performance transport mode which might be an innovative supplement for the current transport networks. The idea of hyperloops is that persons and freight are shipped in a tube at more than airline speed. Another innovative technology consists in drones for freight transport. Amazon already tests drones for their parcel shipments, they aim for delivery times of 30 minutes. Drones can, therefore, be considered as high-performance transport modes as well. The Trans-European Transport Networks program (TEN-T) addresses the expansion of transport grids in Europe and also includes high speed rail connections to better connect important European cities. These services should increase competitiveness of rail and are intended to replace aviation, which is known to be a polluting transport mode. In this sense, the integration of high-performance transport modes as described above facilitates the objectives of the TEN-T program. The results of the multidimensional impact analysis will reveal potential future effects of the integration of high-performance modes into transport networks. Building on that, a recommendation on the following (research) steps can be given which are necessary to ensure the most efficient implementation and integration processes.

Keywords: drones, future transport networks, high performance transport modes, hyperloops, impact analysis

Procedia PDF Downloads 304
4224 The Impact of Malicious Attacks on the Performance of Routing Protocols in Mobile Ad-Hoc Networks

Authors: Habib Gorine, Rabia Saleh

Abstract:

Mobile Ad-Hoc Networks are the special type of wireless networks which share common security requirements with other networks such as confidentiality, integrity, authentication, and availability, which need to be addressed in order to secure data transfer through the network. Their routing protocols are vulnerable to various malicious attacks which could have a devastating consequence on data security. In this paper, three types of attacks such as selfish, gray hole, and black hole attacks have been applied to the two most important routing protocols in MANET named dynamic source routing and ad-hoc on demand distance vector in order to analyse and compare the impact of these attacks on the Network performance in terms of throughput, average delay, packet loss, and consumption of energy using NS2 simulator.

Keywords: MANET, wireless networks, routing protocols, malicious attacks, wireless networks simulation

Procedia PDF Downloads 289
4223 First-Principles Calculations of Hydrogen Adsorbed in Multi-Layer Graphene

Authors: Mohammad Shafiul Alam, Mineo Saito

Abstract:

Graphene-based materials have attracted much attention because they are candidates for post silicon materials. Since controlling of impurities is necessary to achieve nano device, we study hydrogen impurity in multi-layer graphene. We perform local spin Density approximation (LSDA) in which the plane wave basis set and pseudopotential are used. Previously hydrogen monomer and dimer in graphene is well theoretically studied. However, hydrogen on multilayer graphene is still not clear. By using first-principles electronic structure calculations based on the LSDA within the density functional theory method, we studied hydrogen monomers and dimers in two-layer graphene. We found that the monomers are spin-polarized and have magnetic moment 1 µB. We also found that most stable dimer is much more stable than monomer. In the most stable structures of the dimers in two-layer graphene, the two hydrogen atoms are bonded to the host carbon atoms which are nearest-neighbors. In this case two hydrogen atoms are located on the opposite sides. Whereas, when the two hydrogen atoms are bonded to the same sublattice of the host materials, magnetic moments of 2 µB appear in two-layer graphene. We found that when the two hydrogen atoms are bonded to third-nearest-neighbor carbon atoms, the electronic structure is nonmagnetic. We also studied hydrogen monomers and dimers in three-layer graphene. The result is same as that of two-layer graphene. These results are very important in the field of carbon nanomaterials as it is experimentally difficult to show the magnetic state of those materials.

Keywords: first-principles calculations, LSDA, multi-layer gra-phene, nanomaterials

Procedia PDF Downloads 308
4222 The Generalized Lemaitre-Tolman-Bondi Solutions in Modeling the Cosmological Black Holes

Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik

Abstract:

In spite of the numerous attempts to close the discussion about the influence of cosmological expansion on local gravitationally bounded systems, this question arises in literature again and again and remains still far from its final resolution. Here one of the main problems is the problem of obtaining a physically adequate model of strongly gravitating object immersed in non-static cosmological background. Such objects are usually called ‘cosmological’ black holes and are of great interest in wide set of cosmological and astrophysical areas. In this work the set of new exact solutions of the Einstein equations is derived for the flat space that generalizes the known Lemaitre-Tolman-Bondi solution for the case of nonzero pressure. The solutions obtained are pretending to describe the black hole immersed in nonstatic cosmological background and give a possibility to investigate the hot problems concerning the effects of the cosmological expansion in gravitationally bounded systems, the structure formation in the early universe, black hole thermodynamics and other related problems. It is shown that each of the solutions obtained contains either the Reissner-Nordstrom or the Schwarzschild black hole in the central region of the space. It is demonstrated that the approach of the mass function use in solving of the Einstein equations allows clear physical interpretation of the resulting solutions, that is of much benefit to any their concrete application.

