Search results for: vertical cavity surface emitting laser
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8430

Search results for: vertical cavity surface emitting laser

5790 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise

Authors: Rahman Davtalab

Abstract:

Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides, the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach (in the northeast of Florida adjacent to the Atlantic Ocean), Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24% by the mid-21st century.

Keywords: groundwater, surface water, Florida, retention pond, tide, sea level rise

Procedia PDF Downloads 170
5789 Effect of Ramp Rate on the Preparation of Activated Carbon from Saudi Date Tree Fronds (Agro Waste) by Physical Activation Method

Authors: Muhammad Shoaib, Hassan M Al-Swaidan

Abstract:

Saudi Arabia is the major date producer in the world. In order to maximize the production from date tree, pruning of the date trees is required annually. Large amount of this agriculture waste material (palm tree fronds) is available in Saudi Arabia and considered as an ideal source as a precursor for production of activated carbon (AC). The single step procedure for the preparation of micro porous activated carbon (AC) from Saudi date tree fronds using mixture of gases (N2 and CO2) is carried out at carbonization/activation temperature at 850°C and at different ramp rates of 10, 20 and 30 degree per minute. Alloy 330 horizontal reactor is used for tube furnace. Flow rate of nitrogen and carbon dioxide gases are kept at 150 ml/min and 50 ml/min respectively during the preparation. Characterization results reveal that the BET surface area, pore volume, and average pore diameter of the resulting activated carbon generally decreases with the increase in ramp rate. The activated carbon prepared at a ramp rate of 10 degrees/minute attains larger surface area and can offer higher potential to produce activated carbon of greater adsorption capacity from agriculture wastes such as date fronds. The BET surface areas of the activated carbons prepared at a ramp rate of 10, 20 and 30 degree/minute after 30 minutes activation time are 1094, 1020 and 515 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, and FTIR for functional groups was carried out that also verified the same trend. Moreover, by increasing the ramp rate from 10 and 20 degrees/min the yield remains same, i.e. 18%, whereas at a ramp rate of 30 degrees/min the yield increases from 18 to 20%. Thus, it is feasible to produce high-quality micro porous activated carbon from date frond agro waste using N2 carbonization followed by physical activation with CO2 and N2 mixture. This micro porous activated carbon can be used as adsorbent of heavy metals from wastewater, NOx SOx emission adsorption from ambient air and electricity generation plants, purification of gases, sewage treatment and many other applications.

Keywords: activated carbon, date tree fronds, agricultural waste, applied chemistry

Procedia PDF Downloads 263
5788 The Effects of Signal Level of the Microwave Generator on the Brillouin Gain Spectrum in BOTDA and BOTDR

Authors: Murat Yucel, Murat Yucel, Nail Ferhat Ozturk, Halim Haldun Goktas, Cemal Gemci, Fatih Vehbi Celebi

Abstract:

In this study, Brillouin gain spectrum (BGS) is experimentally analyzed in the Brillouin optical time domain reflectometry (BOTDR) and Brillouin optical time domain analyzer (BOTDA). For this purpose, the signal level of the microwave generator is varied and the effects of BGS are investigated. In the setups, 20 km conventional single mode fiber is used to both setups and laser wavelengths are selected around 1550 nm. To achieve best results, it can be used between 5 dBm to 15 dBm signal level of microwave generator for BOTDA and BOTDR setups.

