Search results for: anisotropic materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6782

Search results for: anisotropic materials

6542 Polypropylene Fibres Dyeable with Acid Dyes

Authors: H. M. Wang, C. J. Chang

Abstract:

As the threat of global climate change is more seriously, "net zero emissions by 2050" has become a common global goal. In order to reduce the consumption of petrochemical raw materials and reduce carbon emissions, low-carbon fiber materials have become key materials in the future global textile supply chain. This project uses polyolefin raw materials to modify through synthesis and amination to develop low-temperature dyeable polypropylene fibers, endow them with low-temperature dyeability and high color fastness that can be combined with acid dyes, and improve the problem of low coloring strength. The color fastness to washing can reach the requirement of commerce with 3.5 level or more. Therefore, we realize the entry of polypropylene fiber into the clothing textile supply chain, replace existing fiber raw materials, solve the problem of domestic chemical fiber, textile, and clothing industry's plight of no low-carbon alternative new material sources, and provide the textile industry with a solution to achieve the goal of net zero emissions in 2050.

Keywords: acid dyes, dyeing, low-temperature, polypropylene fiber

Procedia PDF Downloads 66
6541 The Influence of Physical-Mechanical and Thermal Properties of Hemp Filling Materials by the Addition of Energy Byproducts

Authors: Sarka Keprdova, Jiri Bydzovsky

Abstract:

This article describes to what extent the addition of energy by-products into the structures of the technical hemp filling materials influence their properties. The article focuses on the changes in physical-mechanical and thermal technical properties of materials after the addition of ash or FBC ash or slag in the binding component of material. Technical hemp filling materials are made of technical hemp shives bonded by the mixture of cement and dry hydrate lime. They are applicable as fillers of vertical or horizontal structures or roofs. The research used eight types of energy by-products of power or heating plants in the Czech Republic. Secondary energy products were dispensed in three different percentage ratios as a replacement of cement in the binding component. Density, compressive strength and determination of the coefficient of thermal conductivity after 28, 60 and 90 days of curing in a laboratory environment were determined and subsequently evaluated on the specimens produced.

Keywords: ash, binder, cement, energy by-product, FBC ash (fluidized bed combustion ash), filling materials, shives, slag, technical hemp

Procedia PDF Downloads 384
6540 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials

Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina

Abstract:

The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.

Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials

Procedia PDF Downloads 293
6539 Reducing Hazardous Materials Releases from Railroad Freights through Dynamic Trip Plan Policy

Authors: Omar A. Abuobidalla, Mingyuan Chen, Satyaveer S. Chauhan

Abstract:

Railroad transportation of hazardous materials freights is important to the North America economics that supports the national’s supply chain. This paper introduces various extensions of the dynamic hazardous materials trip plan problems. The problem captures most of the operational features of a real-world railroad transportations systems that dynamically initiates a set of blocks and assigns each shipment to a single block path or multiple block paths. The dynamic hazardous materials trip plan policies have distinguishing features that are integrating the blocking plan, and the block activation decisions. We also present a non-linear mixed integer programming formulation for each variant and present managerial insights based on a hypothetical railroad network. The computation results reveal that the dynamic car scheduling policies are not only able to take advantage of the capacity of the network but also capable of diminishing the population, and environment risks by rerouting the active blocks along the least risky train services without sacrificing the cost advantage of the railroad. The empirical results of this research illustrate that the issue of integrating the blocking plan, and the train makeup of the hazardous materials freights must receive closer attentions.

Keywords: dynamic car scheduling, planning and scheduling hazardous materials freights, airborne hazardous materials, gaussian plume model, integrated blocking and routing plans, box model

Procedia PDF Downloads 189
6538 Effect of Temperature on the Properties of Cement Paste Modified with Nanoparticles

Authors: Karine Pimenta Teixeira, Jessica Flores, Isadora PerdigãO Rocha, Leticia De Sá Carneiro, Mahsa Kamali, Ali Ghahremaninezhad

Abstract:

The advent of nanotechnology has enabled innovative solutions towards improving the behavior of infrastructure materials. Nanomaterials have the potential to revolutionize the construction industry by improving the performance and durability of construction materials, as well as imparting new functionalities to these materials. Due to variability in the environmental temperature during mixing and curing of cementitious materials in practice, it is important to understand how curing temperature influences the behavior of cementitious materials. In addition, high temperature curing is relevant in applications such as oil well cement and precast industry. Knowledge of the influence of temperature on the performance of cementitious materials modified with nanoparticles is important in the nanoengineering of cementitious materials in applications such as oil well cement and precast industry. This presentation aims to investigate the influence of temperature on the hydration, mechanical properties and durability of cementitious materials modified with TiO2 nanoparticles. It was found that temperature improved the early hydration. The cement pastes cured at high temperatures showed an increase in the compressive strength at early age but the strength gain decreased at late ages. The electrical resistivity of the cement pastes cured at high temperatures was shown to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at high temperature.

