Search results for: amniotic membrane ointments
872 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies
Authors: Amira Abdelrasoul
Abstract:
This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.Keywords: biomimetic, membrane, synchrotron, permeability, morphology
Procedia PDF Downloads 102871 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes
Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee
Abstract:
Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing
Procedia PDF Downloads 251870 Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production
Authors: Lubomir Machuca, Vit Fara
Abstract:
Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment.Keywords: desalination, electrodialysis, electrodeionization, fertilizer industry
Procedia PDF Downloads 241869 Carbon Capture: Growth and Development of Membranes in Gas Sequestration
Authors: Sreevalli Bokka
Abstract:
Various technologies are emerging to capture or reduce carbon intensity from a gas stream, such as industrial effluent air and atmosphere. Of these technologies, filter membranes are emerging as a key player in carbon sequestering. The key advantages of these membranes are their high surface area and porosity. Fabricating a filter membrane that has high selectivity for carbon sequestration is challenging as material properties and processing parameters affect the membrane properties. In this study, the growth of the filter membranes and the critical material properties that impact carbon sequestration are presented.Keywords: membranes, filtration, separations, polymers, carbon capture
Procedia PDF Downloads 69868 Flue Gas Characterisation for Conversion to Chemicals and Fuels
Authors: Adesola O. Orimoloye, Edward Gobina
Abstract:
Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever-present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors.Keywords: flue gas, carbon dioxide, membrane, catalyst, syngas
Procedia PDF Downloads 523867 An Assessment of the Effects of Microbial Products on the Specific Oxygen Uptake in Submerged Membrane Bioreactor
Authors: M. F. R. Zuthi, H. H. Ngo, W. S. Guo, S. S. Chen, N. C. Nguyen, L. J. Deng, T. D. C Tran
Abstract:
Sustaining a desired rate of oxygen transfer for microbial activity is a matter of major concern for Biological Wastewater Treatment (MBR). The study reported in the paper was aimed at assessing the effects of microbial products on the Specific Oxygen Uptake Rate (SOUR) in a Conventional Membrane Bioreactor (CMBR) and that in a Sponge Submerged MBR (SSMBR). The production and progressive accumulation of Soluble Microbial Products (SMP) and Bound-Extracellular Polymeric Substances (BEPS) were found affecting the SOUR of the microorganisms which varied at different stages of operation of the MBR systems depending on the variable concentrations of the SMP/bEPS. The effect of bEPS on the SOUR was stronger in the SSMBR compared to that of the SMP, while relative high concentrations of SMP had adverse effects on the SOUR of the CMBR system. Of the different mathematical correlations analyzed in the study, logarithmic mathematical correlations could be established between SOUR and bEPS in SSMBR, and similar correlations could also be found between SOUR and SMP concentrations in the CMBR.Keywords: microbial products, microbial activity, specific oxygen uptake rate, membrane bioreactor
Procedia PDF Downloads 308866 Experimental Characterization and Modelling of Microfluidic Radial Diffusers
Authors: Eric Chappel, Dimitry Dumont-Fillon, Hugo Musard, Harald van Lintel
Abstract:
A microfluidic radial diffuser typically comprises a hole in a membrane, a small gap and pillar centred with the hole. The fluid is forced to flow radially in this gap between the membrane and the pillar. Such diffusers are notably used to form flow control valves, wherein several holes are machined into a flexible membrane progressively deflecting against pillars as the pressure increases. The fluidic modelling of such diffuser is made difficult by the presence of a transition region between the hole and the diffuser itself. An experimental investigation has been conducted using SOI wafers to form membranes with only one centred hole and Pyrex wafers for the substrate and pillars, both wafers being anodically bonded after alignment. A simple fluidic model accounting for the specific geometry of the diffuser is proposed and compared to experimental results. A good match is obtained, for Reynolds number in the range 0.5 to 35 using the analytical formula of a radial diffuser in the laminar regime with an effective inner radius that is 40% smaller than the real radius, in order to simulate correctly the flow constriction at the entrance of the diffuser.Keywords: radial diffuser, flow control valve, numerical modelling, drug delivery
Procedia PDF Downloads 278865 Transfer Rate of Organic Water Contaminants through a Passive Sampler Membrane of Polyethersulfone (PES)
Authors: Hamidreza Sharifan, Audra Morse
Abstract:
Accurate assessments of contaminant concentrations based on traditional grab sampling methods are not always possible. Passive samplers offer an attractive alternative to traditional sampling methods that overcomes these limitations. The POCIS approach has been used as a screening tool for determining the presence/absence, possible sources and relative amounts of organic compounds at field sites. The objective for the present research is on mass transfer of five water contaminants (atrazine, caffeine, bentazon, ibuprofen, atenolol) through the Water Boundary Layer (WBL) and membrane. More specific objectives followed by establishing a relationship between the sampling rate and water solubility of the compounds, as well as comparing the molecular weight of the compounds and concentration of the compounds at the time of equilibrium. To determine whether water boundary layer effects transport rate through the membrane is another main objective in this paper. After GC mass analysis of compounds, regarding the WBL effect in this experiment, Sherwood number for the experimental tank developed. A close relationship between feed concentration of compound and sampling rate has been observed.Keywords: passive sampler, water contaminants, PES-transfer rate, contaminant concentrations
