Search results for: HVOF (High Velocity Oxygen Fuel)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22238

Search results for: HVOF (High Velocity Oxygen Fuel)

21998 Multiphase Flow Model for 3D Numerical Model Using ANSYS for Flow over Stepped Cascade with End Sill

Authors: Dheyaa Wajid Abbood, Hanan Hussien Abood

Abstract:

Stepped cascade has been utilized as a hydraulic structure for years. It has proven to be the least costly aeration system in replenishing dissolved oxygen. Numerical modeling of stepped cascade with end sill is very complicated and challenging because of the high roughness and velocity re circulation regions. Volume of fluid multiphase flow model (VOF) is used .The realizable k-ξ model is chosen to simulate turbulence. The computational results are compared with lab-scale stepped cascade data. The lab –scale model was constructed in the hydraulic laboratory, Al-Mustansiriya University, Iraq. The stepped cascade was 0.23 m wide and consisted of 3 steps each 0.2m high and 0.6 m long with variable end sill. The discharge was varied from 1 to 4 l/s. ANSYS has been employed to simulate the experimental data and their related results. This study shows that ANSYS is able to predict results almost the same as experimental findings in some regions of the structure.

Keywords: stepped cascade weir, aeration, multiphase flow model, ansys

Procedia PDF Downloads 309
21997 Molecular Dynamics Studies of Main Factors Affecting Mass Transport Phenomena on Cathode of Polymer Electrolyte Membrane Fuel Cell

Authors: Jingjing Huang, Nengwei Li, Guanghua Wei, Jiabin You, Chao Wang, Junliang Zhang

Abstract:

In this work, molecular dynamics (MD) simulation is applied to analyze the mass transport process in the cathode of proton exchange membrane fuel cell (PEMFC), of which all types of molecules situated in the cathode is considered. a reasonable and effective MD simulation process is provided, and models were built and compared using both Materials Studio and LAMMPS. The mass transport is one of the key issues in the study of proton exchange membrane fuel cells (PEMFCs). In this report, molecular dynamics (MD) simulation is applied to analyze the influence of Nafion ionomer distribution and Pt nano-particle size on mass transport process in the cathode. It is indicated by the diffusion coefficients calculation that a larger quantity of Nafion, as well as a higher equivalent weight (EW) value, will hinder the transport of oxygen. In addition, medium-sized Pt nano-particles (1.5~2nm) are more advantageous in terms of proton transport compared with other particle sizes (0.94~2.55nm) when the center-to-center distance between two Pt nano-particles is around 5 nm. Then mass transport channels are found to be formed between the hydrophobic backbone and the hydrophilic side chains of Nafion ionomer according to the radial distribution function (RDF) curves. And the morphology of these channels affected by the Pt size is believed to influence the transport of hydronium ions and, consequently the performance of PEMFC.

Keywords: cathode catalytic layer, mass transport, molecular dynamics, proton exchange membrane fuel cell

Procedia PDF Downloads 183
21996 Effect of Fuel Type on Design Parameters and Atomization Process for Pressure Swirl Atomizer and Dual Orifice Atomizer for High Bypass Turbofan Engine

Authors: Mohamed K. Khalil, Mohamed S. Ragab

Abstract:

Atomizers are used in many engineering applications including diesel engines, petrol engines and spray combustion in furnaces as well as gas turbine engines. These atomizers are used to increase the specific surface area of the fuel, which achieve a high rate of fuel mixing and evaporation. In all combustion systems reduction in mean drop size is a challenge which has many advantages since it leads to rapid and easier ignition, higher volumetric heat release rate, wider burning range and lower exhaust concentrations of the pollutant emissions. Pressure atomizers have a different configuration for design such as swirl atomizer (simplex), dual orifice, spill return, plain orifice, duplex and fan spray. Simplex pressure atomizers are the most common type of all. Among all types of atomizers, pressure swirl types resemble a special category since they differ in quality of atomization, the reliability of operation, simplicity of construction and low expenditure of energy. But, the disadvantages of these atomizers are that they require very high injection pressure and have low discharge coefficient owing to the fact that the air core covers the majority of the atomizer orifice. To overcome these problems, dual orifice atomizer was designed. This paper proposes a detailed mathematical model design procedure for both pressure swirl atomizer (Simplex) and dual orifice atomizer, examines the effects of varying fuel type and makes a clear comparison between the two types. Using five types of fuel (JP-5, JA1, JP-4, Diesel and Bio-Diesel) as a case study, reveal the effect of changing fuel type and its properties on atomizers design and spray characteristics. Which effect on combustion process parameters; Sauter Mean Diameter (SMD), spray cone angle and sheet thickness with varying the discharge coefficient from 0.27 to 0.35 during takeoff for high bypass turbofan engines. The spray atomizer performance of the pressure swirl fuel injector was compared to the dual orifice fuel injector at the same differential pressure and discharge coefficient using Excel. The results are analyzed and handled to form the final reliability results for fuel injectors in high bypass turbofan engines. The results show that the Sauter Mean Diameter (SMD) in dual orifice atomizer is larger than Sauter Mean Diameter (SMD) in pressure swirl atomizer, the film thickness (h) in dual orifice atomizer is less than the film thickness (h) in pressure swirl atomizer. The Spray Cone Angle (α) in pressure swirl atomizer is larger than Spray Cone Angle (α) in dual orifice atomizer.

Keywords: gas turbine engines, atomization process, Sauter mean diameter, JP-5

Procedia PDF Downloads 144
21995 Biophysical Modeling of Anisotropic Brain Tumor Growth

Authors: Mutaz Dwairy

Abstract:

Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.

Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment

Procedia PDF Downloads 3
21994 Combustion Characteristic of Propane/Acetylene Fuel Blends Pool Fire

Authors: Yubo Bi, Xiao Chen, Shouxiang Lu

Abstract:

A kind of gas-fueled burner, named Burning Rate Emulator, was proposed for the purpose of the emulation of condensed fuel recently. The gaseous fuel can be pure combustible fuel gas or blends of gaseous fuel or inert gas. However, this concept was recently proposed without detailed study on the combustion characteristic of fuel blends. In this study, two kinds of common gaseous fuels were selected, propane and acetylene, to provide the combustion heat as well as a large amount of smoke, which widely exists in liquid and solid fuel burning process. A set of experiments were carried out using a gas-fueled burner with a diameter of 8 cm. The total volume flow rate of propane and acetylene was kept at 3 liters per minute. The volume fraction of propane varied from 0% to 100% at interval of 10%. It is found that the flame height increases with propane volume fraction, which may be caused by the increase of heat release rate, as the energy density of propane is larger than that of acetylene. The dimensionless flame height is correlated against dimensionless heat release rate, which shows a power function relationship. The radiation fraction of the flame does not show a monotonic relationship with propane volume fraction. With the increase of propane volume fraction from 0% to 100%, the value of radiation fraction increases first and reach a maximum value around 0.46 at a propane volume fraction of 10%, and then decreases continuously to a value of 0.25 at the propane volume fraction of 100%. The flame radiation is related to the soot in the flame. The trend of the radiation fraction reflects that there may be a synergistic effect of soot formation between propane and acetylene which can be guessed from the significantly high radiation fraction at a propane volume fraction of 10%. This work provides data for combustion of gaseous fuel blends pool fire and also give reference on the design of Burning Rate Emulator.

Keywords: Burning Rate Emulator, fuel blends pool fire, flame height, radiation fraction

Procedia PDF Downloads 209
21993 Hydraulic Analysis on Microhabitat of Benthic Macroinvertebrates at Riparian Riffles

Authors: Jin-Hong Kim

Abstract:

Hydraulic analysis on microhabitat of Benthic Macro- invertebrates was performed at riparian riffles of Hongcheon River and Gapyeong Stream. As for the representative species, Ecdyonurus kibunensis, Paraleptophlebia cocorata, Chironomidae sp. and Psilotreta kisoensis iwata were chosen. They showed hydraulically different habitat types by flow velocity and particle diameters of streambed materials. Habitat conditions of the swimmers were determined mainly by the flow velocity rather than by flow depth or by riverbed materials. Burrowers prefer sand and silt, and inhabited at the riverbed. Sprawlers prefer cobble or boulder and inhabited for velocity of 0.05-0.15 m/s. Clingers prefer pebble or cobble and inhabited for velocity of 0.06-0.15 m/s. They were found to be determined mainly by the flow velocity.