Keywords: exact solutions of the Einstein equations, cosmological black holes, generalized Lemaitre-Tolman-Bondi solutions, nonzero pressure

Procedia PDF Downloads 395
4221 A Polynomial Approach for a Graphical-based Integrated Production and Transport Scheduling with Capacity Restrictions

Authors: M. Ndeley

Abstract:

The performance of global manufacturing supply chains depends on the interaction of production and transport processes. Currently, the scheduling of these processes is done separately without considering mutual requirements, which leads to no optimal solutions. An integrated scheduling of both processes enables the improvement of supply chain performance. The integrated production and transport scheduling problem (PTSP) is NP-hard, so that heuristic methods are necessary to efficiently solve large problem instances as in the case of global manufacturing supply chains. This paper presents a heuristic scheduling approach which handles the integration of flexible production processes with intermodal transport, incorporating flexible land transport. The method is based on a graph that allows a reformulation of the PTSP as a shortest path problem for each job, which can be solved in polynomial time. The proposed method is applied to a supply chain scenario with a manufacturing facility in South Africa and shipments of finished product to customers within the Country. The obtained results show that the approach is suitable for the scheduling of large-scale problems and can be flexibly adapted to different scenarios.

Keywords: production and transport scheduling problem, graph based scheduling, integrated scheduling

Procedia PDF Downloads 451
4220 Shopping Centers and Public Transport: Study of the Shopping Centres Trips of Algiers City

Authors: Bakhrouri Sarah

Abstract:

The city of Algiers constitutes the first commercial pole of the country; 56.3% of its economic entities come from the commercial sector. Shopping centers are the new form of commerce that has emerged in the city since the 2000s. They are considered to be commercial and leisure poles and major generators of travel. However, shopping centers in the capital Algiers are poorly served by public transport, and their choice of location is mainly conditioned by the availability of land; accessibility by public transport does not appear to be an important criterion in the choice of their location. As a result, travel to and from these commercial centers is mainly by car, which breaks with the sustainability objectives of national transportation policy. Our study attempts to examine the impact of public transport accessibility of shopping centers on consumers' travel behaviour. The main objective of this research is to determine the link between the accessibility of these facilities, the use of private cars, and public transport modes. To this end, we analyze the choice of travel mode of consumers and the different factors that determine it by focusing on the influence of accessibility. The results showed a considerable influence of the accessibility on the travel behavior of the consumer in Algiers, so it is recommended to improve the accessibility of shopping centers by public transport in order to contribute to a modal shift.

Keywords: accessibility, shopping centers trips, public transportation, Algiers

Procedia PDF Downloads 70
4219 Hypothesis on Annual Sea Level Variation and Increased Volume Transport in Korea Strait

Authors: Young-Taeg Kim, Gwang Ho Seo, Hyungju Oh, Ho Kyung Ha, Kuk Jin Kim

Abstract:

Kim et al., hypothesized an increase in volume transport in the Korea Strait based on the concurrent increase in water temperature and mean sea level observed by the Korea Hydrographic and Oceanographic Agency (KHOA) in the vicinity of the Korea Strait from 2000 to 2009. Since then, to our best knowledge, no definitive studies have been reported on the increase in volume transport through the Korea Strait, but the observed water temperature (2000-2021) and sea level (1989-2021) in the Korea Strait and East Sea have been found to be increasing. In particular, the rapid increase rate in the mean sea level rise (2.55~3.53 mm/y) in these areas cannot be explained by only steric effect due to the increased water temperature. It is more reasonable interpretation that the sea level rise is due to an increase in the volume transport of warm and salty currents. If the increase in the volume transport is explained by the geostrophic equation without considering the sea level rise in the Korea Strait, the current velocity should increase. However, up to now, there are no reports of an increase in current velocity from direct observations using ADCP (e.g., observations of Camellia) or from various numerical models. Therefore, the increase in volume transport cannot be explained by the geostrophic equation. Another possible explanation for the increase in the volume transport is the effect of wind. Although Korea is dominated by monsoon, it is affected by winds according to El Niño and La Niña, which have a cycle of about 3 to 4 years. During El Niño (La Niña), northerly winds (southerly winds) prevail in Korea. Consequently, it is inferred that the transported volume in the Korea Strait slowly increases interannually. However, in this study, it was difficult to find a clear correlation between annually-averaged mean sea level and El Niño (or La Niña) during 1989-2021. This is probably due to the interactions of the PDO (Pacific Decadal Oscillation) and AO (Arctic Oscillation) along with the ENSO (El niño-Southern Oscillation). However, it is clear that the interannual variability of winds is affecting the volume transport in the Korean Strait. On the other hand, the effect of global sea level rise on the volume transport in the Korea Strait is small compared to the interannual variability of the volume transport, but it seems to play a constant role.

