Search results for: enzymatic liquefaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 503

Search results for: enzymatic liquefaction

263 In-Vivo Study of Annacardium occidentale L. Emulgel Extract Using Non-Invasive Probes

Authors: Akhtar Naveed, Kanwal Shahla, Khan HMS, Rasool Fatima, Ijaz Shakeel

Abstract:

The focus of the study was to design, develop and characterize in vivo, a stable Emulgel formulation containing Anacardium occidentale L.(cashew extract) as an active ingredient. The formulation was prepared and kept at 8ºC, 25 ºC, 40ºC and 40ºC±RH for a period of 28 days. During this time period, stability, pH values, conductivity, organoleptic features (color, liquefaction, phase separation) were conducted at the intervals of day 1st, 2nd, 3rd , 7th, 14th and 28th days. In In vivo studies, the test formulation (5% Anacardium occidentale L, extract) and a base formulation (without cashew extract) were prepared and both were applied on cheek areas of healthy human female volunteers, after the skin sensitivity test of each volunteer, for a study period of 8 weeks after getting consent from them. Various parameters of skin like Melanin level, Erythema level, and skin elasticity were measured at regular time intervals. Results of the study were analyzed by statistical techniques i.e. Two Way ANOVA and paired sample t-test. The result showed significant results as the p ≤ 0.05. Findings of paired sample t-test explained that test formulation have profound effects on skin parameters when compared with control formulation.

Keywords: Anacardium occientale L., anti-oxidant, cashew nut, emulgel

Procedia PDF Downloads 303
262 Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection

Authors: Ali Akbar Kazemi Asl, Mansour Rahsepar

Abstract:

Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity.

Keywords: biosensor, electrochemical, glucose, mesoporous carbon, non-enzymatic

Procedia PDF Downloads 166
261 Impact of Climatic Parameters on Soil's Nutritional and Enzymatic Properties

Authors: Kanchan Vishwakarma, Shivesh Sharma, Nitin Kumar

Abstract:

Soil is incoherent matter on Earth’s surface having organic and mineral content. The spatial variation of 4 soil enzyme activities and microbial biomass were assessed for two seasons’ viz. monsoon and winter along the latitudinal gradient in North-central India as the area of this study is fettered with respect to national status. The study was facilitated to encompass the effect of climate change, enzyme activity and biomass on nutrient cycling. Top soils were sampled from 4 sites in North-India. There were significant correlations found between organic C, N & P wrt to latitude gradient in two seasons. This distribution of enzyme activities and microbial biomass was consequence of alterations in temperature and moisture of soil because of which soil properties change along the latitude transect.

Keywords: latitude gradient, microbial biomass, moisture, soil, organic carbon, temperature

Procedia PDF Downloads 368
260 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.

Keywords: earthquake disaster, spatial statistic analysis, principle components analysis (pca), clustered patterns

Procedia PDF Downloads 288
259 Magnetocaloric Effect in Ho₂O₃ Nanopowder at Cryogenic Temperature

Authors: K. P. Shinde, M. V. Tien, H. Lin, H.-R. Park, S.-C.Yu, K. C. Chung, D.-H. Kim

Abstract:

Magnetic refrigeration provides an attractive alternative cooling technology due to its potential advantages such as high cooling efficiency, environmental friendliness, low noise, and compactness over the conventional cooling techniques based on gas compression. Magnetocaloric effect (MCE) occurs by changes in entropy (ΔS) and temperature (ΔT) under external magnetic fields. We have been focused on identifying materials with large MCE in two temperature regimes, not only room temperature but also at cryogenic temperature for specific technological applications, such as space science and liquefaction of hydrogen in fuel industry. To date, the commonly used materials for cryogenic refrigeration are based on hydrated salts. In the present work, we report giant MCE in rare earth Ho2O3 nanopowder at cryogenic temperature. HoN nanoparticles with average size of 30 nm were prepared by using plasma arc discharge method with gas composition of N2/H2 (80%/20%). The prepared HoN was sintered in air atmosphere at 1200 oC for 24 hrs to convert it into oxide. Structural and morphological properties were studied by XRD and SEM. XRD confirms the pure phase and cubic crystal structure of Ho2O3 without any impurity within error range. It has been discovered that Holmium oxide exhibits giant MCE at low temperature without magnetic hysteresis loss with the second-order antiferromagnetic phase transition with Néels temperature around 2 K. The maximum entropy change was found to be 25.2 J/kgK at an applied field of 6 T.