Keywords: microwave signal level, Brillouin gain spectrum, BOTDA, BOTDR

Procedia PDF Downloads 674
5787 Forest Soil Greenhouse Gas Real-Time Analysis Using Quadrupole Mass Spectrometry

Authors: Timothy L. Porter, T. Randy Dillingham

Abstract:

Vegetation growth and decomposition, along with soil microbial activity play a complex role in the production of greenhouse gases originating in forest soils. The absorption or emission (respiration) of these gases is a function of many factors relating to the soils themselves, the plants, and the environment in which the plants are growing. For this study, we have constructed a battery-powered, portable field mass spectrometer for use in analyzing gases in the soils surrounding trees, plants, and other areas. We have used the instrument to sample in real-time the greenhouse gases carbon dioxide and methane in soils where plant life may be contributing to the production of gases such as methane. Gases such as isoprene, which may help correlate gas respiration to microbial activity have also been measured. The instrument is composed of a quadrupole mass spectrometer with part per billion or better sensitivity, coupled to battery-powered turbo and diaphragm pumps. A unique ambient air pressure differentially pumped intake apparatus allows for the real-time sampling of gases in the soils from the surface to several inches below the surface. Results show that this instrument is capable of instant, part-per-billion sensitivity measurement of carbon dioxide and methane in the near surface region of various forest soils. We have measured differences in soil respiration resulting from forest thinning, forest burning, and forest logging as compared to pristine, untouched forests. Further studies will include measurements of greenhouse gas respiration as a function of temperature, microbial activity as measured by isoprene production, and forest restoration after fire.

Keywords: forest, soil, greenhouse, quadrupole

Procedia PDF Downloads 103
5786 Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection

Authors: Chao-Ming Su, Pei-Sheng Wu, Yu-Chi Kuo, Yin-Chou Huang, Tan-Yueh Chen, Jefunnie Matahum, Tzong-Rong Ger

Abstract:

Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min.

Keywords: magnetic particles, magnetoresistive sensors, microfluidics, biosensor

Procedia PDF Downloads 386
5785 Effect of Nitrogen Gaseous Plasma on Cotton Fabric Dyed with Reactive Yellow105

Authors: Mohammad Mirjalili, Hamid Akbarpour

Abstract:

In this work, a bleached well cotton sample was dyed with reactive yellow105 dye and subsequently, the dyed sample was exposed to the plasma condition containing Nitrogen gas at 1 and 5 minutes of plasma exposure time, respectively. The effect of plasma on surface morphology fabric was studied by Scanning Electronic Microscope (SEM). CIELab, K/S, and %R of samples (treated and untreated samples) were measured by a reflective spectrophotometer, and consequently, the experiments show that the sample dyed with Reactive yellow 105 after being washed, with the increase in the operation time of plasma, its dye fastness decreases. In addition, the increase in plasma operation time at constant pressure would increase the destructing effect on the surface morphology of samples dyed with reactive yellow105.

Keywords: cotton fabric, nitrogen cold plasma, reflective spectrophotometer, scanning electronic microscope (SEM), reactive yellow105 dye

Procedia PDF Downloads 231
5784 Ferroelectricity in Nano-Composite Films of Sodium Nitrite: Starch Prepared by Drop Cast Technique

Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal

Abstract:

Nano-composite films of sodium nitrite (NaNO2): Starch with different proportions of NaNO2 and Starch have been prepared by drop cast technique. The ferroelectric hysteresis loops (P-V) have been traced using modified Sawyar-Tower circuit. The films containing equal proportions of NaNO2 and Starch exhibit optimized ferroelectric properties. The stability of the remanent polarization, Pr in the optimized nano-composite films exhibit improved stability over the pure NaNO2 films. The Atomic Force Microscopy (AFM) has been employed to investigate the surface morphology. AFM images clearly reveal the nano sized particles of NaNO2 dispersed in starch with small value of surface roughness.

Keywords: ferroelectricity, nano-composite films, Atomic Force Microscopy (AFM), nano composite film

Procedia PDF Downloads 497
5783 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents

Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera

Abstract:

The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.

Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast

Procedia PDF Downloads 238
5782 Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst

Authors: Kamran Dastafkan, Chuan Zhao

Abstract:

Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation.