Keywords: mean sea level, volume transport, El nino, La nina

Procedia PDF Downloads 46
4218 Major Mechanisms of Atmospheric Moisture Transport and Their Role in Precipitation Extreme Events in the Amazonia

Authors: Luis Gimeno, Rosmeri da Rocha, Raquel Nieto, Tercio Ambrizzi, Alex Ramos, Anita Drumond

Abstract:

The transport of moisture from oceanic sources to the continents represents the atmospheric branch of the water cycle, forming the connection between evaporation from the ocean and precipitation over the continents. In this regard two large scale dynamical/meteorological structures appear to play a key role, namely Low Level Jet (LLJ) systems and Atmospheric Rivers (ARs). The former are particularly important in tropical and subtropical regions; the latter is mostly confined to extratropical regions. A key question relates to the anomalies in the transport of moisture observed during natural hazards related to extremes of precipitation (i.e., drought or wet spells). In this study we will be focused on these two major atmospheric moisture transport mechanisms (LLJs and ARs) and its role in precipitation extreme events (droughts and wet spells) in the Amazonia paying particular attention to i) intensification (decreasing) of moisture transport by them and its role in wet spells (droughts), and ii) changes in their positions and occurrence with associated flooding and wet spells.

Keywords: droughts, wet spells, amazonia, LLJs, atmospheric rivers

Procedia PDF Downloads 274
4217 Mobility and Effective Regulatory Policies in the 21st Century Transport Sector

Authors: Pedro Paulino

Abstract:

The majority of the world’s population is already living in urban areas and the urban population is expected to keep increasing in the next decades. This exponential increase in urban population carries with it obvious mobility problems. Not only a new paradigm in the transport sector is needed in order to address these problems; effective regulatory policies to ensure the quality of services, passenger rights, competition between operators and consistency of the entire mobile ecosystem are needed as well. The purpose of this paper is to present the problems the world faces in this sector and contribute to their solution. Indeed, our study concludes that only through the active supervision of the markets and the activity of monitoring the various operators will it be possible to develop a sustainable and efficient transport system which meets the needs of a changing world.

Keywords: mobility, regulation policies, sanctioning powers, sustainable transport

Procedia PDF Downloads 280
4216 Design of Data Management Software System Supporting Rendezvous and Docking with Various Spaceships

Authors: Zhan Panpan, Lu Lan, Sun Yong, He Xiongwen, Yan Dong, Gu Ming

Abstract:

The function of the two spacecraft docking network, the communication and control of a docking target with various spacecrafts is realized in the space lab data management system. In order to solve the problem of the complex data communication mode between the space lab and various spaceships, and the problem of software reuse caused by non-standard protocol, a data management software system supporting rendezvous and docking with various spaceships has been designed. The software system is based on CCSDS Spcecraft Onboard Interface Service(SOIS). It consists of Software Driver Layer, Middleware Layer and Appliaction Layer. The Software Driver Layer hides the various device interfaces using the uniform device driver framework. The Middleware Layer is divided into three lays, including transfer layer, application support layer and system business layer. The communication of space lab plaform bus and the docking bus is realized in transfer layer. Application support layer provides the inter tasks communitaion and the function of unified time management for the software system. The data management software functions are realized in system business layer, which contains telemetry management service, telecontrol management service, flight status management service, rendezvous and docking management service and so on. The Appliaction Layer accomplishes the space lab data management system defined tasks using the standard interface supplied by the Middleware Layer. On the basis of layered architecture, rendezvous and docking tasks and the rendezvous and docking management service are independent in the software system. The rendezvous and docking tasks will be activated and executed according to the different spaceships. In this way, the communication management functions in the independent flight mode, the combination mode of the manned spaceship and the combination mode of the cargo spaceship are achieved separately. The software architecture designed standard appliction interface for the services in each layer. Different requirements of the space lab can be supported by the use of standard services per layer, and the scalability and flexibility of the data management software can be effectively improved. It can also dynamically expand the number and adapt to the protocol of visiting spaceships. The software system has been applied in the data management subsystem of the space lab, and has been verified in the flight of the space lab. The research results of this paper can provide the basis for the design of the data manage system in the future space station.

