Search results for: anti-icing properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8975

Search results for: anti-icing properties

8735 Molecular Dynamics Studies of Homogeneous Condensation and Thermophysical Properties of HFC-1336mzz(Z)

Authors: Misbah Khan, Jian Wen, Muhammad Asif Shakoori

Abstract:

The Organic Rankine Cycle (ORC) plays an important role in converting low-temperature heat sources into electrical power by using refrigerants as working fluids. The thermophysical properties of working fluids are essential for designing ORC. HFO-1336mzz(Z) (cis-1,1,1,4,4,4-hexafluoro-2-butene) considered as working fluid and have almost 99% low GWP and relatively same thermophysical properties used as a replacement of HFC-245fa (1,1,1,3,3-pentafluoro-propane). The environmental, safety, healthy and thermophysical properties of HFO-1336mzz(Z) are needed to use it in a practical system. In this paper, Molecular dynamics simulations were used to investigate the Homogeneous condensation, thermophysical and structural properties of HFO-1336mzz(Z) and HFC-245fa. The effect of various temperatures and pressures on thermophysical properties and condensation was extensively investigated. The liquid densities and isobaric heat capacities of this refrigerant was simulated at 273.15K to 353.15K temperatures and pressure0.5-4.0MPa. The simulation outcomes were compared with experimental data to validate our simulation method. The mean square displacement for different temperatures was investigated for dynamical analysis. The variations in potential energies and condensation rate were simulated to get insight into the condensation process. The radial distribution function was simulated at the micro level for structural analysis and revealed that the phase transition of HFO-1336mzz(Z) did not affect the intramolecular structure.

Keywords: homogenous condensation, refrigerants, molecular dynamics simulations, organic rankine cycle

Procedia PDF Downloads 152
8734 Molecular Dynamics Simulations of the Structural, Elastic and Thermodynamic Properties of Cubic GaBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present the molecular dynamic simulations results of the structural and dynamical properties of the zinc-blende GaBi over a wide range of temperature (300-1000) K. Our simulation where performed in the framework of the three-body Tersoff potential, which accurately reproduces the lattice constants and elastic constants of the GaBi. A good agreement was found between our calculated results and the available theoretical data of the lattice constant, the bulk modulus and the cohesive energy. Our study allows us to predict the thermodynamic properties such as the specific heat and the lattice thermal expansion. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: Gallium compounds, molecular dynamics simulations, interatomic potential thermodynamic properties, structural phase transition

Procedia PDF Downloads 445
8733 Effect of Welding Parameters on Mechanical and Microstructural Properties of Aluminum Alloys Produced by Friction Stir Welding

Authors: Khalil Aghapouramin

Abstract:

The aim of the present work is to investigate the mechanical and microstructural properties of dissimilar and similar aluminum alloys welded by Friction Stir Welding (FSW). The specimens investigated by applying different welding speed and rotary speed. Typically, mechanical properties of the joints performed through tensile test fatigue test and microhardness (HV) at room temperature. Fatigue test investigated by using electromechanical testing machine under constant loading control with similar since wave loading. The Maximum stress versus minimum got the range between 0.1 to 0.3 in the research. Based upon welding parameters by optical observation and scanning electron microscopy microstructural properties fulfilled with a cross section of welds, in addition, SEM observations were made of the fracture surfaces

Keywords: friction stir welding, fatigue and tensile test, Al alloys, microstructural behavior

Procedia PDF Downloads 340
8732 Rheological Properties of Polysulfone-Sepiolite Nanocomposites

Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan

Abstract:

Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.

Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing

Procedia PDF Downloads 424
8731 Spin Resolved Electronic Behavior of Zno Nanoribbons

Authors: Serkan Caliskan

Abstract:

The aim of this study is to understand the spin-resolved properties of ZnO armchair and zigzag nanoribbons. The spin polarization can be induced by either geometry of the nanoribbons or ferromagnetic electrodes. Hence, spin-dependent behavior is revealed in these nanostructures in the absence of external magnetic field. Both electronic structure and magnetic properties of the nanoribbons are analyzed, employing first-principles calculations through Density Functional Theory. The relevant properties using the spin-dependent band structure, conductance, transmission, density of states and magnetic moment are elucidated. These results can be utilized to describe the nanoscale structures and stimulate the experimental works.