Keywords: cement paste, nanoparticles, temperature, hydration

Procedia PDF Downloads 293
6537 Study of Pottery And Glazed Canopic Vessels

Authors: Abdelrahman Mohamed

Abstract:

The ancient Egyptians used canopic vessels in embalming operations in order to preserve the guts of the mummified corpse. Canopic vessels were made of many materials, including pottery and glazed pottery. In this research, we study a pottery canopic vessel and a glazed pottery vessel. An analysis to find out the compounds and elements of the materials from which the container is made and the colors, and also to make some analysis for the organic materials present inside it, such as the Fourier Transform Infrared Spectroscopy analysis and the Gas chromatograph mass spectrometers analysis of the organic residue. Through the study and analysis, it was proved that some of the materials present in the pot were coniferous oil and animal fats. In the other pot, the analysis showed the presence of some plant resins (mastic) inside rolls of linen. Restoration operations were carried out, such as mechanical cleaning, strengthening, and completing the reinforcement of the pots.

Keywords: canopic jar, embalming, FTIR, GCMS, linen.

Procedia PDF Downloads 50
6536 Paenibacillus illinoisensis CX11: A Cellulase- and Xylanase-Producing Bacteria for Saccharification of Lignocellulosic Materials

Authors: Abeer A. Q. Ahmed, Tracey McKay

Abstract:

Biomass can provide a sustainable source for the production of high valued chemicals. Under the uncertain availability of fossil resources biomass could be the only available source for chemicals in future. Cellulose and hemicellulose can be hydrolyzed into their building blocks (hexsoses and pentoses) which can be converted later to the desired high valued chemicals. A cellulase- and xylanase- producing bacterial strain identified as Paenibacillus illinoisensis CX11 by 16S rRNA gene sequencing and phylogenetic analysis was found to have the ability to saccharify different lignocellulosic materials. Cellulase and xylanase activities were evaluated by 3,5-dinitro-salicylic acid (DNS) method using CMC and xylan as substrates. Results showed that P. illinoisensis CX11 have cellulase (2.63± 0.09 mg/ml) and xylanase (3.25 ± 0.2 mg/ml) activities. The ability of P. illinoisensis CX11 to saccharify lignocellulosic materials was tested using wheat straw (WS), wheat bran (WB), saw dust (SD), and corn stover (CS). DNS method was used to determine the amount of reducing sugars that were released from lignocellulosic materials. P. illinoisensis CX11 showed to have the ability to saccharify lignocellulosic materials and producing total reducing sugars as 2.34 ± 0.12, 2.51 ± 0.37, 1.86 ± 0.16, and 3.29 ± 0.20 mg/l from WS, WB, SD, and CS respectively. According to the author's knowledge, current findings are the first to report P. illinoisensis CX11 as a cellulase and xylanase producing species and that it has the ability to saccharify different lignocellulosic materials. This study presents P. illinoisensis CX11 that can be good source for cellulase and xylanase enzymes which could be introduced into lignocellulose bioconversion processes to produce high valued chemicals.

Keywords: cellulase, high valued chemicals, lignocellulosic materials, Paenibacillus illinoisensis CX11, Xylanase

Procedia PDF Downloads 206
6535 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design

Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.

Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect

Procedia PDF Downloads 86
6534 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods

Authors: Abdelkader Hocine, Abdelhakim Maizia

Abstract:

The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.