Keywords: space lab, rendezvous and docking, data management, software system

Procedia PDF Downloads 345
4215 Economic Assessment Methodology to Support Decisions for Transport Infrastructure Development

Authors: Dimitrios J. Dimitriou

Abstract:

The decades after the end of the second War provide evidence that infrastructures investments contibute to economic development, on terms of productivity and income growth. In order to force productivity and increase competitiveness the financing of large transport infrastructure projects are on the top of the agenda in strategic planning process. Such a decision may take form some days to some decades and stakeholders as well as decision makers need tools in order to estimate the economic impact on natioanl economy of such an investment. The key question in such decisions is if the effects caused by the new infrastructure could be able to boost economic development on one hand, and create new jobs and activities on the other. This paper deals with the review of estimation of the mega transport infrastructure projects economic effects in economy.

Keywords: economic impact, transport infrastructure, strategic planning, decision making

Procedia PDF Downloads 260
4214 Controlling the Fluid Flow in Hydrogen Fuel Cells through Material Porosity Designs

Authors: Jamal Hussain Al-Smail

Abstract:

Hydrogen fuel cells (HFCs) are environmentally friendly, energy converter devices that convert the chemical energy of the reactants (oxygen and hydrogen) to electricity through electrochemical reactions. The level of the electricity production of HFCs mainly increases depending on the oxygen distribution in the HFC’s cathode gas diffusion layer (GDL). With a constant porosity of the GDL, the electrochemical reaction can have a great variation that reduces the cell’s productivity and stability. Our findings bring a methodology in finding porosity designs of the diffusion layer to improve the oxygen distribution such that it results in a stable oxygen-hydrogen reaction. We first introduce a mathematical model involving the mass and momentum transport equations, in which a porosity function of the GDL is incorporated as a control for the fluid flow. We then derive numerical methods for solving the mathematical model. In conclusion, we present our numerical results to show how to design the GDL porosity to result in a uniform oxygen distribution.

Keywords: fuel cells, material porosity design, mathematical modeling, porous media

Procedia PDF Downloads 127
4213 Agent-Based Simulation for Supply Chain Transport Corridors

Authors: Kamalendu Pal

Abstract:

Supply chains are the spinal cord of trade and commerce. Their logistics use different transport corridors on regular basis for operational purpose. The international supply chain transport corridors include different infrastructure elements (e.g. weighbridge, package handling equipment, border clearance authorities, and so on) in supply chains. This paper presents the use of multi-agent systems (MAS) to model and simulate some aspects of transportation corridors, and in particular the area of weighbridge resource optimization for operational profit generation purpose. An underlying multi-agent model provides a means of modeling the relationships among stakeholders in order to enable coordination in a transport corridor environment. Simulations of the costs of container unloading, reloading, and waiting time for queuing up tracks have been carried out using data sets. Results of the simulation provide the potential guidance in making decisions about optimal service resource allocation in a trade corridor.

Keywords: multi-agent systems, simulation, supply chain, transport corridor, weighbridge

Procedia PDF Downloads 329
4212 Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies

Authors: Chinsuk Hong

Abstract:

This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.