Keywords: gas bubble dissipation, iron-nickel vanadate, low-gas bubble-adhesion catalyst, oxygen evolution reaction

Procedia PDF Downloads 113
5781 Preparation and Characterization of Electrospun CdTe Quantum Dots / Nylon-6 Nanofiber Mat

Authors: Negar Mesgara, Laleh Maleknia

Abstract:

In this paper, electrospun CdTe quantum dot / nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by FE-SEM, XRD and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The phenomenon of ‘on ‘ and ‘off ‘ luminescence intermittency (blinking) of CdTe QDs in nylon-6 was investigated by single-molecule optical microscopy, and we identified that the intermittencies of single QDs were correlated with the interaction of water molecules absorbed on the QD surface. The ‘off’ times, the interval between adjacent ‘on’ states, remained essentially unaffected with an increase in excitation intensity. In the case of ‘on’ time distribution, power law behavior with an exponential cutoff tail is observed at longer time scales. These observations indicate that the luminescence blinking statistics of water-soluble single CdTe QDs is significantly dependent on the aqueous environment, which is interpreted in terms of passivation of the surface trap states of QDs.

Keywords: electrospinning, CdTe quantum dots, Nylon-6, Nanocomposite

Procedia PDF Downloads 417
5780 Part Performance Improvement through Design Optimisation of Cooling Channels in the Injection Moulding Process

Authors: M. A. Alhubail, A. I. Alateyah, D. Alenezi, B. Aldousiri

Abstract:

In this study conformal cooling channel (CCC) was employed to dissipate heat of, Polypropylene (PP) parts injected into the Stereolithography (SLA) insert to form tensile and flexural test specimens. The direct metal laser sintering (DMLS) process was used to fabricate a mould with optimised CCC, while optimum parameters of injection moulding were obtained using Optimal-D. The obtained results show that optimisation of the cooling channel layout using a DMLS mould has significantly shortened cycle time without sacrificing the part’s mechanical properties. By applying conformal cooling channels, the cooling time phase was reduced by 20 seconds, and also defected parts were eliminated.

Keywords: optimum parameters, injection moulding, conformal cooling channels, cycle time

Procedia PDF Downloads 212
5779 Upconversion Nanomaterials for Applications in Life Sciences and Medicine

Authors: Yong Zhang

Abstract:

Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.

Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy

Procedia PDF Downloads 147
5778 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger

Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans

Abstract:

Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.

Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model

Procedia PDF Downloads 535
5777 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity

Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien

Abstract:

This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.

Keywords: CFD, experimental, mathematical models, parabolic trough, radiation

Procedia PDF Downloads 404
5776 The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water

Authors: Mohamed A. Deyab, Ahmed E. Awadallah

Abstract:

Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand.

Keywords: hydrogen production, Mg, wastewater, ionic liquid

Procedia PDF Downloads 140
5775 Experimental Investigations to Measure Surface Fatigue Wear in Journal Bearing by Using Vibration Signal Analysis

Authors: Amarnath M., Ramachandra C. G., H. Chelladurai, P..Sateesh Kumar, K. Santhosh Kumar

Abstract:

Journal bearings are extensively used sliding contact machine elements to support radial/axial loaded rotors used in various applications viz. automobile crankshaft, turbine propeller shaft, rope conveyer, heavy duty electric motors. The primary reasons for the failures of these bearings include unstable lubricant film, oil degradation, misalignment, etc. This paper describes the results of experimental investigations carried out to detect surface fatigue wear developed on load bearing the contact surfaces of journal bearing. The test bearing was subjected to fatigue load cycles over a period of 600 hours. The vibration signals were acquired from the journal bearing at regular intervals of 100 hrs. These signals were post-processed by using the vibration analysis technique to obtain diagnostic information of wear propagated in the journal-bearing system.