Keywords: composite, design, monte carlo, tubular structure, reliability

Procedia PDF Downloads 433
6533 Effectiveness of Crystallization Coating Materials on Chloride Ions Ingress in Concrete

Authors: Mona Elsalamawy, Ashraf Ragab Mohamed, Abdellatif Elsayed Abosen

Abstract:

This paper aims to evaluate the effectiveness of different crystalline coating materials concerning of chloride ions penetration. The concrete ages at the coating installation and its moisture conditions were addressed; where, these two factors may play a dominant role for the effectiveness of the used materials. Rapid chloride ions penetration test (RCPT) was conducted at different ages and moisture conditions according to the relevant standard. In addition, the contaminated area and the penetration depth of the chloride ions were investigated immediately after the RCPT test using chemical identifier, 0.1 M silver nitrate AgNO3 solution. Results have shown that, the very low chloride ions penetrability, for the studied crystallization materials, were investigated only with the old age concrete (G1). The significant reduction in chloride ions’ penetrability was illustrated after 7 days of installing the crystalline coating layers. Using imageJ is more reliable to describe the contaminated area of chloride ions, where the distribution of aggregate and heterogeneous of cement mortar was considered in the images analysis.

Keywords: chloride permeability, contaminated area, crystalline waterproofing materials, RCPT, XRD

Procedia PDF Downloads 228
6532 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 449
6531 Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman

Authors: Asil Zureigat, Ayat Odat

Abstract:

Analyzing the old and bringing in the new is an ever ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman the paper seeks to make the exception, the rule by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.

Keywords: architectural city identity, cladding materials, façade architecture, image of the city

Procedia PDF Downloads 203
6530 A Review on the Use of Plastic Waste with Viable Materials in Composite Construction Block

Authors: Mohan T. Harish, Masson Lauriane, Sreevalsa Kolathayar

Abstract:

Environmental issues raise alarm in the constructional field which implies a need for exploring new construction materials derived from the waste and residual products. This paper presents a detailed review of the alternatives approaches employed in the construction field using plastic waste in mixture with mixed with fillers. A detailed analysis of the plastic waste used in concrete, with soil, sand, clay and natural residues like sawdust, rice husk etc are presented. The different process carried forward was also discussed along with the scrutiny of the change in mechanical properties. The effect of coupling agents in the proposed mixture has been appraised in detail which gives implications for its future application in the field of plastic waste with viable materials in composite construction blocks.

Keywords: plastic waste, composite materials, construction block, concrete, natural residue, coupling agent

Procedia PDF Downloads 224
6529 Finite Element Analysis of Dental Implant for Prosthesis

Authors: Mayur Chaudhari, Ashutosh Gaikwad, Shubham Kavathale, Aditya Mule, Dilip Panchal, Puja Verma

Abstract:

The purpose of this investigation was to locate restorative bio-materials for the manufacture of implants and crowns. A three-dimensional (3D) finite element analysis (FEA) was carried out to evaluate the stress distribution in the implant and abutment with several types of bio-materials and various prosthetic crowns. While the dental implant, abutment, and screw were subjected to a vertical impact force, the effects of mechanical characteristics such as Young's modulus and Poisson's ratio were evaluated and contrasted. Crowns are made from zirconia, cobalt, ceramic, acrylic resin, and porcelain materials. Implants are made from materials such as titanium, zirconia, PEEK, and CFR-PEEK. SolidWorks was used to create the 3D geometry, and Ansys Software was used to analyze it. The results show that using CFR-PEEK implants and an acrylic resin crown resulted in less bone stress than using alternative materials. In order to reduce the amount of stress on the bone and possibly prevent implant failure, the study's findings support the use of a CFR PEEK implant, abutment, and crown in bruxism patients.

Keywords: biomaterials, implant, crown, abutment

Procedia PDF Downloads 34
6528 Analyzing Sociocultural Factors Shaping Architects’ Construction Material Choices: The Case of Jordan

Authors: Maiss Razem

Abstract:

The construction sector is considered a major consumer of materials that undergoes processes of extraction, processing, transportation, and maintaining when used in buildings. Several metrics have been devised to capture the environmental impact of the materials consumed during construction using lifecycle thinking. Rarely has the materiality of this sector been explored qualitatively and systemically. This paper aims to explore socio-cultural forces that drive the use of certain materials in the Jordanian construction industry, using practice theory as a heuristic method of analysis, more specifically Shove et al. three-element model. By conducting semi-structured interviews with architects, the results unravel contextually embedded routines when determining qualities of three materialities highlighted herein; stone, glass and spatial openness. The study highlights the inadequacy of only using efficiency as a quantitative metric of sustainable materials and argues for the need to link material consumption with socio-economic, cultural, and aesthetic driving forces. The operationalization of practice theory by tracing materials’ lifetimes as they integrate with competencies and meanings captures dynamic engagements through the analyzed routines of actors in the construction practice. This study can offer policymakers better-nuanced representation to green this sector beyond efficiency rhetoric and quantitative metrics.