Keywords: wall pressure fluctuation, boundary layer flow, transition, turbulent flow, axisymmetric body, flow noise

Procedia PDF Downloads 325
4211 Synthesis of TiO₂/Graphene Nanocomposites with Excellent Visible-Light Photocatalytic Activity Based on Chemical Exfoliation Method

Authors: Nhan N. T. Ton, Anh T. N. Dao, Kouichirou Katou, Toshiaki Taniike

Abstract:

Facile electron-hole recombination and the broad band gap are two major drawbacks of titanium dioxide (TiO₂) when applied in visible-light photocatalysis. Hybridization of TiO₂ with graphene is a promising strategy to lessen these pitfalls. Recently, there have been many reports on the synthesis of TiO₂/graphene nanocomposites, in most of which graphene oxide (GO) was used as a starting material. However, the reduction of GO introduced a large number of defects on the graphene framework. In addition, the sensitivity of titanium alkoxide to water (GO usually contains) significantly obstructs the uniform and controlled growth of TiO₂ on graphene. Here, we demonstrate a novel technique to synthesize TiO₂/graphene nanocomposites without the use of GO. Graphene dispersion was obtained through the chemical exfoliation of graphite in titanium tetra-n-butoxide with the aid of ultrasonication. The dispersion was directly used for the sol-gel reaction in the presence of different catalysts. A TiO₂/reduced graphene oxide (TiO₂/rGO) nanocomposite, which was prepared by a solvothermal method from GO, and the commercial TiO₂-P25 were used as references. It was found that titanium alkoxide afforded the graphene dispersion of a high quality in terms of a trace amount of defects and a few layers of dispersed graphene. Moreover, the sol-gel reaction from this dispersion led to TiO₂/graphene nanocomposites featured with promising characteristics for visible-light photocatalysts including: (I) the formation of a TiO₂ nano layer (thickness ranging from 1 nm to 5 nm) that uniformly and thinly covered graphene sheets, (II) a trace amount of defects on the graphene framework (low ID/IG ratio: 0.21), (III) a significant extension of the absorption edge into the visible light region (a remarkable extension of the absorption edge to 578 nm beside the usual edge at 360 nm), and (IV) a dramatic suppression of electron-hole recombination (the lowest photoluminescence intensity compared to reference samples). These advantages were successfully demonstrated in the photocatalytic decomposition of methylene blue under visible light irradiation. The TiO₂/graphene nanocomposites exhibited 15 and 5 times higher activity than TiO₂-P25 and the TiO₂/rGO nanocomposite, respectively.

Keywords: chemical exfoliation, photocatalyst, TiO₂/graphene, sol-gel reaction

Procedia PDF Downloads 134
4210 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film

Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi

Abstract:

In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.

Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy

Procedia PDF Downloads 154
4209 Depth-Averaged Modelling of Erosion and Sediment Transport in Free-Surface Flows

Authors: Thomas Rowan, Mohammed Seaid

Abstract:

A fast finite volume solver for multi-layered shallow water flows with mass exchange and an erodible bed is developed. This enables the user to solve a number of complex sediment-based problems including (but not limited to), dam-break over an erodible bed, recirculation currents and bed evolution as well as levy and dyke failure. This research develops methodologies crucial to the under-standing of multi-sediment fluvial mechanics and waterway design. In this model mass exchange between the layers is allowed and, in contrast to previous models, sediment and fluid are able to transfer between layers. In the current study we use a two-step finite volume method to avoid the solution of the Riemann problem. Entrainment and deposition rates are calculated for the first time in a model of this nature. In the first step the governing equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed in conservative form and are used to calculate a solution that satisfies the conservation property. This method is found to be considerably faster than other comparative finite volume methods, it also exhibits good shock capturing. For most entrainment and deposition equations a bed level concentration factor is used. This leads to inaccuracies in both near bed level concentration and total scour. To account for diffusion, as no vertical velocities are calculated, a capacity limited diffusion coefficient is used. The additional advantage of this multilayer approach is that there is a variation (from single layer models) in bottom layer fluid velocity: this dramatically reduces erosion, which is often overestimated in simulations of this nature using single layer flows. The model is used to simulate a standard dam break. In the dam break simulation, as expected, the number of fluid layers utilised creates variation in the resultant bed profile, with more layers offering a higher deviation in fluid velocity . These results showed a marked variation in erosion profiles from standard models. The overall the model provides new insight into the problems presented at minimal computational cost.