Keywords: first principles, spin polarized transport, ZnO device, ZnO nanoribbons

Procedia PDF Downloads 194
8730 Accelerated Ageing of Unidirectional Flax Fibers Reinforced Recycled Polypropylene Composites

Authors: Lara Alam, Laetitia Van-Schoors, Olivier Sicot, Benoit Piezel, Shahram Aivazzadeh

Abstract:

Over the last decades, worldwide environmental awareness has grown due to the depletion of raw material resources and global warming. This awareness has prompted the development of new products more environmentally friendly. Among these products are biocomposite materials reinforced with natural fibers. The main challenge in developing the use of biocomposites in exterior applications is the lack of knowledge about their durability and the evolution of their mechanical and physico-chemical properties in the long term. Few studies have been carried out on the photooxidation of unidirectional (UD) composites based on recycled matrix, which is the aim of this work. For this purpose, UD flax fiber composites based on recycled polypropylene were prepared by thermocompression. An accelerated aging test was carried out using a xenon arc WeatherOmeter. The consequences of UV exposure on the chemical composition and morphology of the surface of composites as well as on their tensile mechanical properties have been reported. The results showed that accelerated aging had a significant effect on the surface of these composites while it had little impact on their mechanical properties.

Keywords: flax fiber, photooxidation, physico-chemical properties, recycled polypropylene, tensile properties

Procedia PDF Downloads 199
8729 Physical Properties of Alkali Resistant-Glass Fibers in Continuous Fiber Spinning Conditions

Authors: Ji-Sun Lee, Soong-Keun Hyun, Jin-Ho Kim

Abstract:

In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt% zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured, and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

Keywords: glass composition, fiber diameter, continuous filament fiber, continuous spinning, physical properties

Procedia PDF Downloads 317
8728 Gamma Irradiation Effects on the Crystal Structural and Transport Properties of Bi₂Te₃ Thin Films Grown by Thermal Evaporation

Authors: Shoroog Alraddadi

Abstract:

In this study, the effect of gamma irradiation on the structural and transport properties of Bismuth Telluride (Bi₂Te₃) thin films was investigated. Bi₂Te₃ thin films with thicknesses varying from 100 nm to 500 nm were grown using thermal evaporation in vacuum 10⁻⁵ Torr. The films were irradiated by Gamma radiation with different doses (50, 200, and 500 kGy). The crystal structure of Bi₂Te₃ thin films was studied by XRD diffraction. It was showed that the degree of crystallinity of films increases as the doses increase. Furthermore, it was found that the electrical conductivity of Bi₂Te₃ increase as the doses increase. From these results, it can be concluding that the effect of radiation on the structural and transport properties was positive at the levels of irradiation used.

Keywords: bismuth telluride, gamma irradiation, thin film, transport properties

Procedia PDF Downloads 156
8727 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 567
8726 Electrical and Magnetic Properties of Neodymium and Erbium Doped Bismuth Ferrite Multifunctional Materials for Spintronic Devices

Authors: Ravinder Dachepalli, Naveena Gadwala, K. Vani

Abstract:

Nd and Er substituted bismuth nano crystalline multifunctional materials were prepared by citrate gel autocombution technique. The structural characterization was carried out by XRD and SEM. Electrical properties such are electrical conductivity and dielectric properties have been measured. Plots of electrical conductivity versus temperature increases with increasing temperature and shown a transition near Curie temperature. Dielectric properties such are dielectric constant and dielectric loss tangent have been measured from 20Hz to 2 MHz at room temperature. Plots of dielectric constant versus frequency show a normal dielectric behaviour of multifunctional materials. Temperature dependence of magnetic properties of Bi-Nd and Bi-Er multi-functional materials were carried out by using Vibrating sample magnetometer (VSM). The magnetization as a function of an applied field ±100 Oe was carried out at 3K and 360 K. Zero field Cooled (ZFC) and Field Cooled (FC) magnetization measurements under an applied field of 100Oe a in the temperature range of 5-375K. The observed results can be explained for spintronic devices.

Keywords: Bi-Nd and Bi-Er Multifunctional Materia, Citrate Gel Auto combustion Technique, FC-ZFC magnetization, Dielectric constant

Procedia PDF Downloads 400
8725 Development of Impressive Tensile Properties of Hybrid Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Refractory High Entropy Alloy

Authors: M. Veeresham

Abstract:

The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800 °C and 1000 °C temperatures for 1 h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (orientation distribution function (ODF) analysis) and microstructural examinations (analytical electron backscatter diffraction (EBSD) maps) permitted to establish a good relationship between annealing texture and microstructure and universal testing machine (UTM) utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combination with the tensile strength (1380 MPa) and (24.7%) elongation is achieved for the 800 °C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000 °C annealed temperature ascribed to the influence of high thermal energy.