Keywords: benthic macroinvertebrates, riffles, clinger, swimmer, burrower, sprawler

Procedia PDF Downloads 179
21992 Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst

Authors: Kamran Dastafkan, Chuan Zhao

Abstract:

Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation.

Keywords: gas bubble dissipation, iron-nickel vanadate, low-gas bubble-adhesion catalyst, oxygen evolution reaction

Procedia PDF Downloads 104
21991 An Assessment of the Effects of Microbial Products on the Specific Oxygen Uptake in Submerged Membrane Bioreactor

Authors: M. F. R. Zuthi, H. H. Ngo, W. S. Guo, S. S. Chen, N. C. Nguyen, L. J. Deng, T. D. C Tran

Abstract:

Sustaining a desired rate of oxygen transfer for microbial activity is a matter of major concern for Biological Wastewater Treatment (MBR). The study reported in the paper was aimed at assessing the effects of microbial products on the Specific Oxygen Uptake Rate (SOUR) in a Conventional Membrane Bioreactor (CMBR) and that in a Sponge Submerged MBR (SSMBR). The production and progressive accumulation of Soluble Microbial Products (SMP) and Bound-Extracellular Polymeric Substances (BEPS) were found affecting the SOUR of the microorganisms which varied at different stages of operation of the MBR systems depending on the variable concentrations of the SMP/bEPS. The effect of bEPS on the SOUR was stronger in the SSMBR compared to that of the SMP, while relative high concentrations of SMP had adverse effects on the SOUR of the CMBR system. Of the different mathematical correlations analyzed in the study, logarithmic mathematical correlations could be established between SOUR and bEPS in SSMBR, and similar correlations could also be found between SOUR and SMP concentrations in the CMBR.

Keywords: microbial products, microbial activity, specific oxygen uptake rate, membrane bioreactor

Procedia PDF Downloads 274
21990 Catalytic Effect of Graphene Oxide on the Oxidation of Paraffin-Based Fuels

Authors: Lin-Lin Liu, Song-Qi Hu, Yin Wang

Abstract:

Paraffin-based fuels are regarded to be a promising fuel of hybrid rocked motor because of the high regression rate, low price, and environmental friendliness. Graphene Oxide (GO) is an attractive energetic material which is expected to be widely used in propellants, explosives, and some high energy fuels. Paraffin-based fuels with paraffin and GO as raw materials were prepared, and the oxidation process of the samples was investigated by thermogravimetric analysis differential scanning calorimetry (TG/DSC) under oxygen (O₂) and nitrous oxide (N₂O) atmospheres. The oxidation reaction kinetics of the fuels was estimated through the non-isothermal measurements and model-free isoconversional methods based on the experimental results of TGA. The results show that paraffin-based fuels are easier oxidized under O₂ rather than N₂O with atmospheres due to the lower activation energy; GO plays a catalytic role for the oxidation of paraffin-based fuels under the both atmospheres, and the activation energy of the oxidation process decreases with the increase of GO; catalytic effect of GO on the oxidation of paraffin-based fuels are more obvious under O₂ atmospheres than under N₂O atmospheres.

Keywords: graphene oxide, paraffin-based fuels, oxidation, activation energy, TGA

Procedia PDF Downloads 377
21989 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Heavy Water Reactor, Burn up, Minor Actinides, Neutronic Calculation

Procedia PDF Downloads 227
21988 Defect Profile Simulation of Oxygen Implantation into Si and GaAs

Authors: N. Dahbi, R. B. Taleb

Abstract:

This study concerns the ion implantation of oxygen in two semiconductors Si and GaAs realized by a simulation using the SRIM tool. The goal of this study is to compare the effect of implantation energy on the distribution of implant ions in the two targets and to examine the different processes resulting from the interaction between the ions of oxygen and the target atoms (Si, GaAs). SRIM simulation results indicate that the implanted ions have a profile as a function of Gaussian-type; oxygen produced more vacancies and implanted deeper in Si compared to GaAs. Also, most of the energy loss is due to ionization and phonon production, where vacancy production amounts to few percent of the total energy.