Procedia PDF Downloads 455864 Molecular Dynamics Studies of Main Factors Affecting Mass Transport Phenomena on Cathode of Polymer Electrolyte Membrane Fuel Cell
Authors: Jingjing Huang, Nengwei Li, Guanghua Wei, Jiabin You, Chao Wang, Junliang Zhang
Abstract:
In this work, molecular dynamics (MD) simulation is applied to analyze the mass transport process in the cathode of proton exchange membrane fuel cell (PEMFC), of which all types of molecules situated in the cathode is considered. a reasonable and effective MD simulation process is provided, and models were built and compared using both Materials Studio and LAMMPS. The mass transport is one of the key issues in the study of proton exchange membrane fuel cells (PEMFCs). In this report, molecular dynamics (MD) simulation is applied to analyze the influence of Nafion ionomer distribution and Pt nano-particle size on mass transport process in the cathode. It is indicated by the diffusion coefficients calculation that a larger quantity of Nafion, as well as a higher equivalent weight (EW) value, will hinder the transport of oxygen. In addition, medium-sized Pt nano-particles (1.5~2nm) are more advantageous in terms of proton transport compared with other particle sizes (0.94~2.55nm) when the center-to-center distance between two Pt nano-particles is around 5 nm. Then mass transport channels are found to be formed between the hydrophobic backbone and the hydrophilic side chains of Nafion ionomer according to the radial distribution function (RDF) curves. And the morphology of these channels affected by the Pt size is believed to influence the transport of hydronium ions and, consequently the performance of PEMFC.Keywords: cathode catalytic layer, mass transport, molecular dynamics, proton exchange membrane fuel cell
Procedia PDF Downloads 243863 Membrane-Localized Mutations as Predictors of Checkpoint Blockade Efficacy in Cancer
Authors: Zoe Goldberger, Priscilla S. Briquez, Jeffrey A. Hubbell
Abstract:
Tumor cells have mutations resulting from genetic instability that the immune system can actively recognize. Immune checkpoint immunotherapy (ICI) is commonly used in the clinic to re-activate immune reactions against mutated proteins, called neoantigens, resulting in tumor remission in cancer patients. However, only around 20% of patients show durable response to ICI. While tumor mutational burden (TMB) has been approved by the Food and Drug Administration (FDA) as a criterion for ICI therapy, the relevance of the subcellular localizations of the mutated proteins within the tumor cell has not been investigated. Here, we hypothesized that localization of mutations impacts the effect of immune responsiveness to ICI. We analyzed publicly available tumor mutation sequencing data of ICI treated patients from 3 independent datasets. We extracted the subcellular localization from the UniProtKB/Swiss-Prot database and quantified the proportion of membrane, cytoplasmic, nuclear, or secreted mutations per patient. We analyzed this information in relation to response to ICI treatment and overall survival of patients showing with 1722 ICI-treated patients that high mutational burden localized at the membrane (mTMB), correlate with ICI responsiveness, and improved overall survival in multiple cancer types. We anticipate that our results will ameliorate predictability of cancer patient response to ICI with potential implications in clinical guidelines to tailor ICI treatment. This would not only increase patient survival for those receiving ICI, but also patients’ quality of life by reducing the number of patients enduring non-effective ICI treatments.Keywords: cancer, immunotherapy, membrane neoantigens, efficacy prediction, biomarkers
Procedia PDF Downloads 109862 Gellan Gum/Gamma-Polyglutamic Acid and Glycerol Composited Membrane for Guiding Bone Regeneration
Authors: Chi-Chang Lin, Jiun-Yan Chiu
Abstract:
Periodontal disease, oral cancer relating trauma is the prominent factor devastating bone tissue that is crucial to reestablishing in clinical. As we know, common symptom, osteoporosis, and infection limiting the ability of the bone tissue to recover cause difficulty before implantation therapy. Regeneration of bone tissue is the fundamental therapy before surgical processes. To promote the growth of bone tissue, many commercial products still have sophisticated problems that need to overcome. Regrettably, there is no available material which is apparently preferable for releasing and controlling of loading dosage, or mitigating inflammation. In our study, a hydrogel-based composite membrane has been prepared by using Gellan gum (GG), gamma-polyglutamic acid (γ-PGA) and glycerol with simple sol-gel method. GG is a natural material that is massively adopted in cartilage. Unfortunately, the strength of pure GG film is a manifest weakness especially under simulating body fluidic conditions. We utilize another biocompatible material, γ-PGA as cross-linker which can form tri-dimension structure that enhancing the strength. Our result indicated the strength of pure GG membrane can be obviously improved by cross-linked with γ-PGA (0.5, 0.6, 0.7, 0.8, 0.9, 1.0 w/v%). Besides, blending with glycerol (0, 1.0, 2.0, 3.0 w/v%) can significantly improve membrane toughness that corresponds to practical use. The innovative composited hydrogel made of GG, γ-PGA, and glycerol is attested with neat results including elongation and biocompatibility that take the advantage of extension covering major trauma. Recommendations are made for treatment to build up the foundation of bone tissue that would help patients to escape from the suffering and shorten the amount of time in recovery.Keywords: bone tissue, gellan gum, regeneration, toughness