Keywords: architects' practices, construction materials, Jordan, practice theory

Procedia PDF Downloads 149
6527 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.

Keywords: alkaline treatment, composites, natural fiber, water absorption

Procedia PDF Downloads 247
6526 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 100
6525 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls

Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan

Abstract:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.

Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder

Procedia PDF Downloads 161
6524 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement

Authors: Haibin Zhou, Pingping Yao, Kunyang Fan

Abstract:

Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.

Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism

Procedia PDF Downloads 247
6523 Study of the Effect of Using Corn-Cob Ash on Mortar and Concrete Properties: Case Study of Sudan

Authors: Taghried I. M. Abdel-Magid, Gheida T. A. Al-Khelifa, Ahmed O. Adam, Esra G. A. Mohamed, Saeed M. S. Saeed

Abstract:

The use of pozzolanic materials in concrete industry is facing challenges due to unpredictable behavior of natural materials. Corncob ash (CCA) is considered to be one of the promising plant-based materials that possess cementitious properties. Corn is one of the major planted crops in Sudan. Corncob is considered as waste and normally thrown away or burnt. The main purpose of this research was to test the hypothesis that CCA can sufficiently replace cement in a concrete mixture or a cement mortar. In this study, CCA was used to replace cement in mortar in three percentages: 0, 20, and 25%. The effect of this replacement was found to be positive in terms of long-term compressive strength, while not as such in short-term compressive strength. In the concrete mix, the introduction of CCA was found to have a positive impact on the slump test characteristics, whereas the early and late compressive strengths deteriorated by approximately 30%. More research is needed in this area to upgrade the efficient use of CCA in cement mortar and concrete properties.

Keywords: cementitious materials, compressive strength, corncob ash, pozzolanic materials

Procedia PDF Downloads 213
6522 Recovery of Local Materials in Pavements in Areas with an Arid Climate

Authors: Hocini Yousra, Medjnoun Amal, Khiatine Mohamed, Bahar Ramdane

Abstract:

The development of the regions of southern Algeria require the construction of numerous road, rail, and airport infrastructures. However, this development is very expensive given the very severe climatic conditions, the difficulty of reusing local materials, and the unavailability of water on the project sites; these regions are characterized by an arid or semi-arid climate, which means that water sources are very limited. The climatic conditions and the scarcity of water make soil compaction work very difficult and excessively expensive. These constraints related to the supply of water for irrigation of these construction sites make it necessary to examine the solution of compaction with low water content. This work studies the possibility of improving the compaction with a low water content of the soils of southern Algeria and this by using natural or recycled ecological materials. Local soils are first subjected to a series of laboratory characterization tests, then mixed with varying amounts of natural additives. The new materials are, in turn, subjected to road tests.

Keywords: compaction, low water content, sand, natural materials

Procedia PDF Downloads 90
6521 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N

Abstract:

The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 97
6520 Mineral Thermal Insulation Materials Based on Sodium Liquid Glass

Authors: Zin Min Htet, Tikhomirova Irina Nikolaevna, Karpenko Marina A.

Abstract:

In this paper, thermal insulation materials based on sodium liquid glass with light fillers as foam glass granules with different sizes and wollastonite - M325 (U.S.A production) were studied. Effective mineral thermal insulation materials are in demand in many industries because of their incombustibility and durability. A method for the preparation of such materials based on mechanically foamed sodium liquid glass and light mineral fillers is proposed. The thermal insulation properties depend on the type, amount of filler and on the foaming factor, which is determined by the concentration of the foaming agent. The water resistance of the material is provided by using an additive to neutralize the glass and transfer it to the silica gel.