Keywords: magnetocaloric effect, Ho₂O₃, magnetic entropy change, nanopowder

Procedia PDF Downloads 128
258 Coupled Analysis for Hazard Modelling of Debris Flow Due to Extreme Rainfall

Authors: N. V. Nikhil, S. R. Lee, Do Won Park

Abstract:

Korean peninsula receives about two third of the annual rainfall during summer season. The extreme rainfall pattern due to typhoon and heavy rainfall results in severe mountain disasters among which 55% of them are debris flows, a major natural hazard especially when occurring around major settlement areas. The basic mechanism underlined for this kind of failure is the unsaturated shallow slope failure by reduction of matric suction due to infiltration of water and liquefaction of the failed mass due to generation of positive pore water pressure leading to abrupt loss of strength and commencement of flow. However only an empirical model cannot simulate this complex mechanism. Hence, we have employed an empirical-physical based approach for hazard analysis of debris flow using TRIGRS, a debris flow initiation criteria and DAN3D in mountain Woonmyun, South Korea. Debris flow initiation criteria is required to discern the potential landslides which can transform into debris flow. DAN-3D, being a new model, does not have the calibrated values of rheology parameters for Korean conditions. Thus, in our analysis we have used the recent 2011 debris flow event in mountain Woonmyun san for calibration of both TRIGRS model and DAN-3D, thereafter identifying and predicting the debris flow initiation points, path, run out velocity, and area of spreading for future extreme rainfall based scenarios.

Keywords: debris flow, DAN-3D, extreme rainfall, hazard analysis

Procedia PDF Downloads 223
257 Influence of P-Y Curves on Buckling Capacity of Pile Foundation

Authors: Praveen Huded, Suresh Dash

Abstract:

Pile foundations are one of the most preferred deep foundation system for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Recent centrifuge and shake table experiments on two layered soil system have credibly shown that failure of pile foundation can occur because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However the buckling capacity depends on largely on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient method to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, different author have proposed different types of p-y curves for the liquefiable soil. In the present paper the influence two such p-y curves on the buckling capacity of pile foundation is studied considering initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. Significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile diameter, pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on buckling capacity of pile foundation.

Keywords: Pile foundation , Liquefaction, Buckling load, non-linear py curve, Opensees

Procedia PDF Downloads 145
256 Enhancement of Lignin Bio-Degradation through Homogenization with Dimethyl Sulfoxide

Authors: Ivana Brzonova, Asina Fnu, Alena Kubatova, Evguenii Kozliak, Yun Ji

Abstract:

Bio-decomposition of lignin by Basidiomycetes in the presence of dimethyl sulfoxide (DMSO) was investigated. The addition of 3-5 vol% DMSO to lignin aqueous media significantly increased the lignin solubility based on UV absorbance. After being dissolved in DMSO, the thermal evolution profile also changed significantly, yielding more high-MW organic carbon at the expense of recalcitrant elemental carbon. Medical fungi C. versicolor, G. lucidum and P. pulmonarius, were observed to grow on the lignin in media containing up to 15 vol. % DMSO. Further detailed product characterization by chromatographic methods corroborated these observations, as more low-MW phenolic products were observed with DMSO as a co-solvent. These results may be explained by the high solubility of lignin in DMSO; thus, the addition of DMSO to the medium increases the lignin availability for microorganisms. Some of these low-MW phenolic products host a big potential to be used in medicine. No significant inhibition of enzymatic activity (laccase, MnP, LiP) was observed by the addition of up to 3 vol% DMSO.