Keywords: defect profile, GaAs, ion implantation, SRIM, phonon production, vacancies

Procedia PDF Downloads 142
21987 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple

Authors: Hasan Basaran, Emre Unal

Abstract:

Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.

Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode

Procedia PDF Downloads 78
21986 Development of Scenarios for Sustainable Next Generation Nuclear System

Authors: Muhammad Minhaj Khan, Jaemin Lee, Suhong Lee, Jinyoung Chung, Johoo Whang

Abstract:

The Republic of Korea has been facing strong storage crisis from nuclear waste generation as At Reactor (AR) temporary storage sites are about to reach saturation. Since the country is densely populated with a rate of 491.78 persons per square kilometer, Construction of High-level waste repository will not be a feasible option. In order to tackle the storage waste generation problem which is increasing at a rate of 350 tHM/Yr. and 380 tHM/Yr. in case of 20 PWRs and 4 PHWRs respectively, the study strongly focuses on the advancement of current nuclear power plants to GEN-IV sustainable and ecological nuclear systems by burning TRUs (Pu, MAs). First, Calculations has made to estimate the generation of SNF including Pu and MA from PWR and PHWR NPPS by using the IAEA code Nuclear Fuel Cycle Simulation System (NFCSS) for the period of 2016, 2030 (including the saturation period of each site from 2024~2028), 2089 and 2109 as the number of NPPS will increase due to high import cost of non-nuclear energy sources. 2ndly, in order to produce environmentally sustainable nuclear energy systems, 4 scenarios to burnout the Plutonium and MAs are analyzed with the concentration on burning of MA only, MA and Pu together by utilizing SFR, LFR and KALIMER-600 burner reactor after recycling the spent oxide fuel from PWR through pyro processing technology developed by Korea Atomic Energy Research Institute (KAERI) which shows promising and sustainable future benefits by minimizing the HLW generation with regard to waste amount, decay heat, and activity. Finally, With the concentration on front and back end fuel cycles for open and closed fuel cycles of PWR and Pyro-SFR respectively, an overall assessment has been made which evaluates the quantitative as well as economical combativeness of SFR metallic fuel against PWR once through nuclear fuel cycle.

Keywords: GEN IV nuclear fuel cycle, nuclear waste, waste sustainability, transmutation

Procedia PDF Downloads 330
21985 Seaweed as a Future Fuel Option: Potential and Conversion Technologies

Authors: Muhammad Rizwan Tabassum, Ao Xia, Jerry D. Murphy

Abstract:

The purpose of this work is to provide a comprehensive overview of seaweed as the alternative feedstock for biofuel production and key conversion technologies. Resource depletion and climate change are the driving forces to hunt for renewable sources of energy. Macroalgae can be preferred over land based crops for biofuel production because they are not in competition with food crops for arable land, high growth rates and low lignin contents which require less energy-intensive pre-treatments. However, some disadvantages, such as high moisture content, seasonal variation in chemical composition and process inhibition limit its economic feasibility. Seaweed can be converted into gaseous and liquid fuel by different conversion technologies, but biogas via anaerobic digestion from seaweed is attracting increased attention due to its dual benefit of an economic source of bio-fuel and environment-friendly technology. Biodiesel and bioethanol conversion technologies from seaweed are still under development. A selection of high yielding seaweed species, optimal harvesting season and process optimization make them economically feasible for the alternative source of renewable and sustainable feedstock for biofuel in future.