Keywords: erosion, finite volume method, sediment transport, shallow water equations

Procedia PDF Downloads 195
4208 Multi-Layer Mn-Doped SnO2 Thin Film for Multi-State Resistive Switching

Authors: Zhemi Xu, Dewei Chu, Sean Li

Abstract:

Well self-assembled pure and Mn-doped SnO2 nanocubes were synthesized by interface thermodynamic method, which is ideal for highly homogeneous large scale thin film deposition on flexible substrates for various electric devices. Mn-doped SnO2 shows very good resistive switching with high On/Off ratio (over 103), endurance and retention characteristics. More important, the resistive state can be tuned by multi-layer fabrication by alternate pure SnO2 and Mn-doped SnO2 nanocube layer, which improved the memory capacity of resistive switching effectively. Thus, such a method provides transparent, multi-level resistive switching for next generation non-volatile memory applications.

Keywords: metal oxides, self-assembly nanoparticles, multi-level resistive switching, multi-layer thin film

Procedia PDF Downloads 320
4207 The Effects of Logistical Centers Realization on Society and Economy

Authors: Anna Dolinayova, Juraj Camaj, Martin Loch

Abstract:

Presently it is necessary to ensure the sustainable development of passenger and freight transport. Increasing performance of road freight have been a negative impact to environment and society. It is therefore necessary to increase the competitiveness of intermodal transport, which is more environmentally friendly. The study describe the effectiveness of logistical centers realization for companies and society and research how the partial internalization of external costs reflected in the efficient use of these centers and increase the competitiveness of intermodal transport to road freight. In our research, we use the method of comparative analysis and market research to describe the advantages of logistic centers for their users as well as for society as a whole. Method normal costing is used for calculation infrastructure and total costs, method of conversion costing for determine the external costs. We modelling of total society costs for road freight transport and inter modal transport chain (we assumed that most of the traffic is carried by rail) with different loading schemes for condition in the Slovak Republic. Our research has shown that higher utilization of inter modal transport chain do good not only for society, but for companies providing freight services too. Increase in use of inter modal transport chain can bring many benefits to society that do not bring direct immediate financial return. They often bring the multiplier effects, such as greater use of environmentally friendly transport mode and reduce the total society costs.

Keywords: delivery time, economy effectiveness, logistical centers, ecological efficiency, optimization, society

Procedia PDF Downloads 412
4206 Transport Mode Selection under Lead Time Variability and Emissions Constraint

Authors: Chiranjit Das, Sanjay Jharkharia

Abstract:

This study is focused on transport mode selection under lead time variability and emissions constraint. In order to reduce the carbon emissions generation due to transportation, organization has often faced a dilemmatic choice of transport mode selection since logistic cost and emissions reduction are complementary with each other. Another important aspect of transportation decision is lead-time variability which is least considered in transport mode selection problem. Thus, in this study, we provide a comprehensive mathematical based analytical model to decide transport mode selection under emissions constraint. We also extend our work through analysing the effect of lead time variability in the transport mode selection by a sensitivity analysis. In order to account lead time variability into the model, two identically normally distributed random variables are incorporated in this study including unit lead time variability and lead time demand variability. Therefore, in this study, we are addressing following questions: How the decisions of transport mode selection will be affected by lead time variability? How lead time variability will impact on total supply chain cost under carbon emissions? To accomplish these objectives, a total transportation cost function is developed including unit purchasing cost, unit transportation cost, emissions cost, holding cost during lead time, and penalty cost for stock out due to lead time variability. A set of modes is available to transport each node, in this paper, we consider only four transport modes such as air, road, rail, and water. Transportation cost, distance, emissions level for each transport mode is considered as deterministic and static in this paper. Each mode is having different emissions level depending on the distance and product characteristics. Emissions cost is indirectly affected by the lead time variability if there is any switching of transport mode from lower emissions prone transport mode to higher emissions prone transport mode in order to reduce penalty cost. We provide a numerical analysis in order to study the effectiveness of the mathematical model. We found that chances of stock out during lead time will be higher due to the higher variability of lead time and lad time demand. Numerical results show that penalty cost of air transport mode is negative that means chances of stock out zero, but, having higher holding and emissions cost. Therefore, air transport mode is only selected when there is any emergency order to reduce penalty cost, otherwise, rail and road transport is the most preferred mode of transportation. Thus, this paper is contributing to the literature by a novel approach to decide transport mode under emissions cost and lead time variability. This model can be extended by studying the effect of lead time variability under some other strategic transportation issues such as modal split option, full truck load strategy, and demand consolidation strategy etc.