Keywords: basidiomycetes, bio-degradation, dimethyl sulfoxide, lignin

Procedia PDF Downloads 393
255 Strategies for the Oral Delivery of Oligonucleotides

Authors: Venkat Garigapati

Abstract:

To date, more than a dozen oligonucleotide products are approved as injectable products for clinical use. However, there is no single oligo nucleotide product approved for clinical use. Oral delivery of oligo nucleotides is patient friendly administration however, many challenges involved in the development of oral formulation. Over the course of last twenty plus years, the research in this space aimed to address these challenges. This paper describes the issues involved in solubility, stability, enzymatic (nuclease) induced degradation, and permeation of nucleotides in the Gastrointestinal (GI) and how to overcome these challenges. Also, the translation of in vitro data to in vivo models hinders the formulation development. This paper describes the challenges involved in the development of Oligo Nucleotide products for oral administration. It also discusses the chemistry and formulation strategies for oral administration of oligonucleotides.

Keywords: oral adminstration, oligo nucleotides, stability, permeation, gastrointestinal tract

Procedia PDF Downloads 51
254 Activation of Caspase 3 by Terpenoids and Flavonoids in Cancer Cell Lines

Authors: Nusrat Masood, Vijaya Dubey, Suaib Luqman

Abstract:

Caspase 3, a member of cysteine-aspartic acid protease family, is an imperative indicator for cell death particularly when substantiating apoptosis. Thus, caspase 3 is an interesting target for the discovery and development of anticancer agent. We adopted a four level assessment of both terpenoids and flavonoids and thus experimentally performed the enzymatic assay in cell free system as well as in cancer cell line which was validated through real time expression and molecular interaction studies. A significant difference was observed with both the class of natural products indicating terpenoids as better activators of caspase 3 compared to flavonoids both in the cell free system as well as in cell lines. The expression analysis, activation constant and binding energy also correlate well with the enzyme activity. Overall, terpenoids had an unswerving effect on caspase 3 in all the tested system while flavonoids indirectly affect enzyme activity.

Keywords: Caspase 3, terpenoids, flavonoids, activation constant, binding energy

Procedia PDF Downloads 211
253 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia

Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla

Abstract:

Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.

Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus

Procedia PDF Downloads 90
252 Development of a Steam or Microwave-Assisted Sequential Salt-Alkali Pretreatment for Sugarcane Leaf Waste

Authors: Preshanthan Moodley

Abstract:

This study compares two different pretreatments for sugarcane leaf waste (SLW): steam salt-alkali (SSA) and microwave salt-alkali (MSA). The two pretreatment types were modelled, optimized, and validated with R² > 0.97. Reducing sugar yields of 1.21g/g were obtained with optimized SSA pretreatment using 1.73M ZnCl₂, 1.36M NaOH and 9.69% solid loading, and 1.17g/g with optimized MSA pretreatment using 1.67M ZnCl₂, 1.52M NaOH at 400W for 10min. A lower pretreatment time (10min) was required for the MSA model (83% lower). The structure of pretreated SLW was assessed using scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR). The optimized SSA and MSA models showed lignin removal of 80.5 and 73% respectively. The MSA pretreatment was further examined on sorghum leaves and Napier grass and showed yield improvements of 1.9- and 2.8-fold compared to recent reports. The developed pretreatment methods demonstrated high efficiency at enhancing enzymatic hydrolysis on various lignocellulosic substrates.

Keywords: lignocellulosic biomass, pretreatment, salt, sugarcane leaves

Procedia PDF Downloads 243
251 Microfluidic Paper-Based Electrochemical Biosensor

Authors: Ahmad Manbohi, Seyyed Hamid Ahmadi

Abstract:

A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R² > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.