Keywords: thermal insulation material, sodium liquid glass, foam glass granules, foaming agent, hardener, thermal conductivity, apparent density, compressive strength

Procedia PDF Downloads 165
6519 Synthesis, Characterization and Photocatalytic Performance of Visible Light Induced Materials

Authors: M. Muneer, Waseem Raza

Abstract:

Nano-crystalline materials of pure and metal-doped semiconducting materials have been successfully synthesized using sol gel and hydrothermal methods. The prepared materials were characterized by standard analytical techniques, i.e., XRD, SEM, EDX, UV–vis Spectroscopy and FTIR. The (XRD) analysis showed that the obtained particles are present in partial crystalline nature and exhibit no other impurity phase. The EDX and (SEM) images depicted that metals have been successfully loaded on the surface of the semiconductor. FTIR showed an additional absorption band at 910 cm−1, characteristic of absorption band indicating the incorporation of dopant into the lattice in addition to a broad and strong absorption band in the region of 410–580 cm−1 due to metal–O stretching. The UV–vis absorption spectra of synthesized particles indicate that the doping of metals into the lattice shift the absorption band towards the visible region. Thermal analysis, measurement of the synthesized sample showed that the thermal stability of pure semiconducting material is decreased due to increase in dopant concentration. The photocatalytic activity of the synthesized particles was studied by measuring the change in concentration of three different chromophoric dyes as a function of irradiation time. The photocatalytic activity of doped materials were found to increase with increase in dopant concentration.

Keywords: photocatalysis, metal doped semicondcutors, dye degradation, visible light active materials

Procedia PDF Downloads 412
6518 Diagonal Crack Width of RC Members with High Strength Materials

Authors: J. Y. Lee, H. S. Lim, S. H. Yoon

Abstract:

This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials.

Keywords: diagonal crack width, high strength stirrups, high strength concrete, RC members, shear behavior

Procedia PDF Downloads 285
6517 Recycled Use of Solid Wastes in Building Material: A Review

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: recycling, solid wastes, construction, building materials

Procedia PDF Downloads 362
6516 Evaluation of Polymerisation Shrinkage of Randomly Oriented Micro-Sized Fibre Reinforced Dental Composites Using Fibre-Bragg Grating Sensors and Their Correlation with Degree of Conversion

Authors: Sonam Behl, Raju, Ginu Rajan, Paul Farrar, B. Gangadhara Prusty

Abstract:

Reinforcing dental composites with micro-sized fibres can significantly improve the physio-mechanical properties of dental composites. The short fibres can be oriented randomly within dental composites, thus providing quasi-isotropic reinforcing efficiency unlike unidirectional/bidirectional fibre reinforced composites enhancing anisotropic properties. Thus, short fibres reinforced dental composites are getting popular among practitioners. However, despite their popularity, resin-based dental composites are prone to failure on account of shrinkage during photo polymerisation. The shrinkage in the structure may lead to marginal gap formation, causing secondary caries, thus ultimately inducing failure of the restoration. The traditional methods to evaluate polymerisation shrinkage using strain gauges, density-based measurements, dilatometer, or bonded-disk focuses on average value of volumetric shrinkage. Moreover, the results obtained from traditional methods are sensitive to the specimen geometry. The present research aims to evaluate the real-time shrinkage strain at selected locations in the material with the help of optical fibre Bragg grating (FBG) sensors. Due to the miniature size (diameter 250 µm) of FBG sensors, they can be easily embedded into small samples of dental composites. Furthermore, an FBG array into the system can map the real-time shrinkage strain at different regions of the composite. The evaluation of real-time monitoring of shrinkage values may help to optimise the physio-mechanical properties of composites. Previously, FBG sensors have been able to rightfully measure polymerisation strains of anisotropic (unidirectional or bidirectional) reinforced dental composites. However, very limited study exists to establish the validity of FBG based sensors to evaluate volumetric shrinkage for randomly oriented fibres reinforced composites. The present study aims to fill this research gap and is focussed on establishing the usage of FBG based sensors for evaluating the shrinkage of dental composites reinforced with randomly oriented fibres. Three groups of specimens were prepared by mixing the resin (80% UDMA/20% TEGDMA) with 55% of silane treated BaAlSiO₂ particulate fillers or by adding 5% of micro-sized fibres of diameter 5 µm, and length 250/350 µm along with 50% of silane treated BaAlSiO₂ particulate fillers into the resin. For measurement of polymerisation shrinkage strain, an array of three fibre Bragg grating sensors was embedded at a depth of 1 mm into a circular Teflon mould of diameter 15 mm and depth 2 mm. The results obtained are compared with the traditional method for evaluation of the volumetric shrinkage using density-based measurements. Degree of conversion was measured using FTIR spectroscopy (Spotlight 400 FT-IR from PerkinElmer). It is expected that the average polymerisation shrinkage strain values for dental composites reinforced with micro-sized fibres can directly correlate with the measured degree of conversion values, implying that more C=C double bond conversion to C-C single bond values also leads to higher shrinkage strain within the composite. Moreover, it could be established the photonics approach could help assess the shrinkage at any point of interest in the material, suggesting that fibre-Bragg grating sensors are a suitable means for measuring real-time polymerisation shrinkage strain for randomly fibre reinforced dental composites as well.