Keywords: carbon emissions, inventory theoretic model, lead time variability, transport mode selection

Procedia PDF Downloads 398
4205 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model

Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq

Abstract:

The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.

Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity

Procedia PDF Downloads 98
4204 The Effects of Red Onion (Allium cepa) Extract on Histopathological Appearance of Bursa fabricius in Layers in Open House System

Authors: A. D. Paryuni, R. N. Nataria, R. Wasito

Abstract:

Layer chickens are a poultry commodity that has an important role in producing eggs and meat to support the availability of animal proteins. The layer chickens still have obstacles to increasing their productivity, especially due to poultry diseases which can result not only in decreased egg production but also morbidity and mortality. To overcome this condition, phyto-therapeutic and/or phyto-preventive approaches which are efficacious, safe and cheap are needed. One of the herbal spices from Indonesia which is greatly possible to be promoted as an herbal medicine is a red onion (Allium cepa). The objective of the present study was to identify and determine the effect of red onion extract (Allium cepa) as anti-infection and immuno-modulator of Bursa fabricius in layer chickens raised in an open house system. Eighteen layer chickens at 17 days of age were divided randomly into three group of six each. Those were layer chickens without red onion extract (Group K I), Group K II gave red onion extract via drinking water and Group K III gave red onion extract peroral for 30 days. Water and feed were given ad libitum. Necropsy was conducted every 10 days by taking two samples of layer chickens/Group. Bursa fabricius was processed histopathologically and stained-routinely with hematoxylin-eosinand was then examined under light microscope. The results of the present study indicated that bursaFabricius in layer chickens in Groups K I, K II, and K III that were necropsied at days 10 and 20 had normal histologic structures. However, Bursa fabricius in Group K I at day 30, had vacuolization with mild to moderate large vacuoles containing homogenous eosinophilic fluid and atrophy of lymphoid follicles. Mild vacuolization in the follicle of Bursa fabricius was seen in layer chickens in Group K II, whereas layer chickens in Group K III had normal histologic structures of Bursa fabricius. It was concluded that apparently, red onion extract (Allium cepa) has herbal preventive effects against the pathological lesions in the Bursa fabricius of layer chickens.

Keywords: Bursa fabricius, disease of poultry, hematoxylin-eosin, layer chickens, red onion extract

Procedia PDF Downloads 389
4203 Economic Growth and Total Factor Productivity by the Use of Rail Way Transport in the City of Medellín - Colombia in the Period 2012-2016

Authors: Mauricio Molina

Abstract:

The present research project aims to determine whether it is possible to have a statement, allowing you to have an economic model to establish clearly if the population that uses the rail system underground in the city of Medellin with an increase in productivity total factor. The present project aims to concentrate on the surroundings to the system underground for a period of 60 months in the city of Medellin. According to the review bibliographic is can establish that in it most of them cases, the cities that have with systems of transport rail are more productive. And should to its time present is an analysis that may lead to determine if effectively the use of the transport railway improves the productivity of a city and its inhabitants.

Keywords: economic growth, mobility urban, total factor productivity, rail transport

Procedia PDF Downloads 263
4202 Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials

Authors: Gabi N. Nehme

Abstract:

Below-knee amputees commonly experience asymmetrical gait patterns. It is generally believed that ischemia is related to the formation of pressure sores due to uneven distribution of forces. Micro-vascular responses can reveal local malnutrition. Changes in local skin blood supply under various external loading conditions have been studied for a number of years. Radionuclide clearance, photo-plethysmography, trans-cutaneous oxygen tension along with other studies showed that the blood supply would be influenced by the epidermal forces, and the rate and the amount of blood supply would decrease with increased epidermal loads being shear forces or normal forces. Several cases of socket designs were investigated using Finite Element Model (FEM) and Design of Experiment (DOE) to increase flexibility and minimize the pressure at the limb/socket interface using ultra high molecular weight polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The pressure reliefs at designated areas where reducing thickness is involved are seen to be critical in determination of amputees’ comfort and are very important to clinical applications. Implementing a hole between the Patellar Tendon (PT) and Distal Tibia (DT) would decrease stiffness and increase prosthesis range of motion where flexibility is needed. In addition, displacement and prosthetic energy storage increased without compromising mechanical efficiency and prosthetic design integrity.

Keywords: patellar tendon, distal tibia, prosthetic socket relief areas, hole implementation

Procedia PDF Downloads 389