Keywords: fatigue, journal bearing, sound signals, vibration signals, wear

Procedia PDF Downloads 51
5774 Study of Early Diagnosis of Oral Cancer by Non-invasive Saliva-On-Chip Device: A Microfluidic Approach

Authors: Ragini Verma, J. Ponmozhi

Abstract:

The oral cavity is home to a wide variety of microorganisms that lead to various diseases and even oral cancer. Despite advancements in the diagnosis and detection at the initial phase, the situation hasn’t improved much. Saliva-on-a-chip is an innovative point-of-care platform for early diagnosis of oral cancer and other oral diseases in live and dead cells using a microfluidic device with a current perspective. Some of the major challenges, like real-time imaging of the oral cancer microbes, high throughput values, obtaining a high spatiotemporal resolution, etc. were faced by the scientific community. Integrated microfluidics and microscopy provide powerful approaches to studying the dynamics of oral pathology, microbe interaction, and the oral microenvironment. Here we have developed a saliva-on-chip (salivary microbes) device to monitor the effect on oral cancer. Adhesion of cancer-causing F. nucleatum; subsp. Nucleatum and Prevotella intermedia in the device was observed. We also observed a significant reduction in the oral cancer growth rate when mortality and morbidity were induced. These results show that this approach has the potential to transform the oral cancer and early diagnosis study.

Keywords: microfluidic device, oral cancer microbes, early diagnosis, saliva-on-chip

Procedia PDF Downloads 77
5773 Sliver Nanoparticles Enhanced Visible and Near Infrared Emission of Er³+ Ions Doped Lithium Tungsten Tellurite Glasses

Authors: Sachin Mahajan, Ghizal Ansari

Abstract:

TeO2-WO3-Li2O glass doped erbium ions (1mol %) and embedded silver nanoparticles( Ag NPs) has successfully been prepared by melt quenching technique and increasing the heat-treatment duration. The amorphous nature of the glass is determined by X-ray diffraction method, and the presences of silver nanoparticles are confirmed using Transmission Electron Microscopy analysis. TEM image reveals that the Ag NPs are dispersed homogeneously with average size 18 nm. From the UV-Vis absorption spectra, the surface plasmon resonance (SPR) peaks are detected at 550 and 578 nm. Under 980 nm excitation wavelengths, enhancement of red upconversion fluorescence and near-infrared broadband emission around 1550nm of Er3+ ions doped tellurite glasses containing Ag NPs have been observed. The observed enhancement of Er3+ emission is mainly attributed to the local field effects of Ag NPs causes an intensified electromagnetic field around NPs. For observed enhancement involved mechanisms are discussed.

Keywords: erbium ions, silver nanoparticle, surface plasmon resonance, upconversion emission

Procedia PDF Downloads 573
5772 Biosensors for Parathion Based on Au-Pd Nanoparticles Modified Electrodes

Authors: Tian-Fang Kang, Chao-Nan Ge, Rui Li

Abstract:

An electrochemical biosensor for the determination of organophosphorus pesticides was developed based on electrochemical co-deposition of Au and Pd nanoparticles on glassy carbon electrode (GCE). Energy disperse spectroscopy (EDS) analysis was used for characterization of the surface structure. Scanning electron micrograph (SEM) demonstrates that the films are uniform and the nanoclusters are homogeneously distributed on the GCE surface. Acetylcholinesterase (AChE) was immobilized on the Au and Pd nanoparticle modified electrode (Au-Pd/GCE) by cross-linking with glutaraldehyde. The electrochemical behavior of thiocholine at the biosensor (AChE/Au-Pd/GCE) was studied. The biosensors exhibited substantial electrocatalytic effect on the oxidation of thiocholine. The peak current of linear scan voltammetry (LSV) of thiocholine at the biosensor is proportional to the concentration of acetylthiocholine chloride (ATCl) over the range of 2.5 × 10-6 to 2.5 × 10-4 M in 0.1 M phosphate buffer solution (pH 7.0). The percent inhibition of acetylcholinesterase was proportional to the logarithm of parathion concentration in the range of 4.0 × 10-9 to 1.0 × 10-6 M. The detection limit of parathion was 2.6 × 10-9 M. The proposed method exhibited high sensitivity and good reproducibility.