Keywords: dental composite, glass fibre, polymerisation shrinkage strain, fibre-Bragg grating sensors

Procedia PDF Downloads 126
6515 Teaching Environment and Instructional Materials on Students’ Performance in English Language: Implications for Counselling

Authors: Rosemary Saidu, Taiyelolu Martins Ogunjirin

Abstract:

The study examines the teaching environment and instructional materials on the performance of students in the English Language in selected secondary schools in Ogun State and its implication for counselling. Two research questions guided the study were developed. The study adopted a descriptive survey design. A multi-stage sampling technique was employed for the study. Samples of 100 students of Senior Secondary School Two (SSS11) were drawn. Purposive sampling technique was to select the five schools. Additionally, the instruments known as Teaching Environment and Instructional Materials on Students Performance in English Inventory (TEIMEI) and Student Achievement Scores (SAS) were used to elicit information. Thereafter, inferential statistics and the non-parametric chi-square statistics at 0.05 alpha levels and 3 degree of freedom were adopted as analytical tools. From the study, it was discovered among others that teaching environment and instructional materials significantly contributed to the performance of students in the English language. From the findings, it was recommended that among others functional language laboratory in the schools, counselors to regularly give guidance talk on the importance of the subject.

Keywords: performance, English language, teaching environment, instructional materials

Procedia PDF Downloads 128
6514 Minimization of Seepage in Sandy Soil Using Different Grouting Types

Authors: Eng. M. Ahmed, A. Ibrahim, M. Ashour

Abstract:

One of the major concerns facing dam is the repair of their structures to prevent the seepage under them. In previous years, many existing dams have been treated by grouting, but with varying degrees of success. One of the major reasons for this erratic performance is the unsuitable selection of the grouting materials to reduce the seepage. Grouting is an effective way to improve the engineering properties of the soil and strengthen of the permeability of the soil to reduce the seepage. The purpose of this paper is to focus on the efficiency of current available grouting materials and techniques from construction, environmental and economical point of view. The seepage reduction usually accomplished by either chemical grouting or cementious grouting using ultrafine cement. In addition, the study shows a comparison between grouting materials according to their degree of permeability reduction and cost. The application of seepage reduction is based on the permeation grouting using grout curtain installation. The computer program (SEEP/W) is employed to model a dam rested on sandy soil, using grout curtain to reduce seepage quantity and hydraulic gradient by different grouting materials. This study presents a relationship that takes into account the permeability of the soil, grout curtain spacing and a new performance parameter that can be used to predict the best selection of grouting materials for seepage reduction.

Keywords: seepage, sandy soil, grouting, permeability

Procedia PDF Downloads 345
6513 Seasonal Stirred Variations in Chemical Composition and Antifungal Activity of Medicinal Plants Turraea holstii and Clausena anisata

Authors: Francis Machumi, Ester Innocent, Pius Yanda, Philip C. Stevenson

Abstract:

Curative dependence of traditionally used medicinal plants on season of harvest is an alleged claim by traditional health practitioners. This study intended to verify these claims by investigating antifungal activity and chemical composition of traditionally used medicinal plants Turraea holstii and Clausena anisata harvested in rainy season and dry season. The antifungal activities were determined by broth microdilution method whereas chemical profiling of the extracts from the plant materials was done by gas chromatography (GC). Results indicated that extracts of plant materials harvested in dry season showed enhanced antifungal activity as compared to extracts of plant materials harvested in rainy season. GC chromatograms showed overalls increase in number and amount of chemical species for extracts of plant materials harvested in dry season as compared to extracts of plant materials harvested in rainy season.

Keywords: antifungal activity, chemical composition, medicinal plants, seasonal dependence

Procedia PDF Downloads 397