Keywords: biological fluids, biomarkers, microfluidic paper-based electrochemical biosensors, Multiplex

Procedia PDF Downloads 263
250 Lessons Learnt from Moment Magnitude 7.8 Gorkha, Nepal Earthquake

Authors: Narayan Gurung, Fawu Wang, Ranjan Kumar Dahal

Abstract:

Nepal is highly prone to earthquakes and has witnessed at least one major earthquake in 80 to 90 years interval. The Gorkha earthquake, that measured 7.8 RS in magnitude and struck Nepal on 25th April 2015, after 81 years since Mw 8.3 Nepal Bihar earthquake in 1934, was the largest earthquake after Mw 8.3 Nepal Bihar earthquake. In this paper, an attempt has been made to highlight the lessons learnt from the MwW 7.8 Gorkha (Nepal) earthquake. Several types of damage patterns in buildings were observed for reinforced concrete buildings, as well as for unreinforced masonry and adobe houses in the earthquake of 25 April 2015. Many field visits in the affected areas were conducted, and thus, associated failure and damage patterns were identified and analyzed. Damage patterns in non-engineered buildings, middle and high-rise buildings, commercial complexes, administrative buildings, schools and other critical facilities are also included from the affected districts. For most buildings, the construction and structural deficiencies have been identified as the major causes of failure; however, topography, local soil amplification, foundation settlement, liquefaction associated damages and buildings built in hazard-prone areas were also significantly observed for the failure or damages to buildings and hence are reported. Finally, the lessons learnt from Mw 7.8 Gorkha (Nepal) earthquake are presented in order to mitigate impacts of future earthquakes in Nepal.

Keywords: Gorkha earthquake, reinforced concrete structure, Nepal, lesson learnt

Procedia PDF Downloads 176
249 Development of a Miniature Laboratory Lactic Goat Cheese Model to Study the Expression of Spoilage by Pseudomonas Spp. In Cheeses

Authors: Abirami Baleswaran, Christel Couderc, Loubnah Belahcen, Jean Dayde, Hélène Tormo, Gwénaëlle Jard

Abstract:

Cheeses are often reported to be spoiled by Pseudomonas spp., responsible for defects in appearance, texture, taste, and smell, leading to their non-marketing and even their destruction. Despite preventive actions, problems linked to Pseudomonas spp. are difficult to control by the lack of knowledge and control of these contaminants during the cheese manufacturing. Lactic goat cheese producers are not spared by this problem and are looking for solutions to decrease the number of spoiled cheeses. To explore different hypotheses, experiments are needed. However, cheese-making experiments at the pilot scale are expensive and time consuming. Thus, there is a real need to develop a miniature cheeses model system under controlled conditions. In a previous study, several miniature cheese models corresponding to different type of commercial cheeses have been developed for different purposes. The models were, for example, used to study the influence of milk, starters cultures, pathogen inhibiting additives, enzymatic reactions, microflora, freezing process on cheese. Nevertheless, no miniature model was described on the lactic goat cheese. The aim of this work was to develop a miniature cheese model system under controlled laboratory conditions which resembles commercial lactic goat cheese to study Pseudomonas spp. spoilage during the manufacturing and ripening process. First, a protocol for the preparation of miniature cheeses (3.5 times smaller than a commercial one) was designed based on the cheese factorymanufacturing process. The process was adapted from “Rocamadour” technology and involves maturation of pasteurized milk, coagulation, removal of whey by centrifugation, moulding, and ripening in a little scale cellar. Microbiological (total bacterial count, yeast, molds) and physicochemical (pH, saltinmoisture, moisture in fat-free)analyses were performed on four key stages of the process (before salting, after salting, 1st day of ripening, and end of ripening). Factory and miniature cheeses volatilomewere also obtained after full scan Sift-MS cheese analysis. Then, Pseudomonas spp. strains isolated from contaminated cheeses were selected on their origin, their ability to produce pigments, and their enzymatic activities (proteolytic, lecithinasic, and lipolytic). Factory and miniature curds were inoculated by spotting selected strains on the cheese surface. The expression of cheese spoilage was evaluated by counting the level of Pseudomonas spp. during the ripening and by visual observation and under UVlamp. The physicochemical and microbiological compositions of miniature cheeses permitted to assess that miniature process resembles factory process. As expected, differences involatilomes were observed, probably due to the fact that miniature cheeses are made usingpasteurized milk to better control the microbiological conditions and also because the little format of cheese induced probably a difference during the ripening even if the humidity and temperature in the cellar were quite similar. The spoilage expression of Pseudomonas spp. was observed in miniature and factory cheeses. It confirms that the proposed model is suitable for the preparation of miniature cheese specimens in the spoilage study of Pseudomonas spp. in lactic cheeses. This kind of model could be deployed for other applications and other type of cheese.