Procedia PDF Downloads 142861 Modeling of the Mechanism of Ion Channel Opening of the Visual Receptor's Rod on the Light and Allosteric Effect of Rhodopsin in the Phosphorylation Process
Authors: N. S. Vassilieva-Vashakmadze, R. A. Gakhokidze, I. M. Khachatryan
Abstract:
In the first part of the paper it is shown that both the depolarization of the cytoplasmic membrane of rods observed in invertebrates and hyperpolarization characteristic of vertebrates on the light may activate the functioning of ion (Na+) channels of cytoplasmic membrane of rods and thus provide the emergence of nerve impulse and its transfer to the neighboring neuron etc. In the second part, using the quantum mechanical program for modeling of the molecular processes, we got a clear picture demonstrating the effect of charged phosphate groups on the protein components of α-helical subunits of the visual rhodopsin receptor. The analysis shows that the phosphorylation of terminal amino acid of seventh α-helical subunits of the visual rhodopsin causes a redistribution of electron density on the atoms, i.e. polarization of subunits, also the changing the configuration of the nuclear subsystem, which corresponds to the deformation process in the molecule. Based on the use of models it can be concluded that this system has an internal relationship between polarization and deformation processes that indicates on the allosteric effect. The allosteric effect is based on quantum-mechanical principle of the self-consistency of the molecules.Keywords: membrane potential, ion channels, visual rhodopsin, allosteric effect
Procedia PDF Downloads 271860 Gonadotoxic and Cytotoxic Effect of Induced Obesity via Monosodium Glutamate on Mus musculus Testis Cytoarchitecture and Sperm Parameter
Authors: I. Nur Hilwani, R. Nasibah, S. Nurdiana, M. J. Norashirene
Abstract:
Impaired fertility may be the result of indirect consumption of anti-fertility agents through food. Monosodium glutamate (MSG) has been widely used as food additive, flavour enhancer and included in vaccines. This study focuses in determining the gonadotoxic and cytotoxic effect of MSG on selected sperm parameters such as sperm viability, sperm membrane integrity and testes cytoarchitecture of male mice via histological examination to determine its effect on spermatogenesis. Twenty-four Mus musculus were randomly divided into 4 groups and given intraperitoneal injections (IP) daily for 14 days of different MSG concentrations at 250, 500 and 1000mg/kg MSG to body weight to induce obesity. Saline was given to control group. Mice were sacrificed and analysis revealed abnormalities in values for sperm parameters and damages to testes cytoarchitecture of male mice. The results recorded decreased viability (p<0.05) and integrity of sperm membrane (p>0.05) with degenerative structures in seminiferous tubule of testes. The results indicated various implications of MSG on male mice reproductive system which has consequences in fertility potential.Keywords: sperm parameter, testes histology, sperm viability, sperm membrane integrity
Procedia PDF Downloads 347859 In-situ Fabrication of Silver-PDMS Nanocomposite Membrane with Application in Olefine Separation
Authors: P. Tirgarbahnamiri, S. Mahravani, N. Haddadpour, F. Yaghmaie, F. Barazandeh
Abstract:
In this study, silver nanoparticle-Polydimethylsiloxane membrane (SNP-PDMS) was prepared with an in-situ reduction method using AgNO3 in poly (dimethylsiloxane) hardener. Optical and mechanical properties as well as functionality of these membranes were determined employing, UV-Vis spectrophotometry, FTIR, strain-stress test and liquid/liquid filtration measurements. Silver nanoparticles are known to selectively absorb Olefins and may be used for separation of Alkanes from olefins. Yellow color of silver nanocomposites and transparency of blank polymer were observed employing optical microscope. λmax in 415-420 nm regions in UV-Vis spectrophotometry are related to silver nanoparticles absorbance. Based on stress-strain test results, tensile strength of silver nanoparticle PDMS (SNP-PDMS) membranes is higher than PDMS films of comparable size and thickness. Moreover, permeability of SNP-PDMS membranes were characterized using similar olefin/paraffin pair using a simple bench scale separation set- up. The silver -PDMS membranes retain their color and UV-vis characteristics for extended periods of time exceeding several months.Keywords: nanocomposite membrane, gas separation, facilitated transport, silver nanocomposite, PDMS, in-situ reduction
Procedia PDF Downloads 334858 Modeling by Application of the Nernst-Planck Equation and Film Theory for Predicting of Chromium Salts through Nanofiltration Membrane
Authors: Aimad Oulebsir, Toufik Chaabane, Sivasankar Venkatramann, Andre Darchen, Rachida Maachi
Abstract:
The objective of this study is to propose a model for the prediction of the mechanism transfer of the trivalent ions through a nanofiltration membrane (NF) by introduction of the polarization concentration phenomenon and to study its influence on the retention of salts. This model is the combination of the Nernst-Planck equation and the equations of the film theory. This model is characterized by two transfer parameters: Reflection coefficient s and solute permeability Ps which are estimated numerically. The thickness of the boundary layer, δ, solute concentration at the membrane surface, Cm, and concentration profile in the polarization layer have also been estimated. The mathematical formulation suggested was established. The retentions of trivalent salts are estimated and compared with the experimental results. A comparison between the results with and without phenomena of polarization of concentration is made and the thickness of boundary layer alimentation side was given. Experimental and calculated results are shown to be in good agreement. The model is then success fully extended to experimental data reported in the literature.Keywords: nanofiltration, concentration polarisation, chromium salts, mass transfer
Procedia PDF Downloads 282857 Various Sources of N-3 Polyunsaturated Fatty Acid Supplementation Modulate Mitochondria Membrane Composition and Function
Authors: Wen-Ting Wang, Wei-An Tsai, Rong-Hong Hsieh
Abstract:
Long term taking high fat diet can lead to over production of energy, result in accumulation of body fat, dyslipidemia and increased lipid metabolism in the body. Over metabolism of lipid results in excessive reactive oxygen species and oxidative stress, may also cause mitochondrial dysfunction and cell death. Krill oil, fish oil and linseed oil are good sources of n-3 polyunsaturated fatty acids (PUFA). The present study investigated the effect of high fat diet and various oil rich of n-3 fatty acids on mitochondrial function and cell membrane composition. Six-weeks old male Spraque-Dawley rats were randomly divided into 8 groups including: control group, high fat diet group, low dosage and high dosage krill oil group, low dosage and high dosage fish oil group, and low dosage and high dosage linseed oil group. After 12 weeks of experimental period, the low dosage krill oil, fish oil group and linseed oil group with different dosage prevented mitochondrial dysfunction caused by high fat diet. The supplementation of different oils increased plasma, erythrocyte and mitochondrial n-3/n-6 ratio and further increased the proportion of PUFA in erythrocyte and mitochondrial membrane. It also decreased serum triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) concentration. However, there was no significant change in serum total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), biomarker of liver function, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR) and plasma malonadialdehyde (MDA) concentration when compared with high fat diet group. The supplementation of different sources of n-3 PUFA can maintain mitochondrial function and modulate cell membrane fatty acid composition in high fat diet conditions, and there is a positive relationship between mitochondrial function and mitochondrial membrane composition.Keywords: fish oil, linseed oil, mitochondria, n-3 PUFA
Procedia PDF Downloads 414856 Modification of a Commercial Ultrafiltration Membrane by Electrospray Deposition for Performance Adjustment
Authors: Elizaveta Korzhova, Sebastien Deon, Patrick Fievet, Dmitry Lopatin, Oleg Baranov
Abstract:
Filtration with nanoporous ultrafiltration membranes is an attractive option to remove ionic pollutants from contaminated effluents. Unfortunately, commercial membranes are not necessarily suitable for specific applications, and their modification by polymer deposition is a fruitful way to adapt their performances accordingly. Many methods are usually used for surface modification, but a novel technique based on electrospray is proposed here. Various quantities of polymers were deposited on a commercial membrane, and the impact of the deposit is investigated on filtration performances and discussed in terms of charge and hydrophobicity. The electrospray deposition is a technique which has not been used for membrane modification up to now. It consists of spraying small drops of polymer solution under a high voltage between the needle containing the solution and the metallic support on which membrane is stuck. The advantage of this process lies in the small quantities of polymer that can be coated on the membrane surface compared with immersion technique. In this study, various quantities (from 2 to 40 μL/cm²) of solutions containing two charged polymers (13 mmol/L of monomer unit), namely polyethyleneimine (PEI) and polystyrene sulfonate (PSS), were sprayed on a negatively charged polyethersulfone membrane (PLEIADE, Orelis Environment). The efficacy of the polymer deposition was then investigated by estimating ion rejection, permeation flux, zeta-potential and contact angle before and after the polymer deposition. Firstly, contact angle (θ) measurements show that the surface hydrophilicity is notably improved by coating both PEI and PSS. Moreover, it was highlighted that the contact angle decreases monotonously with the amount of sprayed solution. Additionally, hydrophilicity enhancement was proved to be better with PSS (from 62 to 35°) than PEI (from 62 to 53°). Values of zeta-potential (ζ were estimated by measuring the streaming current generated by a pressure difference on both sides of a channel made by clamping two membranes. The ζ-values demonstrate that the deposits of PSS (negative at pH=5.5) allow an increase of the negative membrane charge, whereas the deposits of PEI (positive) lead to a positive surface charge. Zeta-potentials measurements also emphasize that the sprayed quantity has little impact on the membrane charge, except for very low quantities (2 μL/m²). The cross-flow filtration of salt solutions containing mono and divalent ions demonstrate that polymer deposition allows a strong enhancement of ion rejection. For instance, it is shown that rejection of a salt containing a divalent cation can be increased from 1 to 20 % and even to 35% by deposing 2 and 4 μL/cm² of PEI solution, respectively. This observation is coherent with the reversal of the membrane charge induced by PEI deposition. Similarly, the increase of negative charge induced by PSS deposition leads to an increase of NaCl rejection from 5 to 45 % due to electrostatic repulsion of the Cl- ion by the negative surface charge. Finally, a notable fall in the permeation flux due to the polymer layer coated at the surface was observed and the best polymer concentration in the sprayed solution remains to be determined to optimize performances.Keywords: ultrafiltration, electrospray deposition, ion rejection, permeation flux, zeta-potential, hydrophobicity