Keywords: anaerobic digestion, biofuel, bio-methane, conversion technologies, seaweed

Procedia PDF Downloads 442
21984 Investigating the Influence of Roof Fairing on Aerodynamic Drag of a Bluff Body

Authors: Kushal Kumar Chode

Abstract:

Increase in demand for fuel saving and demand for faster vehicles with decent fuel economy, researchers around the world started investigating in various passive flow control devices to improve the fuel efficiency of vehicles. In this paper, A roof fairing was investigated for reducing the aerodynamic drag of a bluff body. The bluff body considered for this work is Ahmed model with a rake angle of 25deg was and subjected to flow with a velocity of 40m/s having Reynolds number of 2.68million was analysed using a commercial Computational Fluid Dynamic (CFD) code Star CCM+. It was evident that pressure drag is the main source of drag on an Ahmed body from the initial study. Adding a roof fairing has delayed the flow separation and resulted in delaying wake formation, thus improving the pressure in near weak and reducing the wake region. Adding a roof fairing of height and length equal to 1/7H and 1/3L respectively has shown a drag reduction by 9%. However, an optimised fairing, which was obtained by changing height, length and width by 5% increase, recorded a drag reduction close 12%.

Keywords: Ahmed model, aerodynamic drag, passive flow control, roof fairing, wake formation

Procedia PDF Downloads 398
21983 Influence of High-Resolution Satellites Attitude Parameters on Image Quality

Authors: Walid Wahballah, Taher Bazan, Fawzy Eltohamy

Abstract:

One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias.

Keywords: high-resolution satellites, pointing accuracy, attitude stability, TDI-CCD, smear, MTF

Procedia PDF Downloads 376
21982 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 282
21981 Effect of the Velocity Resistance Training on Muscular Fitness and Functional Performance in Older Women

Authors: Jairo Alejandro Fernandez Ortega

Abstract:

Objective: Regarding effects of training velocity on strength in the functional condition of older adults controversy exists. The purpose of this study was to examine the effects of a twelve-week strength training program (PE) performed at high speed (GAV) versus a traditionally executed program (GBV), on functional performance, maximum strength and muscle power in a group of older adult women. Methodology: 86 women aged between 60-81 years participated voluntarily in the study and were assigned randomly to the GAV (three series at 40% 1RM at maximum speed, with maximum losses of 10% speed) or to the GBV (three series with three sets at 70% of 1RM). Both groups performed three weekly trainings. The maximum strength of upper and lower limbs (1RM), prehensile strength, walking speed, maximum power, mean propulsive velocity (MPV) and functional performance (senior fitness test) were evaluated before and after the PE. Results: Significant improvements were observed (p < 0.05) in all the tests in the two groups after the twelve weeks of training. However, the results of GAV were significantly (P < 0.05) higher than those of the GBV, in the tests of agility and dynamic equilibrium, stationary walking, sitting and standing, walking speed over 4 and 6 meters, MPV and peak power. In the tests of maximum strength and prehensile force, the differences were not significant. Conclusion: Strength training performed at high speeds seems to have a better effect on functional performance and muscle power than strength training performed at low speed.

Keywords: power training, resistance exercise, aging, strength, physical performance, high-velocity, resistance training

Procedia PDF Downloads 96
21980 Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil

Authors: Morteza Mirhosseini, Amir B. Khoshnevis

Abstract:

The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12o and this has due to the jet energized, while the angle of attack 20o has different. The airfoil cord based Reynolds number has 105.

Keywords: adverse pressure gradient, fluctuating velocity, wall jet, co-flow jet airfoil

Procedia PDF Downloads 461
21979 Real Time Monitoring and Control of Proton Exchange Membrane Fuel Cell in Cognitive Radio Environment

Authors: Prakash Thapa, Gye Choon Park, Sung Gi Kwon, Jin Lee

Abstract:

The generation of electric power from a proton exchange membrane (PEM) fuel cell is influenced by temperature, pressure, humidity, flow rate of reactant gaseous and partial flooding of membrane electrode assembly (MEA). Among these factors, temperature and cathode flooding are the most affecting parameters on the performance of fuel cell. This paper describes the detail design and effect of these parameters on PEM fuel cell. Performance of all parameters was monitored, analyzed and controlled by using 5KWatt PEM fuel cell. In the real-time data communication for remote monitoring and control of PEM fuel cell, a normalized least mean square algorithm in cognitive radio environment is used. By the use of this method, probability of energy signal detection will be maximum which solved the frequency shortage problem. So the monitoring system hanging out and slow speed problem will be solved. Also from the control unit, all parameters are controlled as per the system requirement. As a result, PEM fuel cell generates maximum electricity with better performance.