Keywords: cheese, miniature, model, pseudomonas spp, spoilage

Procedia PDF Downloads 118
248 miR-200c as a Biomarker for 5-FU Chemosensitivity in Colorectal Cancer

Authors: Rezvan Najafi, Korosh Heydari, Massoud Saidijam

Abstract:

5-FU is a chemotherapeutic agent that has been used in colorectal cancer (CRC) treatment. However, it is usually associated with the acquired resistance, which decreases the therapeutic effects of 5-FU. miR-200c is involved in chemotherapeutic drug resistance, but its mechanism is not fully understood. In this study, the effect of inhibition of miR-200c in sensitivity of HCT-116 CRC cells to 5-FU was evaluated. HCT-116 cells were transfected with LNA-anti- miR-200c for 48 h. mRNA expression of miR-200c was evaluated using quantitative real- time PCR. The protein expression of phosphatase and tensin homolog (PTEN) and E-cadherin were analyzed by western blotting. Annexin V and propidium iodide staining assay were applied for apoptosis detection. The caspase-3 activation was evaluated by an enzymatic assay. The results showed LNA-anti-miR-200c inhibited the expression of PTEN and E-cadherin protein, apoptosis and activation of caspase 3 compared with control cells. In conclusion, these results suggest that miR-200c as a prognostic marker can overcome to 5-FU chemoresistance in CRC.

Keywords: colorectal cancer, miR-200c, 5-FU resistance, E-cadherin, PTEN

Procedia PDF Downloads 148
247 Biological Evaluation and Molecular Modeling Study of Thiosemicarbazide Derivatives as Bacterial Type IIA Topoisomerases Inhibitors

Authors: Paweł Stączek, Tomasz Plech, Aleksandra Strzelczyk, Katarzyna Dzitko, Monika Wujec, Edyta Kuśmierz, Piotr Paneth, Agata Paneth

Abstract:

In this contribution, we will describe the inhibitory potency of nine thiosemicarbazide derivatives against bacterial type IIA topoisomerases, their antibacterial profile, and molecular modeling evaluation. We have found that one of the tested compounds, 4-benzoyl-1-(2-methyl-furan-3-ylcarbonyl) thiosemicarbazide, remarkably inhibits the activity of S. aureus DNA gyrase with the IC50 below 5 μM. Besides, this compound displays antibacterial activity on Staphylococcus spp. and E. faecalis at non-cytotoxic concentrations in mammalian cells, with minimal inhibitory concentrations (MICs) values at 25 μg/mL. Based on the enzymatic and molecular modeling studies we propose two factors, i.e. geometry of molecule and hydrophobic/hydrophilic balance as important molecular properties for developing thiosemicarbazide derivatives as potent Staphylococcus aureus DNA gyrase inhibitors.

Keywords: bioactivity, drug design, topoisomerase, molecular modeling

Procedia PDF Downloads 539
246 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents

Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera

Abstract:

The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.

Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast

Procedia PDF Downloads 233
245 Determination of the Inhibitory Effects of N-Methylpyrrole Derivatives on Glutathione Reductase Enzyme

Authors: Esma Kocaoglu, Oktay Talaz, Huseyin Cavdar, Murat Senturk, Deniz Eki̇nci̇

Abstract:

Glutathione reductase (GR) is a crucial antioxidant enzyme which is responsible for the maintenance of the antioxidant GSH (glutathione) molecule. Antimalarial effects of some chemical molecules are attributed to their inhibition of GR; thus inhibitors of this enzyme are expected to be promising candidates for the treatment of malaria. In this work, GR inhibitory properties of N-Methylpyrrole derivatives are reported. Firstly, GR was purified by means of affinity chromatography using 2’,5’-ADP-Sepharose 4B as ligand. Enzymatic activity was measured by Beutler’s method. Synthesis of the compounds was approved by thin layer chromatography and column chromatography. Different inhibitor concentrations were used and all compounds were tested in triplicate at each concentration used. It was found that all compounds have better inhibitory activity than the strong GR inhibitor N,N-bis(2-chloroethyl)-N-nitrosourea, especially three molecules, 8m, 8n, and 8q, are the best among them with low micromolar I₅₀ values. Findings of our study indicate that these Schiff base derivatives are strong GR inhibitors which can be used as leads for designation of novel antimalaria candidates.

Keywords: glutathione reductase, antimalaria, inhibitor, enzyme

Procedia PDF Downloads 246
244 Microwave-Assisted Inorganic Salt Pretreatment of Sugarcane Leaf Waste

Authors: Preshanthan Moodley, E. B. Gueguim-Kana

Abstract:

The objective of this study was to develop a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from enzymatically hydrolysed sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl2 and MA-FeCl3 were developed. Maximum reducing sugar yield of 0.406 g/g was obtained with 2 M FeCl3 at 700W for 3.5 min. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in lignocellulosic structure after MA-FeCl3 pretreatment with 71.5 % hemicellulose solubilization. This pretreatment was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl3 conditions. A 2 fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass.

Keywords: acid, pretreatment, salt, sugarcane leaves

Procedia PDF Downloads 432
243 Relation between Low Thermal Stress and Antioxidant Enzymes Activity in a Sweetening Plant: Stevia Rebaudiana Bert

Authors: T. Bettaieb, S. Soufi, S. Arbaoui

Abstract:

Stevia rebaudiana Bert. is a natural sweet plant. The leaves contain diterpene glycosides stevioside, rebaudiosides A-F, steviolbioside and dulcoside, which are responsible for its sweet taste and have commercial value all over the world as sugar substitute in foods and medicines. Stevia rebaudiana Bert. is sensitive temperature lower than 9°C. The possibility of its outdoor culture in Tunisian conditions demand genotypes tolerant to low temperatures. In order to evaluate the low temperature tolerance of eight genotypes of Stevia rebaudiana, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalases (CAT) were measured. Before carrying out the analyses, three genotypes of Stevia were exposed for 1 month at a temperature regime of 18°C during the day and 7°C at night similar to winter conditions in Tunisia. In response to the stress generated by low temperature, antioxidant enzymes activity revealed on native gel and quantified by spectrophotometry showed variable levels according to their degree of tolerance to low temperatures.

Keywords: chilling tolerance, enzymatic activity, stevia rebaudiana bert, low thermal stress

Procedia PDF Downloads 418
242 Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production

Authors: Deokyeong Choe, Keonwook Nam, Young Hoon Roh

Abstract:

Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production.

Keywords: wood waste, H₃PO₄-acetone, bioethanol, fermentation

Procedia PDF Downloads 553
241 Highly-Sensitive Nanopore-Based Sensors for Point-Of-Care Medical Diagnostics

Authors: Leyla Esfandiari

Abstract:

Rapid, sensitive detection of nucleic acid (NA) molecules of specific sequence is of interest for a range of diverse health-related applications such as screening for genetic diseases, detecting pathogenic microbes in food and water, and identifying biological warfare agents in homeland security. Sequence-specific nucleic acid detection platforms rely on base pairing interaction between two complementary single stranded NAs, which can be detected by the optical, mechanical, or electrochemical readout. However, many of the existing platforms require amplification by polymerase chain reaction (PCR), fluorescent or enzymatic labels, and expensive or bulky instrumentation. In an effort to address these shortcomings, our research is focused on utilizing the cutting edge nanotechnology and microfluidics along with resistive pulse electrical measurements to design and develop a cost-effective, handheld and highly-sensitive nanopore-based sensor for point-of-care medical diagnostics.