Keywords: refractory high entropy alloys, hybrid-rolling, recrystallization, microstructure, tensile properties

Procedia PDF Downloads 143
8724 Molecular Dynamics Simulations of the Structural, Elastic, and Thermodynamic Properties of Cubic AlBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present a theoretical study of the structural, elastic and thermodynamic properties of the zinc-blende AlBi for a wide temperature range. The simulation calculation is performed in the framework of the molecular dynamics method using the three-body Tersoff potential which reproduces provide, with reasonable accuracy, the lattice constants and elastic constants. Our results for the lattice constant, the bulk modulus and cohesive energy are in good agreement with other theoretical available works. Other thermodynamic properties such as the specific heat and the lattice thermal expansion can also be predicted. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: aluminium compounds, molecular dynamics simulations, interatomic potential, thermodynamic properties, structural phase transition

Procedia PDF Downloads 305
8723 Mechanical Properties of Sugar Palm Fibre Reinforced Thermoplastic Polyurethane Composites

Authors: Dandi Bachtiar, Mohammed Ausama Abbas, Januar Parlaungan Siregar, Mohd Ruzaimi Bin Mat Rejab

Abstract:

Short sugar palm fibre and thermoplastic polyurethane were combined to produce new composites by using the extrude method. Two techniques used to prepare a new composite material, firstly, extrusion of the base material with short fibre, secondly hot pressing them. The size of sugar palm fibre was fixed at 250µm. Different weight percent (10 wt%, 20 wt% and 30 wt%) were used in order to optimise preparation process. The optimization of process depended on the characterization mechanical properties such as impact, tensile, and flexural of the new (TPU/SPF) composite material. The results proved that best tensile and impact properties of weight additive fibre applied 10 wt%. There was an increasing trend recorded of flexural properties during increased the fibre loading. Meanwhile, the maximum tensile strength was 14.0 MPa at 10 wt% of the fibre. Moreover, there was no significant effect for additions more than 30 wt% of the fibre.

Keywords: composites, natural fibre, polyurethane, sugar palm

Procedia PDF Downloads 384
8722 Characteristics Flakes Product with Dry Residue of Wild Orenago

Authors: Kosutic Milenko, Filipovic Jelena

Abstract:

Cereals constitute the staple food of the human race. In accordance with the modern nutritionist opinions, cereal products, flakes and snack products are the most common foods in the daily diet, such as ready to eat breakfast cereal, flakes, and snacks. Extrusion technology makes it possible to apply different sources of ingredients for the enrichment of cereal-based flakes or snacks products. Substances with strong antioxidant properties such as wild oregano have a positive impact on human health, therefore attracting the attention of scientists, consumers and food industry experts. This paper investigates the effects of simultaneous addition of dry residue of wild oregano (0.5% and 1%), on the physical and colour properties of corn flakes to obtain new products with altered nutritional properties. Post-hoc Tukey’s HSD test at 95% confidence limit showed significant differences between various samples. Addition of dry residue wild oregano positively influenced physical characteristics (decreased bulk density 30.2%, increased expansion rate 44.9%), influenced of decrease hardness 38.1% and work of compression 40.3% also significantly change the color of flakes product. Presented data point that investigated corn flakes is a new product with good physical and sensory properties due to higher level of dry residue of wild oregano.

Keywords: flakes product, wild oregano, phisical properties, colour, sensory properties

Procedia PDF Downloads 323
8721 Characterization of Calcined Clay Blended Self Compacting Concrete-Correlation between Super-Plasticizer Dosage and Self Compacting Concrete Properties

Authors: Kumator Josiphiah Taku

Abstract:

Sustainability in construction is essential to the economic construction and can be achieved by the use of locally available construction materials. This research work, thus, uses locally available materials –calcined clay and Sandcrete SPR-300 superplasticizer in the production of Self Compacting Concrete (SCC) by investigating the correlation between the superplasticizer dosage and the fresh and hardened states properties of a grade 50 SCC made by incorporating a Calcined Clay (CC) – Portland Limestone Cement (PLC) blend as the cementitious matter at 20% replacement of PLC with CC and using CC as filler. The superplasticizer dosage was varied from 0.4 to 3.0% by weight of cementitious material and the slump, v-funnel, L-box and strength parameters investigated. The result shows a positive correlation between the increased dosage of the superplasticizer and the fresh and hardened states properties of the SCC up to 2% dosage. The J¬Spread¬, t¬500J¬, Slump flow, L-box H¬2¬/H¬1 ¬ratio and strength, all increases with SP dosage while the V-funnel flow decreased with SP dosage. Overall, SP ratio of 0.5 to 2.0 can be used in improving the properties of SCC produced using calcined clay both as filler and cementitious material.