Keywords: acetylcholinesterase, Au-Pd nanoparticles, electrochemical biosensors, parathion

Procedia PDF Downloads 391
5771 EIS Study of the Corrosion Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water

Authors: Nadia Hammouda, Kamel Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water

Procedia PDF Downloads 361
5770 Characterization of Complex Electromagnetic Environment Created by Multiple Sources of Electromagnetic Radiation

Authors: Clement Temaneh-Nyah, Josiah Makiche, Josephine Nujoma

Abstract:

This paper considers the characterisation of a complex electromagnetic environment due to multiple sources of electromagnetic radiation as a five-dimensional surface which can be described by a set of several surface sections including: instant EM field intensity distribution maps at a given frequency and altitude, instantaneous spectrum at a given location in space and the time evolution of the electromagnetic field spectrum at a given point in space. This characterization if done over time can enable the exposure levels of Radio Frequency Radiation at every point in the analysis area to be determined and results interpreted based on comparison of the determined RFR exposure level with the safe guidelines for general public exposure given by recognised body such as the International commission on non-ionising radiation protection (ICNIRP), Institute of Electrical and Electronic Engineers (IEEE), the National Radiation Protection Authority (NRPA).

Keywords: complex electromagnetic environment, electric field strength, mathematical models, multiple sources

Procedia PDF Downloads 354
5769 Depth-Averaged Modelling of Erosion and Sediment Transport in Free-Surface Flows

Authors: Thomas Rowan, Mohammed Seaid

Abstract:

A fast finite volume solver for multi-layered shallow water flows with mass exchange and an erodible bed is developed. This enables the user to solve a number of complex sediment-based problems including (but not limited to), dam-break over an erodible bed, recirculation currents and bed evolution as well as levy and dyke failure. This research develops methodologies crucial to the under-standing of multi-sediment fluvial mechanics and waterway design. In this model mass exchange between the layers is allowed and, in contrast to previous models, sediment and fluid are able to transfer between layers. In the current study we use a two-step finite volume method to avoid the solution of the Riemann problem. Entrainment and deposition rates are calculated for the first time in a model of this nature. In the first step the governing equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed in conservative form and are used to calculate a solution that satisfies the conservation property. This method is found to be considerably faster than other comparative finite volume methods, it also exhibits good shock capturing. For most entrainment and deposition equations a bed level concentration factor is used. This leads to inaccuracies in both near bed level concentration and total scour. To account for diffusion, as no vertical velocities are calculated, a capacity limited diffusion coefficient is used. The additional advantage of this multilayer approach is that there is a variation (from single layer models) in bottom layer fluid velocity: this dramatically reduces erosion, which is often overestimated in simulations of this nature using single layer flows. The model is used to simulate a standard dam break. In the dam break simulation, as expected, the number of fluid layers utilised creates variation in the resultant bed profile, with more layers offering a higher deviation in fluid velocity . These results showed a marked variation in erosion profiles from standard models. The overall the model provides new insight into the problems presented at minimal computational cost.

Keywords: erosion, finite volume method, sediment transport, shallow water equations

Procedia PDF Downloads 208
5768 Impact of Silicon Surface Modification on the Catalytic Performance Towards CO₂ Conversion of Cu₂S/Si-Based Photocathodes

Authors: Karima Benfadel, Lamia Talbi, Sabiha Anas Boussaa, Afaf Brik, Assia Boukezzata, Yahia Ouadah, Samira Kaci

Abstract:

In order to prevent global warming, which is mainly caused by the increase in carbon dioxide levels in the atmosphere, it is interesting to produce renewable energy in the form of chemical energy by converting carbon dioxide into alternative fuels and other energy-dense products. Photoelectrochemical reduction of carbon dioxide to value-added products and fuels is a promising and current method. The objective of our study is to develop Cu₂S-based photoélectrodes, in which Cu₂S is used as a CO₂ photoelectrocatalyst deposited on nanostructured silicon substrates. Cu₂S thin layers were deposited using the chemical bath deposition (CBD) technique. Silicon nanowires and nanopyramids were obtained by alkaline etching. SEM and UV-visible spectroscopy was used to analyse the morphology and optical characteristics. By using a potentiostat station, we characterized the photoelectrochemical properties. We performed cyclic voltammetry in the presence and without CO₂ purging as well as linear voltammetry (LSV) in the dark and under white light irradiation. We perform chronoamperometry to study the stability of our photocathodes. The quality of the nanowires and nanopyramids was visible in the SEM images, and after Cu₂S deposition, we could see how the deposition was distributed over the textured surfaces. The inclusion of the Cu₂S layer applied on textured substrates significantly reduces the reflectance (R%). The catalytic performance towards CO₂ conversion of Cu₂S/Si-based photocathodes revealed that the texturing of the silicon surface with nanowires and pyramids has a better photoelectrochemical behavior than those without surface modifications.

Keywords: CO₂ conversion, Cu₂S photocathode, silicone nanostructured, electrochemistry

Procedia PDF Downloads 62
5767 Internal Corrosion Rupture of a 6-in Gas Line Pipe

Authors: Fadwa Jewilli

Abstract:

A sudden leak of a 6-inch gas line pipe after being in service for one year was observed. The pipe had been designed to transport dry gas. The failure had taken place in 6 o’clock position at the stage discharge of the flow process. Laboratory investigations were conducted to find out the cause of the pipe rupture. Visual and metallographic observations confirmed that the pipe split was due to a crack initiated in circumferential and then turned into longitudinal direction. Sever wall thickness reduction was noticed on the internal pipe surface. Scanning electron microscopy observations at the fracture surface revealed features of ductile fracture mode. Corrosion product analysis showed the traces of iron carbonate and iron sulphate. The laboratory analysis resulted in the conclusion that the pipe failed due to the effect of wet fluid (condensate) caused severe wall thickness dissolution resulted in pipe could not stand the continuation at in-service working condition.

Keywords: gas line pipe, corrosion prediction ductile fracture, ductile fracture, failure analysis

Procedia PDF Downloads 69
5766 Impact of Unusual Dust Event on Regional Climate in India

Authors: Kanika Taneja, V. K. Soni, Kafeel Ahmad, Shamshad Ahmad

Abstract:

A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere.

Keywords: aerosol optical properties, dust storm, radiative transfer model, sky radiometer

Procedia PDF Downloads 364
5765 Adsorption of Phenolic Compounds on Activated Carbon DSAC36-24

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi, Dhananjay R. Mishra, Ammar Houas

Abstract:

Activated carbon DSAC36-24 iy is adsorbent materials, characterized by a specific surface area of 548.13 m²g⁻¹. Their manufacture uses the natural raw materials like the nucleus of dates. In this study the treatment is done in two stages: A chemical treatment by H3PO4 followed by a physical treatment under nitrogen for 1 hour then under stream of CO2 for 24 hours. A characterization of the various parameters was determined such as the measurement of the specific surface area, determination of pHPZC, bulk density, iodine value. The study of the adsorption of organic molecules (hydroquinone, paranitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) indicates that the adsorption phenomena are essentially due to the van der Waals interaction. In the case of organic molecules carrying the polar substituents, the existence of hydrogen bonds is also proved by the donor-acceptor forces. The study of the pH effect was done with modeling by different models (Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson), a kinetic treatment is also followed by the application of Lagergren, Weber, Macky.