Keywords: diagnostics, nanopore, nucleic acids, sensor

Procedia PDF Downloads 441
240 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid

Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus

Abstract:

Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.

Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid

Procedia PDF Downloads 232
239 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites

Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il

Abstract:

Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.

Keywords: composite, flexural strength, matrix, sisal fibre

Procedia PDF Downloads 369
238 Identification and Characterization of Novel Genes Involved in Quinone Synthesis in the Odoriferous Defensive Stink Glands of the Red Flour Beetle, Tribolium castaneum

Authors: B. Atika, S. Lehmann, E. Wimmer

Abstract:

The defense strategy is very common in the insect world. Defensive substances play a wide variety of functions for beetles, such as repellents, toxicants, insecticides, and antimicrobics. Beetles react to predators, invaders, and parasitic microbes with the release of toxic and repellent substances. Defensive substances are directed against a large array of potential target organisms or may function for boiling bombardment or as surfactants. Usually, Coleoptera biosynthesize and store their defensive compounds in a complex secretory organ, known as odoriferous defensive stink glands. The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), uses these glands to produce antimicrobial p-benzoquinones and 1-alkenes. In the past, the morphology of stink gland has been studied in detail in tenebrionid beetles; however, very little is known about the genes that are involved in the production of gland secretion. In this study, we studied a subset of genes that are essential for the benzoquinone production in red flour beetle. In the first phase, we selected 74 potential candidate genes from a genome-wide RNA interference (RNAi) knockdown screen named 'iBeetle.' All these 74 candidate genes were functionally characterized by RNAi-mediated gene knockdown. Therefore, they were selected for a subsequent gas chromatography-mass spectrometry (GC-MS) analysis of secretion volatiles in respective RNAi knockdown glands. 33 of them were observed to alter the phenotype of stink gland. In the GC-MS analysis, 7 candidate genes were noted to display a strongly altered gland, in terms of secretion color and chemical composition, upon knockdown, showing their key role in the biosynthesis of gland secretion. Morphologically altered stink glands were found for odorant receptor and protein kinase superfamily. Subsequent GC-MS analysis of secretion volatiles revealed reduced benzoquinone levels in LIM domain, PDZ domain, PBP/GOBP family knockdowns and a complete lack of benzoquinones in the knockdown of sulfatase-modifying factor enzyme 1, sulfate transporter family. Based on stink gland transcriptome data, we analyzed the function of sulfatase-modifying factor enzyme 1 and sulfate transporter family via RNAi-mediated gene knockdowns, GC-MS, in situ hybridization, and enzymatic activity assays. Morphologically altered stink glands were noted in knockdown of both these genes. Furthermore, GC-MS analysis of secretion volatiles showed a complete lack of benzoquinones in the knockdown of these two genes. In situ hybridization showed that these two genes are expressed around the vesicle of certain subgroup of secretory stink gland cells. Enzymatic activity assays on stink gland tissue showed that these genes are involved in p-benzoquinone biosynthesis. These results suggest that sulfatase-modifying factor enzyme 1 and sulfate transporter family play a role specifically in benzoquinone biosynthesis in red flour beetles.

Keywords: Red Flour Beetle, defensive stink gland, benzoquinones, sulfate transporter, sulfatase-modifying factor enzyme 1

Procedia PDF Downloads 135
237 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles

Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra

Abstract:

A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.

Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin

Procedia PDF Downloads 373
236 Study the Action of Malathion Induced Enzymatic Changes in the Target Organ of Fish Labeo Rohita

Authors: Sudha Summarwar, Jyotsana Pandey, Deepali Lall

Abstract:

The Malathion compound has the great tendency to be accumulated in the organs of the fishes both if it is present in traces or in higher amount in the aquatic environment. It has the tendency to be accumulated more in quantity in the organs directly exposed to it. The accumulation was found to be time and concentration dependent. The accumulation of malathion was maximum in gills and is the minimum in the brain. Effect of different sub-lethal concentrations (l/5th, l/l0th, l/15th, l/20th, and 1/25th fractions of 96 hr. LC50) of malathion compound on acid phosphatase (AcPase), alkaline phosphatase (AlPase), serum glutamic oxalacetic transaminase (SGOT) and Serum Glucose-6-Phosphatase (S-G-6-Pase), serum glutamic pyruvic transaminase (SGPT) in blood of Labeo rohita exposed for the period of 15. 30, 45, and 60 days, have been studied in present investigations. In general the alterations were concentrations and duration dependent.

Keywords: AcPase, AlPase, Labeo rohita, malathion, S-G-6-Pase, SGOT, SGPT

Procedia PDF Downloads 302
235 In Situ Laser-Induced Synthesis of Copper Microstructures with High Catalytic Properties and Sensory Characteristics

Authors: Maxim Panov, Evgenia Khairullina, Sergey Ermakov, Oleg Gundobin, Vladimir Kochemirovsky

Abstract:

The continuous in situ laser-induced catalysis proceeding via generation and growth of nano-sized copper particles was discussed. Also, the simple and lost-cost method for manufacturing of microstructural copper electrodes was proposed. The electrochemical properties of these electrodes were studied by cyclic voltammetry and impedance spectroscopy. The surface of the deposited copper structures (electrodes) was investigated by X-ray photoelectron spectroscopy and atomic force microscopy. These microstructures are highly conductive and porous with a dispersion of pore size ranging from 50 nm to 50 μm. An analytical response of the fabricated copper electrode is 30 times higher than those observed for a pure bulk copper with similar geometric parameters. A study of sensory characteristics for hydrogen peroxide determination showed that the value of Faraday current at the fabricated copper electrode is 2-2.5 orders of magnitude higher than for etalon one.

Keywords: laser-induced deposition, electrochemical electrodes, non-enzymatic sensors, copper

Procedia PDF Downloads 223
234 Effect of Particle Shape on Monotonic and Cyclic Biaxial Behaviour of Sand Using Discrete Element Method

Authors: Raj Banerjee, Y. M. Parulekar, Aniruddha Sengupta, J. Chattopadhyay

Abstract:

This study proposes a Discrete Element Method (DEM) simulation using a commercial software PFC 2D (2019) for quantitatively simulating the monotonic and cyclic behaviour of sand using irregular shapes of sand grains. A preliminary analysis of the number of particles for optimal Representative Element Volume (REV) simulation of dimension 35mm x 35mm x 70mm using the scaled Grain Size Distribution (GSD) of sand is carried out. Subsequently, the effect of particle shape on the performance of sand during monotonic and cyclic bi-axial tests is assessed using numerical simulation. The validation of the numerical simulation for one case is carried out using the test results from the literature. Further numerical studies are performed in which the particles in REV are simulated by mixing round discs with irregular clumps (100% round disc, 75% round disc 25% irregular clump, 50% round disc 50% irregular clump, 25% round disc 75% irregular clump, 100% irregular clump) in different proportions using Dry Deposition (DD) method. The macro response for monotonic loading shows that irregular sand has a higher strength than round particles and that the Mohr-Coulomb failure envelope depends on the shape of the grains. During cyclic loading, it is observed that the liquefaction resistance curve (Cyclic Stress Ratio (CSR)-Number of cycles (N)) of sand is dependent on the combination of particle shapes with different proportions.

Keywords: biaxial test, particle shape, monotonic, cyclic

Procedia PDF Downloads 54