Keywords: calcined clay, compressive strength, fresh-state properties of SCC, self compacting concrete, superplasticizer dosage

Procedia PDF Downloads 166
8720 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.

Keywords: biodiesel, castor oil, fuel properties, thermal cracking

Procedia PDF Downloads 260
8719 Water Temperature on Early Age Concrete Property

Authors: Tesfaye Sisay Dessalegn

Abstract:

The long-term performance of concrete structures is affected by the properties and behavior of concrete at an early age. However, the fundamental mechanisms affecting the early-age behavior of concrete have not yet been fully studied. The effect of water temperature on concrete is not sufficiently studied, and at the same time, the majority of studies focused on the effect of mixing water temperature on the workability and mechanical properties of concrete. However, to the best of the authors' knowledge, the effect of mixing water temperatures on plastic shrinkage cracking of concrete has not been studied yet.

Keywords: water temperature, early age concrete strength, mechanical properties of concrete, strength

Procedia PDF Downloads 57
8718 Evaluation of the Mechanical Properties of Nano TiO2 and Clay Filler Filled Epoxy Composites

Authors: A. Mimaroglu, H. Unal

Abstract:

In this study, the mechanical properties of nano filled epoxy composites were evaluated. The matrix material is epoxy. nano fillers are Al2O3, TiO2 and clay added in 2.5- 10 wt% by weight ratio. Test samples were prepared using an open mould type die. Mechanical tests were carried out. The tensile strength, elastic modulus, elongation at break and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the filler content had a high influence on the level of the mechanical properties of the epoxy composites.

Keywords: nano, epoxy, composite, fillers, clay

Procedia PDF Downloads 390
8717 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete

Authors: Žymantas Rudžionis, Paulius Grigaliūnas, Danutė Vaičiukynienė

Abstract:

By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.

Keywords: self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological, properties of concrete, slump flow

Procedia PDF Downloads 366
8716 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres

Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee

Abstract:

Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.

Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity

Procedia PDF Downloads 207
8715 Properties of Self-Compacting Concrete Mixed with Fly Ash

Authors: Abhinandan Singh Gill, Gurbir Kaur Jawanda

Abstract:

Since the introduction of self-consolidating concrete (SCC) in Japan during the late 1980’s, acceptance and usage of this concrete in the construction industry has been steadily gaining momentum. In the United States, the usage of SCC has been spearheaded by the precast concrete industry. Good SCC must possess the following key fresh properties: filling ability, passing ability, and resistance to segregation. Self-compacting concrete is one of 'the most revolutionary developments' in concrete research; this concrete is able to flow and to fill the most restocked places of the form work without vibration. There are several methods for testing its properties. In the fresh state: the most frequently used are slump flow test, L box and V-funnel. This work presents properties of self-compacting concrete, mixed with fly ash. The test results for acceptance characteristics of self-compacting concrete such as slump flow; V-funnel and L-Box are presented. Further, the compressive strength at the ages of 7, 28 days was also determined and results are included here.

Keywords: compressive strength, fly ash, self-compacting concrete, slump flow test, super plasticizer

Procedia PDF Downloads 411
8714 Influence of Modified and Unmodified Cow Bone on the Mechanical Properties of Reinforced Polyester Composites for Biomedical Applications

Authors: I. O. Oladele, J. A. Omotoyinbo, A. M. Okoro, A. G. Okikiola, J. L. Olajide

Abstract:

This work was carried out to investigate comparatively the effects of modified and unmodified cow bone particles on the mechanical properties of polyester matrix composites in order to investigate the suitability of the materials as biomaterial. Cow bones were procured from an abattoir, sun dried for 4 weeks and crushed. The crushed bones were divided into two, where one part was turned to ash while the other part was pulverized with laboratory ball mill before the two grades were sieved using 75 µm sieve size. Bone ash and bone particle reinforced tensile and flexural composite samples were developed from pre-determined proportions of 2, 4, 6, and 8 %. The samples after curing were stripped from the moulds and were allowed to further cure for 3 weeks before tensile and flexural tests were performed on them. The tensile test result showed that, 8 wt % bone particle reinforced polyester composites has higher tensile properties except for modulus of elasticity where 8 wt % bone ash particle reinforced composites has higher value while for flexural test, bone ash particle reinforced composites demonstrate the best flexural properties. The results show that these materials are structurally compatible.