Procedia PDF Downloads 187855 A Comparative Assessment of Membrane Bioscrubber and Classical Bioscrubber for Biogas Purification
Authors: Ebrahim Tilahun, Erkan Sahinkaya, Bariş Calli̇
Abstract:
Raw biogas is a valuable renewable energy source however it usually needs removal of the impurities. The presence of hydrogen sulfide (H2S) in the biogas has detrimental corrosion effects on the cogeneration units. Removal of H2S from the biogas can therefore significantly improve the biogas quality. In this work, a conventional bioscrubber (CBS), and a dense membrane bioscrubber (DMBS) were comparatively evaluated in terms of H2S removal efficiency (RE), CH4 enrichment and alkaline consumption at gas residence times ranging from 5 to 20 min. Both bioscrubbers were fed with a synthetic biogas containing H2S (1%), CO2 (39%) and CH4 (60%). The results show that high RE (98%) was obtained in the DMBS when gas residence time was 20 min, whereas slightly lower CO2 RE was observed. While in CBS system the outlet H2S concentration was always lower than 250 ppmv, and its H2S RE remained higher than 98% regardless of the gas residence time, although the high alkaline consumption and frequent absorbent replacement limited its cost-effectiveness. The result also indicates that in DMBS when the gas residence time increased to 20 min, the CH4 content in the treated biogas enriched upto 80%. However, while operating the CBS unit the CH4 content of the raw biogas (60%) decreased by three fold. The lower CH4 content in CBS was probably caused by extreme dilution of biogas with air (N2 and O2). According to the results obtained here the DMBS system is a robust and effective biotechnology in comparison with CBS. Hence, DMBS has a better potential for real scale applications.Keywords: biogas, bioscrubber, desulfurization, PDMS membrane
Procedia PDF Downloads 226854 Induction of Cytotoxicity and Apoptosis in Ovarian Cancer Cell Line (CAOV-3) by an Isoquinoline Alkaloid Isolated from Enicosanthellum pulchrum (King) Heusden
Authors: Noraziah Nordin, Najihah Mohd Hashim, Nazia Abdul Majid, Mashitoh Abdul Rahman, Hamed Karimian, Hapipah Mohd Ali
Abstract:
Enicosanthellum pulchrum belongs to family Annonaceae is also known as family of 'mempisang' in Malaysia. Liriodenine was isolated by prep-HPLC method. This method was first technique used for the isolation of this compound. The structure of the liriodenine was elucidated by 1D and 2D spectroscopy techniques. Liriodenine was tested on ovarian cancer cells line (CAOV-3) for MTT, AO/PI and cytotoxicity 3 assays. The MTT assay was performed to determine the cytotoxicity effect of lirodenine on CAOV-3 cells. The morphological changes on CAOV-3 cells were observed by AO/PI assay for the early and late stage of apoptosis, as well as necrosis. Meanwhile, the measurement of cell loss, nuclear morphology, DNA content, cell membrane permeability, mitochondrial membrane potential changes and cytochrome c release from mitochondria were detected through cytotoxicity 3 assay. The IC50 results showed liriodenine inhibits the growth of CAOV-3 cells after 24 h of treatment at 10.25 ± 1.06 µg/mL. After 48 and 72 h of treatments, the IC50 values were decreased to 7.65 ± 0:07 and 6.35 ± 1.62 µg/mL, respectively. The morphology changes can be seen on CAOV-3 with a production of cell membrane blebbing, cromatin condensation and apoptotic bodies with increasing time of treatment from 24 to 72 h. Evaluation of cytotoxicity 3 on CAOV-3 cells after treated with liriodenine, resulting loss of mitochondrial membrane potential and release of cytochrome c from mitochondria. The results demonstrated the capability of liriodenine as a promising anticancer agent, particularly on human ovarian cancer.Keywords: Enicosanthellum pulchrum, ovarian cancer, apoptosis, cytotoxicity
Procedia PDF Downloads 444853 Antimicrobial and Haemostatic Effect of Chitosan/Polyacrylic Acid Hybrid Membranes
Authors: F. A. Abdel-Mohdy, M. K. El-Bisi, A. Abou-Okeil, A. A. Sleem, S. El-Sabbagh, Kawther El-Shafei, Hoda S. El-Sayed, S. M. ElSawy
Abstract:
Chitosan/ polyacrylic acid membranes containing different amounts of Al2(SO4) and/or TiO2 were prepared. The prepared membranes were characterized by measuring mechanical properties, such as tensile strength and elongation at break, swelling properties, antimicrobial properties against gram-positive and gram-negative bacteria and blood clotting. The results obtained indicate that the presence of Al2(SO4) and TiO2 in the membrane formulations have an incremental effect on the antimicrobial properties and blood clotting in albino rate.Keywords: Chitosan, acrylic acid, antibacterial, blood clotting, membrane
Procedia PDF Downloads 489852 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.Keywords: gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model
Procedia PDF Downloads 159851 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure
Authors: Nosakhare Enoma, Alphose Zingoni
Abstract:
The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis
Procedia PDF Downloads 320850 Detection of Intravenous Infiltration Using Impedance Parameters in Patients in a Long-Term Care Hospital
Authors: Ihn Sook Jeong, Eun Joo Lee, Jae Hyung Kim, Gun Ho Kim, Young Jun Hwang
Abstract:
This study investigated intravenous (IV) infiltration using bioelectrical impedance for 27 hospitalized patients in a long-term care hospital. Impedance parameters showed significant differences before and after infiltration as follows. First, the resistance (R) after infiltration significantly decreased compared to the initial resistance. This indicates that the IV solution flowing from the vein due to infiltration accumulates in the extracellular fluid (ECF). Second, the relative resistance at 50 kHz was 0.94 ± 0.07 in 9 subjects without infiltration and was 0.75 ± 0.12 in 18 subjects with infiltration. Third, the magnitude of the reactance (Xc) decreased after infiltration. This is because IV solution and blood components released from the vein tend to aggregate in the cell membrane (and acts analogously to the linear/parallel circuit), thereby increasing the capacitance (Cm) of the cell membrane and reducing the magnitude of reactance. Finally, the data points plotted in the R-Xc graph were distributed on the upper right before infiltration but on the lower left after infiltration. This indicates that the infiltration caused accumulation of fluid or blood components in the epidermal and subcutaneous tissues, resulting in reduced resistance and reactance, thereby lowering integrity of the cell membrane. Our findings suggest that bioelectrical impedance is an effective method for detection of infiltration in a noninvasive and quantitative manner.Keywords: intravenous infiltration, impedance, parameters, resistance, reactance
Procedia PDF Downloads 182849 A Comparative Study: Influences of Polymerization Temperature on Phosphoric Acid Doped Polybenzimidazole Membranes
Authors: Cagla Gul Guldiken, Levent Akyalcin, Hasan Ferdi Gercel
Abstract:
Fuel cells are electrochemical devices which convert the chemical energy of hydrogen into the electricity. Among the types of fuel cells, polymer electrolyte membrane fuel cells (PEMFCs) are attracting considerable attention as non-polluting power generators with high energy conversion efficiencies in mobile applications. Polymer electrolyte membrane (PEM) is one of the essential components of PEMFCs. Perfluorosulfonic acid based membranes known as Nafion® is widely used as PEMs. Nafion® membranes water dependent proton conductivity which limits the operating temperature below 100ᵒC. At higher temperatures, proton conductivity and mechanical stability of these membranes decrease because of dehydration. Polybenzimidazole (PBI), which has good anhydrous proton conductivity after doped with acids, as well as excellent thermal stability, shows great potential in the application of high temperature PEMFCs. In the present study, PBI polymers were synthesized by solution polycondensation at 190 and 210ᵒC. The synthesized polymers were characterized by FTIR, 1H NMR, and TGA. Phosphoric acid doped PBI membranes were prepared and tested in a PEMFC. The influences of reaction temperature on structural properties of synthesized polymers were investigated. Mechanical properties, acid-doping level, proton conductivity, and fuel cell performances of prepared phosphoric acid doped PBI membranes were evaluated. The maximum power density was found as 32.5 mW/cm² at 120ᵒC.Keywords: fuel cell, high temperature polymer electrolyte membrane, polybenzimidazole, proton exchange membrane fuel cell
Procedia PDF Downloads 185848 Experimental and Characterization Studies on Micro Direct Methanol Fuel Cell
Authors: S. Muthuraja Soundrapandian, C.K. Subramaniam
Abstract:
A micro Direct Methanol Fuel Cell (DMFC) of 1 cm2 active area with selective sensor materials to sense methanol for redox, has been developed. Among different Pt alloys, Pt-Sn/C was able to produce high current density and repeatability. Membrane Elecctrode Assembly (MEA) of anode catalyst Pt-Sn/C was prepared with nafion as active membrane and Pt black as cathode catalyst. The sensor’s maximum ability to detect the trace levels of methanol in ppm has been analyzed. A compact sensor set up has also been made and the characterization studies were carried out. The acceptable value of current density was derived by the cell and the results are able to fulfill the needs of DMFC technology for the practical applications.Keywords: DMFC, sensor, MEA, Pt-Sn
Procedia PDF Downloads 140847 Formation of Nanochannels by Heavy Ions in Graphene Oxide Reinforced Carboxymethylcellulose Membranes for Proton Exchange Membrane Fuel Cells Applications
Authors: B. Kurbanova, M. Karibayev, N. Almas, K. Ospanov, K. Aimaganbetov, T. Kuanyshbekov, K. Akatan, S. Kabdrakhmanova
Abstract:
Proton exchange membranes (PEMs) operating at high temperatures above 100 °C with the excellent mechanical, chemical and thermochemical stability have been received much attention, because of their practical application of proton exchange membrane fuel cells (PEMFCs). Nowadays, a huge number of polymers and polymer-mixed various membranes have been investigated for this application, all of which offer both pros and cons. However, PEMFCs are still lack of ideal membranes with unique properties. In this work, carboxymethylcellulose (CMC) based membranes with dispersive graphene oxide (GO) sheets were fabricated and investigated for PEMFCs application. These membranes and pristine GO were studied by a combination of XRD, XPS, Raman, Brillouin, FTIR, thermo-mechanical analysis (TGA and Dynamic Mechanical Analysis) and SEM microscopy, while substantial studies on the proton transport properties were provided by Electrochemical Impedance Spectroscopy (EIS) measurements. It was revealed that the addition of CMC to the GO boosts proton conductivity of the whole membrane, while GO provides good mechanical and thermomechanical stability to the membrane. Further, the continuous and ordered nanochannels with well-tailored chemical structures were obtained by irradiation of heavy ions Kr⁺¹⁷ with an energy of 1.75 MeV/nucleon on the heavy ion accelerator. The formation of these nanochannels led to the significant increase of proton conductivity at 50% Relative Humidity. Also, FTIR and XPS measurement results show that ion irradiation eliminated the GO’s surface oxygen chemical bonds (C=O, C-O), and led to the formation of C = C, C – C bonds, whereas these changes connected with an increase in conductivity.Keywords: proton exchange membranes, graphene oxide, fuel cells, carboxymethylcellulose, ion irradiation
Procedia PDF Downloads 92846 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water
Authors: Ahmed A. Alghamdi
Abstract:
Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis
Procedia PDF Downloads 51845 Membrane Permeability of Middle Molecules: A Computational Chemistry Approach
Authors: Sundaram Arulmozhiraja, Kanade Shimizu, Yuta Yamamoto, Satoshi Ichikawa, Maenaka Katsumi, Hiroaki Tokiwa
Abstract:
Drug discovery is shifting from small molecule based drugs targeting local active site to middle molecules (MM) targeting large, flat, and groove-shaped binding sites, for example, protein-protein interface because at least half of all targets assumed to be involved in human disease have been classified as “difficult to drug” with traditional small molecules. Hence, MMs such as peptides, natural products, glycans, nucleic acids with various high potent bioactivities become important targets for drug discovery programs in the recent years as they could be used for ‘undruggable” intracellular targets. Cell membrane permeability is one of the key properties of pharmacodynamically active MM drug compounds and so evaluating this property for the potential MMs is crucial. Computational prediction for cell membrane permeability of molecules is very challenging; however, recent advancement in the molecular dynamics simulations help to solve this issue partially. It is expected that MMs with high membrane permeability will enable drug discovery research to expand its borders towards intracellular targets. Further to understand the chemistry behind the permeability of MMs, it is necessary to investigate their conformational changes during the permeation through membrane and for that their interactions with the membrane field should be studied reliably because these interactions involve various non-bonding interactions such as hydrogen bonding, -stacking, charge-transfer, polarization dispersion, and non-classical weak hydrogen bonding. Therefore, parameters-based classical mechanics calculations are hardly sufficient to investigate these interactions rather, quantum mechanical (QM) calculations are essential. Fragment molecular orbital (FMO) method could be used for such purpose as it performs ab initio QM calculations by dividing the system into fragments. The present work is aimed to study the cell permeability of middle molecules using molecular dynamics simulations and FMO-QM calculations. For this purpose, a natural compound syringolin and its analogues were considered in this study. Molecular simulations were performed using NAMD and Gromacs programs with CHARMM force field. FMO calculations were performed using the PAICS program at the correlated Resolution-of-Identity second-order Moller Plesset (RI-MP2) level with the cc-pVDZ basis set. The simulations clearly show that while syringolin could not permeate the membrane, its selected analogues go through the medium in nano second scale. These correlates well with the existing experimental evidences that these syringolin analogues are membrane-permeable compounds. Further analyses indicate that intramolecular -stacking interactions in the syringolin analogues influenced their permeability positively. These intramolecular interactions reduce the polarity of these analogues so that they could permeate the lipophilic cell membrane. Conclusively, the cell membrane permeability of various middle molecules with potent bioactivities is efficiently studied using molecular dynamics simulations. Insight of this behavior is thoroughly investigated using FMO-QM calculations. Results obtained in the present study indicate that non-bonding intramolecular interactions such as hydrogen-bonding and -stacking along with the conformational flexibility of MMs are essential for amicable membrane permeation. These results are interesting and are nice example for this theoretical calculation approach that could be used to study the permeability of other middle molecules. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 18ae0101047.Keywords: fragment molecular orbital theory, membrane permeability, middle molecules, molecular dynamics simulation
Procedia PDF Downloads 189844 Extracellular Polymeric Substances (EPS) Attribute to Biofouling of Anaerobic Membrane Bioreactor: Adhesion and Viscoelastic Properties
Authors: Kbrom Mearg Haile
Abstract:
Introduction: Membrane fouling is the bottleneck for the anaerobic membrane bioreactor (AnMBR) robust continuous operation, primarily caused by the mixed liquor suspended solids (MLSS) characteristics formed by aggregated flocs and a scaffold of microbial self-produced extracellular polymeric substances (EPS), which dictates the flocs integrity. Accordingly, the adhesion of EPS to the membrane surface versus their role in forming firm, elastic, and mechanically stable flocs under the reactor’s hydraulic shear is critical for minimizing interactions between EPS and colloids originating from the MLSS flocs with the membrane. This study aims to gain insight and investigate the effect of MLSS flocs properties, EPS adhesion and viscoelasticity, viscoelastic properties of the sludge, and membrane fouling propensity. Experimental: As a working hypothesis, to alter the aforementioned flocs’ and EPS’s properties, the addition of either coagulant or surfactant was carried out during the AnMBR operation. In the AnMBR, two flat-sheet 300 kDa pore size polyether sulfone (PES) membranes with a total filtration area of 352 cm2 were immersed in the AnMBR system treating municipal wastewater of Midreshet Ben-Gurion village at the Negev highlands, Israel. The system temperature, pH, biogas recirculation, and hydraulic retention time were regulated. TMP fluctuations during a 30-day experiment were recorded under three operating conditions: Baseline (without the addition of coagulating or dispersing agent), coagulant addition (FeCl3), and surfactant addition (sodium dodecyl sulfate). At the end of each experiment, EPS were extracted from the MLSS and from the fouled membrane, characterized for their protein, polysaccharides, and DOC contents, and correlated with the fouling tendency of the submerged UF membrane. The EPS adherence and viscoelastic properties were revealed using QCM-D via the PES-coated gold sensor used as a membrane-mimicking surface providing a detailed real-time EPS adhesion. The associated shifts in the resonance frequency and dissipation at different overtones were further modeled using the Voigt-based viscoelastic model (using Dfind software, Q-Sense Biolin Scientific) in which the thickness, shear modulus, and shear viscosity values of the adsorbed EPS layers on the PES coated sensor were calculated. Results and discussion: The observations obtained from the QCM-D analysis indicate a greater decrease in the frequency shift for the elevated membrane fouling scenarios, likely due to an observed decrease in the calculated shear viscosity and shear modulus of the EPS adsorbed layer, coupled with an increase in EPS layer hydrated thickness and fluidity (ΔD/Δf slopes). Further analysis is being conducted for the three major operating conditions-analyzing their effects on sludge rheology, dewaterability (capillary suction time-CST) and settle ability (SVI). The biofouling layer is further characterized microscopically using a confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM), for analyzing the consistency of the development of the biofouling layer with sludge characteristics, i.e., thicker biofouling layer on the membrane surface when operated with surfactant addition, due to flocs with reduced integrity and availability of EPS/colloids to the membrane. Conversely, a thinner layer when operated with coagulant compared to the baseline experiment, due to elevation in flocs integrity.Keywords: viscoelasticity, biofouling, viscoelastic, AnMBR, EPS, elocintegrity
Procedia PDF Downloads 22843 Quality of Chilled Indigenous Ram Semen Using Multi-Species Skim Milk Based Extenders
Authors: Asaduzzaman Rimon, Pankaj Kumar Jha, Abdullah Al Mansur, Mohammad Mofizul Islam, Nasrin Sultana Juyena, Farida Yeasmin Bari
Abstract:
This study was conducted to determine the effects of multi-species skim milk based extenders on sperm quality at 5ºC with the advancement of preservation time. Altogether forty ejaculates, 8 ejaculates for each of the 5 home-made semen extenders: cow skim milk (CSM), goat skim milk (GSM), sheep skim milk (SSM), buffalo skim milk (BSM) and commercial dried skim milk (CDSM) were examined for motility, plasma membrane integrity and normal morphology % of sperm at 0, 24, 48, 72, 96 and 120 hours, respectively. Sperm motility was significantly decreased (P < 0.05) with the increase of preservation time. There were no significant difference in motility % among CSM (84.0±1.4, 82.3±2.1), GSM (84.5±1.0, 82.5±0.6) and CDSM (85.0±80.3±1.3) extenders at 0 and 24 hours, respectively. However, the motility in GSM extender was significantly higher than BSM, SSM and CDSM extender at 48, 72, 96 and 120 hours. The plasma membrane integrity % at 0 hour had no significant difference among the extenders. But, the plasma membrane integrity % in GSM (84.3±0.9, 81.8±1.3, 78.0±2.2, 74.8±0.5, 72.0±1.4) and CSM (82.8±0.5, 80.8±1.0, 78.0±1.4, 73.5±1.7, 70.3±0.5) extenders were significantly higher than BSM (81.0±1.4, 76.3±2.5, 72.5±1.7, 63.8±2.5, 54.0±4.6), SSM (78.5±1.5, 75.0±1.6, 71.5±2.4, 64.3±1.7, 56.5±2.4) and CDSM extenders (78.3±2.4, 75.8±3.9, 72.5±3.3, 64.8±1.0, 60.5±3.3) at 24, 48, 72, 96 and 120 hours, respectively. The sperm morphology % had no significant difference at 0 hour among the extenders but were significantly higher in GSM (83.0±0.8, 81.3±1.5, 79.3±1.3, 73.0±2.2, 70.3±1.3) and CSM (81.5±1.7, 79.3±1.5, 75.8±1.5, 70.3±1.3, 66.3±1.5) than BSM (79.0±1.2, 75.0±1.4, 69.5±1.7, 64.5±3.1, 56.8±2.2), SSM (79.8±1.3, 76.8±2.1, 71.3±3.0, 66.0±2.7, 60.3±4.5) and CDSM (80.0±1.6, 77.0±2.2, 72.0±2.5, 66.3±2.5, 62.0±4.0) extenders at 24, 48, 72, 96 and 120 hours, respectively. The motility, plasma membrane integrity and normal morphology % of sperm had shown no significant difference between GSM and CSM but were found to be higher in GSM extenders. In the end, we concluded from the above study that the goat milk based extenders (GSM) had optimum sperm preserving quality. However, further studies are required to validate followed by fertility rate.Keywords: chilled semen, indigenous ram, multi-species skim milk based extenders, preservation
Procedia PDF Downloads 421