Keywords: proton exchange membrane (PEM) fuel cell, pressure, temperature and humidity sensor (PTH), efficiency curve, cognitive radio network (CRN)

Procedia PDF Downloads 433
21978 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software

Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan

Abstract:

Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.

Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine

Procedia PDF Downloads 368
21977 The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity

Authors: M. Nghizaderokni, A. Janalizadechobbasty, M. Azizi, M. Naghizaderokni

Abstract:

The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes.

Keywords: soil, liquefaction, shear wave velocity, standard penetration resistance

Procedia PDF Downloads 371
21976 Synthesis of Green Fuel Additive from Waste Bio-Glycerol

Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai

Abstract:

Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-acetone, bio-glycerol, acetylation, solketal

Procedia PDF Downloads 241
21975 Synthesis of Oxygenated Fuel Additive from Bio-Glycerol

Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent, and it is odorless organic liquid used as a fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-glycerol, catalyst, green additive, biomass

Procedia PDF Downloads 219
21974 Assessment of Groundwater Quality around a Cement Factory in Ewekoro, Ogun State, Southwest Nigeria

Authors: A. O. David, A. A. Akaho, M. A. Abah, J. O. Ogunjimi

Abstract:

This study focuses on the growing concerns about the quality of groundwater found around cement factories, which have caused several health issues for residents located within two (2) kilometer radius. The qualities of groundwater were determined by an investigative study that involved the determination of some heavy metals and physicochemical properties in drinking water samples. Eight (8) samples of groundwater were collected from the eight sampling sites. The samples were analysed for the following parameters; iron, copper, manganese, zinc, lead, color, dissolved solids, electrical conductivity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), temperature, turbidity and total hardness using standard methods. The test results showed the variation of the investigated parameters in the samples as follows: temperature 26-31oC, pH 5.9-7.2, electrical conductivity (EC) 0.37 – 0.78 µS/cm, total hardness 181.8 – 333.0 mg/l, turbidity 0.00-0.05 FTU, colour 5-10 TCU, dissolved oxygen 4.31-5.01 mg/l, BOD 0.2-1.0 mg/l, COD 2.0 -4.0 mg/l, Cu 0.04 – 0.09 mg/l, Fe 0.006-0.122 mg/l, Zn 0.016-0.306 mg/l, Mn 0.01-0.05 mg/l and Pb < 0.001 mg/l. The World Health Organization's standard for drinking water quality guidelines was exceeded in several of the analyzed parameters' amounts in the drinking water samples from the study area. The dissolved oxygen was found to exceed 5.0 mg/l, which is the WHO permissible limit; also, Limestone was found to exceed the WHO maximum limit of 170 mg/l. All the above results confirmed the high pollution of the groundwater sources, and hence, they are not suitable for consumption without any prior treatment.

Keywords: groundwater, quality, heavy metals, parameters

Procedia PDF Downloads 37
21973 Application of Electrochemically Prepared PPy/MWCNT:MnO2 Nano-Composite Film in Microbial Fuel Cells for Sustainable Power Generation

Authors: Rajeev jain, D. C. Tiwari, Praveena Mishra

Abstract:

Nano-composite of polypyrrole/multiwalled carbon nanotubes:mangenese oxide (PPy/MWCNT:MnO2) was electrochemically deposited on the surface of carbon cloth (CC). The nano-composite was structurally characterized by FTIR, SEM, TEM and UV-Vis studies. Nano-composite was also characterized by cyclic voltammetry (CV), current voltage measurements (I-V) and the optical band gaps of film were evaluated from UV-Vis absorption studies. The PPy/MWCNT:MnO2 nano-composite was used as anode in microbial fuel cell (MFC) for sewage waste water treatment, power and coulombic efficiency measurement. The prepared electrode showed good electrical conductivity (0.1185 S m-1). This was also supported by band gap measurements (direct 0.8 eV, indirect 1.3 eV). The obtained maximum power density was 1125.4 mW m-2, highest chemical oxygen demand (COD) removal efficiency was 93% and the maximum coulombic efficiency was 59%. For the first time PPy/MWCNT:MnO2 nano-composite for MFC prepared from nano-composite electrode having the potential for the use in MFC with good stability and better adhesion of microbes is being reported. The SEM images confirm the growth and development of microbe’s colony.