Keywords: biomedical, composites, cow bone, mechanical properties, polyester, reinforcement

Procedia PDF Downloads 279
8713 Production and Quality Assessment of Antioxidant-Rich Biscuit Produced from Pearl Millet and Orange Peel Flour Blends

Authors: Oloniyo Rebecca Olajumoke

Abstract:

The unstable free radicals molecules oxidize cells throughout the body to cause oxidative stress, which has been implicated in the pathogenesis of many chronic diseases. Thus, the consumption of antioxidant-rich snacks could help to reduce the production of these free radicals in the body. This study aimed at producing antioxidant–rich biscuits from an underutilized pearl millet and agricultural waste from orange peel flour (PMF and OPF, respectively) blends. Biscuits were produced from PMF, and OPF blends using various proportions (95:05; 90:10; 85:15; 80:20 with 100% PMF as control. The functional properties of the flours, as well as the antioxidant properties, physical evaluation, and consumer acceptability of the biscuits, were evaluated. The functional properties of the composite flour showed an increase in oil absorption capacity (7.73-8.80 g/ml), water absorption capacity (6.82-7.21 g/ml), foaming (3.91-5.88 g/ml), and emulsification (52.85-58.82 g/ml) properties. The increased addition of OPF significantly (p<0.05) increased the antioxidant properties of the biscuits produced from the composite flour. For instance, the ferric reducing properties (0.10-0.4 mgAAE/g), total flavonoid (1.20-8.12 mg QE/g), and ABTS radical scavenging (1.17-2.19 mmol/TEAC/g) of the composite flours were increasingly comparable to those of 100% PMF. The physical parameters of the biscuit were significantly different (p<0.05) from one another. The addition of OPF into PMF reduced the weight, diameter, and spread ratio of biscuits produced while contrarily increasing the height of the biscuit. The incorporation of OPF at 5% (95:05) substitution yielded a consumedly acceptable biscuit product. The significant increase in antioxidant properties with an increase in OPF during the production of biscuits would therefore increase the nutritional value and potential health benefits.

Keywords: orange peel, biscuit, antioxidant, pearl millet

Procedia PDF Downloads 95
8712 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.

Keywords: FP-LAPW, DFT, CeO₂, properties

Procedia PDF Downloads 216
8711 Investigation of Interaction between Interferons and Polyethylene Glycol Using Molecular Dynamics Simulation

Authors: M. Dehestani, F. Kamali, M. Klantari Pour, L. Zeidabadi-Nejad

Abstract:

Chemical bonding between polyethylene glycol (PEG) with pharmaceutical proteins called pegylation is one of the most effective methods of improving the pharmacological properties. The covalent attachment of polyethylene glycol (PEG) to proteins will increase their pharmacologic properties. For the formation of a combination of pegylated protein should first be activated PEG and connected to the protein. Interferons(IFNs) are a family of cytokines which show antiviral effects in front of the biological and are responsible for setting safety system. In this study, the nature and properties of the interaction between active positions of IFNs and polyethylene glycol have been investigated using molecular dynamics simulation. The main aspect of this theoretical work focuses on the achievement of valuable data on the reaction pathways of PEG-IFNs and the transition state energy. Our results provide a new perspective on the interactions, chemical properties and reaction pathways between IFNs and PEG.

Keywords: interaction, interferons, molecular dynamics simulation, polyethylene glycol

Procedia PDF Downloads 241
8710 Theoretical and Experimental Investigation of Fe and Ni-TCNQ on Graphene

Authors: A. Shahsavar, Z. Jakub

Abstract:

Due to the outstanding properties of the 2D metal-organic frameworks (MOF), intensive computational and experimental studies have been done. However, the lack of fundamental studies of MOFs on the graphene backbone is observed. This work studies Fe and Ni as metal and tetracyanoquinodimethane (TCNQ) with a high electron affinity as an organic linker functionalized on graphene. Here we present DFT calculations results to unveil the electronic and magnetic properties of iron and nickel-TCNQ physisorbed on graphene. Adsorption and Fermi energies, structural, and magnetic properties will be reported. Our experimental observations prove Fe- and NiTCNQ@Gr/Ir(111) are thermally highly stable up to 500 and 250°C, respectively, making them promising materials for single-atom catalysts or high-density storage media.