Keywords: adsoprtion ishoterms, adsorption kinetics, DSAC36-24, organic molecule

Procedia PDF Downloads 265
5764 Kinect Station: Using Microsoft Kinect V2 as a Total Station Theodolite for Distance and Angle Determination in a 3D Cartesian Environment

Authors: Amin Amini

Abstract:

A Kinect sensor has been utilized as a cheap and accurate alternative to 3D laser scanners and electronic distance measurement (EDM) systems. This research presents an inexpensive and easy-to-setup system that utilizes the Microsoft Kinect v2 sensor as a surveying and measurement tool and investigates the possibility of using such a device as a replacement for conventional theodolite systems. The system was tested in an indoor environment where its accuracy in distance and angle measurements was tested using virtual markers in a 3D Cartesian environment. The system has shown an average accuracy of 97.94 % in measuring distances and 99.11 % and 98.84 % accuracy for area and perimeter, respectively, within the Kinect’s surveying range of 1.5 to 6 meters. The research also tested the system competency for relative angle determination between two objects.

Keywords: kinect v2, 3D measurement, depth map, ToF

Procedia PDF Downloads 57
5763 Effective Medium Approximations for Modeling Ellipsometric Responses from Zinc Dialkyldithiophosphates (ZDDP) Tribofilms Formed on Sliding Surfaces

Authors: Maria Miranda-Medina, Sara Salopek, Andras Vernes, Martin Jech

Abstract:

Sliding lubricated surfaces induce the formation of tribofilms that reduce friction, wear and prevent large-scale damage of contact parts. Engine oils and lubricants use antiwear and antioxidant additives such as zinc dialkyldithiophosphate (ZDDP) from where protective tribofilms are formed by degradation. The ZDDP tribofilms are described as a two-layer structure composed of inorganic polymer material. On the top surface, the long chain polyphosphate is a zinc phosphate and in the bulk, the short chain polyphosphate is a mixed Fe/Zn phosphate with a gradient concentration. The polyphosphate chains are partially adherent to steel surface through a sulfide and work as anti-wear pads. In this contribution, ZDDP tribofilms formed on gray cast iron surfaces are studied. The tribofilms were generated in a reciprocating sliding tribometer with a piston ring-cylinder liner configuration. Fully formulated oil of SAE grade 5W-30 was used as lubricant during two tests at 40Hz and 50Hz. For the estimation of the tribofilm thicknesses, spectroscopic ellipsometry was used due to its high accuracy and non-destructive nature. Ellipsometry works under an optical principle where the change in polarisation of light reflected by the surface, is associated with the refractive index of the surface material or to the thickness of the layer deposited on top. Ellipsometrical responses derived from tribofilms are modelled by effective medium approximation (EMA), which includes the refractive index of involved materials, homogeneity of the film and thickness. The materials composition was obtained from x-ray photoelectron spectroscopic studies, where the presence of ZDDP, O and C was confirmed. From EMA models it was concluded that tribofilms formed at 40 Hz are thicker and more homogeneous than the ones formed at 50 Hz. In addition, the refractive index of each material is mixed to derive an effective refractive index that describes the optical composition of the tribofilm and exhibits a maximum response in the UV range, being a characteristic of glassy semitransparent films.

Keywords: effective medium approximation, reciprocating sliding tribometer, spectroscopic ellipsometry, zinc dialkyldithiophosphate

Procedia PDF Downloads 236
5762 Geological, Geochronological, Geochemical, and Geophysical Characteristics of the Dalli Porphyry Cu-Au Deposit in Central Iran; Implications for Exploration

Authors: Hooshag Asadi Haroni, Maryam Veiskarami, Yongjun Lu

Abstract:

The Dalli gold-rich porphyry deposit (17 Mt @ 0.5% Cu and 0.65 g/t Au) is located in the Urumieh-Dokhtar Magmatic Arc (UDMA), a small segment of the Tethyan metallogenic belt, hosting several porphyry Cu (Mo-Au) systems in Iran. This research characterizes the Dalli deposit to define exploration criteria in advanced exploration such as the drilling of possible blind porphyry centers. Geological map, trench/drill hole geochemical and ground magnetic data, and age dating and isotope trace element analyses, carried out at the John De Laeter Research Center of Curtin University, were used to characterize the Delli deposit. Mineralization at Dalli is hosted by NE-trending quartz-diorite porphyry stocks (~ 200m in diameter) intruded by a wall-rock andesite porphyry. Disseminated and stockwork Cu-Au mineralization is related to potassic alteration, comprising magnetite, late K-feldspar and biotite, and quartz-sericite-specularite overprint, surrounded by extensive barren argillic and propylitic alterations. In the peripheries of the porphyry centers, there are N-trending vuggy quartz veins, hosting epithermal Au-Ag-As-Sb mineralization. Geochemical analyses of drill core samples showed that the core of the porphyry stocks is low-grade, whereas the high-grade disseminated and stockwork mineralization (~ 1% Cu and ~ 1.2 g/t Au) occurred at the contact of the porphyry stocks and andesite porphyry. Geochemical studies of the drill hole and trench samples showed a strong correlation between Cu and Au and both show a second-order correlation with Fe and As. Magnetic survey revealed two significant magnetic anomalies, associated with intensive potassic alteration, in the reduced-to-the-pole magnetic map of the area. A relatively weaker magnetic anomaly, showing no surface porphyry expressions, is located on a lithocap, consisting of advanced argillic alteration, vuggy quartz veins, and surface expressions of epithermal geochemical signatures. The association of the lithocap and the weak magnetic anomaly could be indicative of a hidden mineralized porphyry center. Litho-geochemical analyses of the least altered Dalli intrusions and volcanic rocks indicated high Sr/Y (49-61) and Eu/Eu* (0.89-0.92), features typical of Cu porphyries. The U-Pb dating of zircons of the mineralized quartz diorite and andesite porphyry, carried out by laser ablation inductively coupled plasma mass spectrometry, yielded magmatic crystallization ages of 15.4-16.0 Ma (Middle Miocene). The zircon trace element concentrations of Dalli are characterized by high Eu/Eu* (0.3-0.8), (Ce/Nd)/Y (0.01-0.3), and 10000*(Eu/Eu*)/Y (2-15) ratios, similar to fertile porphyry suites such as the giant Sar-Cheshmeh and Qulong porphyry Cu deposits along the Tethyan belt. This suggests that the Middle Miocene Dalli intrusions are fertile and require extensive deep drillings to define their potential. Chondrite-normalized rare earth element (REE) patterns show no significant Eu anomalies, and are characterized by light-REE enrichments (La/Sm)n = 2.57–6.40). In normalized multi-element diagrams, analyzed rocks are characterized by enrichments in large ion lithophile elements (LILE) and depletions in high field strength elements (HFSE), and display typical features of subduction-related calc-alkaline magmas. The characteristics of the Dalli deposit provided several recognition criteria for detailed exploration of Cu-Au porphyry deposits and highlighted the importance of the UDMA as a potentially significant, economically important, but relatively underexplored porphyry province.

Keywords: porphyry, gold, geochronology, magnetic, exploration

Procedia PDF Downloads 44
5761 Unique NiO Based 1 D Core/Shell Nano-Heterostructure Electrodes for High-Performance Supercapacitor

Authors: Gobinda Gopal Khan, Ashutosh K. Singh, Debasish Sarkar

Abstract:

Unique one-dimensional (1D) Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures are fabricated by combining the electrochemical deposition and annealing. The high-performance pseudo-capacitor electrode based on the Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures is designed and demonstrated. The Co-Ni/Co3O4-NiO core/shell nano-heterostructures exhibit high specific capacitance (2013 Fg-1 at 2.5 Ag-1), high energy and power density (23 Wh kg-1 and 5.5 kW kg-1, at the discharge current density of 20.8 A g-1.), good capacitance retention, and long cyclicality. The remarkable electrochemical property of the large surface area nano-heterostructures is demonstrated based on the novel nano-architectural design of the electrode with the coexistence of the two highly redox active materials at the surface supported by highly conducting metal alloy channel at the core for faster charge transport.

Keywords: nano-heterostructures, energy storage, supercapacitors, electrochemical deposition

Procedia PDF Downloads 312