Keywords: carbon cloth, electro-polymerization, functionalization, microbial fuel cells, multi walled carbon nanotubes, polypyrrole

Procedia PDF Downloads 237
21972 Synthesis and Characterization of SiO2/PVA/ SPEEK Composite Membrane for Proton Exchange Membrane Fuel Cell

Authors: M. Yusuf Ansari, Asad Abbas

Abstract:

Proton exchange membrane (PEM) fuel cell is a very efficient and promising energy conversion device. Although Nafion® is considered as benchmark materials for membrane used in PEM fuel cell, it has limitations that restrict its uses. Alternative materials for the membrane is always a challenging field for researchers. Sulfonated poly(ether ether ketone) (SPEEK) is one of the promising material for membrane due to its chemical and mechanical stability and lower cost. In this work, SPEEK is synthesized, and property booster such as silica nanoparticles and polyvinyl alcohol (PVA) are also added to analyse changes in properties such as water uptake, IEC, and conductivity. It has been found that adding PVA support high water uptake and proton conductivity but at large amount of PVA reduces the proton conductivity due to very high water uptake. Adding silica enhances water uptake and proton conductivity.

Keywords: PEM Membrane, sulfonated poly (ether ether ketone) (SPEEK), silica fumes (SiO2), polyvinyl alcohol (PVA)

Procedia PDF Downloads 255
21971 Dependence of Autoignition Delay Period on Equivalence Ratio for i-Octane, Primary Reference Fuel

Authors: Sunil Verma

Abstract:

In today’s world non-renewable sources are depleting quickly, so there is a need to produce efficient and unconventional engines to minimize the use of fuel. Also, there are many fatal accidents happening every year during extraction, distillation, transportation and storage of fuel. Reason for explosions of gaseous fuel is unwanted autoignition. Autoignition characterstics of fuel are mandatory to study to build efficient engines and to avoid accidents. This report is concerned with study of autoignition delay characteristics of iso-octane by using rapid compression machine. The paper clearly explains the dependence of ignition delay characteristics on variation of equivalence ratios from lean to rich mixtures. The equivalence ratio is varied from 0.3 to 1.2.

Keywords: autoignition, iso-octane, combustion, rapid compression machine, equivalence ratio, ignition delay

Procedia PDF Downloads 421
21970 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant

Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea

Abstract:

In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.

Keywords: flow, aeration, bioreactor, oxygen concentration

Procedia PDF Downloads 362
21969 Modeling of Processes Running in Radical Clusters Formed by Ionizing Radiation with the Help of Continuous Petri Nets and Oxygen Effect

Authors: J. Barilla, M. Lokajíček, H. Pisaková, P. Simr

Abstract:

The final biological effect of ionizing particles may be influenced strongly by some chemical substances present in cells mainly in the case of low-LET radiation. The influence of oxygen may be particularly important because oxygen is always present in living cells. The corresponding processes are then running mainly in the chemical stage of radio biological mechanism. The radical clusters formed by densely ionizing ends of primary or secondary charged particles are mainly responsible for final biological effect. The damage effect depends then on radical concentration at a time when the cluster meets a DNA molecule. It may be strongly influenced by oxygen present in a cell as oxygen may act in different directions: at small concentration of it the interaction with hydrogen radicals prevails while at higher concentrations additional efficient oxygen radicals may be formed. The basic radical concentration in individual clusters diminishes, which is influenced by two parallel processes: chemical reactions and diffusion of corresponding clusters. The given simultaneous evolution may be modeled and analyzed well with the help of Continuous Petri nets. The influence of other substances present in cells during irradiation may be studied, too. Some results concerning the impact of oxygen content will be presented.

Keywords: radiobiological mechanism, chemical phase, DSB formation, Petri nets

Procedia PDF Downloads 289