Keywords: DFT, graphene, MTCNQ, self-assembly

Procedia PDF Downloads 132
8709 POSS as Modifiers and Additives for Elastomer Composites

Authors: Anna Strąkowska, Marian Zaborski

Abstract:

The studies were focused on POSS application with methylvinylsilicone rubber (MVQ). The obtained results indicate that they can be successfully incorporated into silica-filled rubbers as modifying agents since they enhance cross-link density and improve most properties of the resulting network. It is also worth noting that the incorporation of POSS molecules resulted in stabilizing effect against adverse changes induced by the climatic, ozone or UV ageing of the rubbers. Furthermore, we obtained interesting results of rubbers surface modification using POSS functionalised with halogen groups (Cl, F, and Br). As the results, surface energy of the elastomeric composites and their hydrophobicity increased, barrier properties improved and thermal stability increased as well. Additionally, the studies with silicone rubber and POSS containing acidic and alkaline groups revealed composites with self-healing properties. The observed effects strictly depend on a kind and quantity of functional groups present in angles of POSS cages.

Keywords: elastomeric composites, POSS, properties modyfication, silicone rubber

Procedia PDF Downloads 355
8708 Study the Effect of Sensitization on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints

Authors: Viranshu Kumar, Hitesh Arora, Pradeep Joshi

Abstract:

SS 304 is Austenitic stainless steel with Chromium and Nickel as basic constituents. It has excellent corrosion resistance properties and very good weldability. Austenitic stainless steels have superior mechanical properties at high temperatures and are used extensively in a range of applications. SS 304L has wide applications in various industries viz. Nuclear, Pharmaceutical, marine, chemical etc. due to its excellent applications and ease of joining this material has become very popular for fabrication as well as weld surfacing. Austenitic stainless steels have a tendency to form chromium depleted zones at the grain boundaries during welding and heat treatment, where chromium combines with available carbon in the vicinity of the grain boundaries, to produce an area depleted in chromium, and thus becomes susceptible to intergranular corrosion. This phenomenon is known as sensitization.

Keywords: sensitization, SS 304, GTAW, mechanical properties, carbideprecipitationHAZ, microstructure, micro hardness, tensile strength

Procedia PDF Downloads 398
8707 Effect of Different Carbon Fabric Orientations on the Fracture Properties of Carbon Fabric Reinforced Polymer Composites

Authors: S. F. Halim, H. F. Naguib, S. N. Lawandy, R. S. Hegazy, M. N. Baheg

Abstract:

The main drawbacks of the traditional carbon fabric reinforced epoxy resin (CFRP) are low strain failure, delamination between composites layers, and low impact resistance due to the brittleness of epoxy resin. The aim of this study is to enhance the fracture properties of the CFRP composites laminates via the variation of composite's designs. A series of composites were fabricated in which bidirectional (00/900) carbon fabric (CF) layers were laid inside the resin matrix with orientation codes as F1 [(00, 900)/ (00, 900)], F2 [(900, 00)/ (00, 900)] and F3 [(00,900)/ (900, 00). The mechanical and dynamic properties of the composites were estimated. In addition, the morphology of samples surface was examined by scanning electron microscope (SEM) after impact fracture. The results revealed that the CFRP properties could be tailored fitting specific applications by controlling the fabric orientation inside the CFRP composite design. F2 orientation [(900, 00)/ (00.900)] showed the highest tensile and flexural strength values. On the other hand, the impact strength values of composites were in the order F1 > F2 > F3. The storage modulus, loss modulus, and glass transition temperature Tg values obtained from the dynamic mechanical analysis (DMA) examination was in the order F1 > F2 > F3. The variation in the properties of the composite was clearly explained by the SEM micrographs as the failure of F3 orientation properties was referred to as the complete breakage of the CF layers upon fracture.

Keywords: carbon fiber, CFRP, composites, epoxy resins, flexural strength

Procedia PDF Downloads 128
8706 The High Strength Biocompatible Wires of Commercially Pure Titanium

Authors: J. Palán, M. Zemko

Abstract:

COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050 MPa. Ti Grade 4 reaches ultimate strengths of up to 1250 MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants.

Keywords: CONFORM, ECAP, rotary swaging, titanium

Procedia PDF Downloads 244