Search results for: reduced order macro models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22885

Search results for: reduced order macro models

20245 Quality of Workplace Program Aiming at Increasing Productivity in the Civil Construction Area

Authors: Claudineia Brazil, Luciane Salvi, Margareth Haubrich

Abstract:

The research aims to understand the determinants of Quality of Life at Work (QWL) and the main indicators that influence the productivity of employees working in construction. The methodology is based on the qualitative theoretical approach, in which information is collected in works that have already been carried out, providing a more detailed compression of the research from the point of view of other authors. In this research, pioneering models for assessing Quality of Life at Work (QWL) were investigated, seeking to find the best quality of life indicators in the work environment. The elements investigated in the research were classified into three main groups: Organizational, Environmental and Behavioral. In order to obtain the results, the information obtained through bibliographic research was compared and it was possible to conclude that the focus on the quality of life at work influences the individual and collective productivity of employees, causing the company to be positively impacted. This advocates the need for strategic actions in the area of people management, which will meet these needs. Therefore, it is hoped that this study can contribute to the more effective management of human resources in organizations, reflecting on increased productivity.

Keywords: construction, management, productivity, quality of life at work

Procedia PDF Downloads 193
20244 Gravitational Frequency Shifts for Photons and Particles

Authors: Jing-Gang Xie

Abstract:

The research, in this case, considers the integration of the Quantum Field Theory and the General Relativity Theory. As two successful models in explaining behaviors of particles, they are incompatible since they work at different masses and scales of energy, with the evidence that regards the description of black holes and universe formation. It is so considering previous efforts in merging the two theories, including the likes of the String Theory, Quantum Gravity models, and others. In a bid to prove an actionable experiment, the paper’s approach starts with the derivations of the existing theories at present. It goes on to test the derivations by applying the same initial assumptions, coupled with several deviations. The resulting equations get similar results to those of classical Newton model, quantum mechanics, and general relativity as long as conditions are normal. However, outcomes are different when conditions are extreme, specifically with no breakdowns even for less than Schwarzschild radius, or at Planck length cases. Even so, it proves the possibilities of integrating the two theories.

Keywords: general relativity theory, particles, photons, Quantum Gravity Model, gravitational frequency shift

Procedia PDF Downloads 360
20243 Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation

Authors: Pengwei Qiao, Sucai Yang, Wenxia Wei

Abstract:

Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site.

Keywords: accuracy, applicability, partition interpolation, site, soil pollution, uncertainty

Procedia PDF Downloads 149
20242 Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia

Authors: Tathiana Yesenia Coy Mondragón, Jossitt William Vargas Cruz, Cristian Leonardo Gutiérrez Gómez

Abstract:

The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models.

Keywords: CORSIKA, cosmic rays, eas, Colombia

Procedia PDF Downloads 84
20241 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable in carbon dioxide emission decline was fabricated and tested at laboratory scale to develop in conformism to various environmental guidelines to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms are presented and discussed. Single gas separation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous supported reactor.was carried out to investigate individual gas permeation behaviours at different pressures and membrane efficiency after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However at above a pressure of 3bar, CO2 permeability ratio to than the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: carbon dioxide, composite membranes, permeability, transport mechanisms

Procedia PDF Downloads 506
20240 Research on Contract's Explicit Incentive and Reputation's Implicit Incentive Mechanism towards Construction Contractors

Authors: Li Ma, Meishuang Ma, Mengying Huang

Abstract:

The quality of construction projects reflects the credit and responsibilities of construction contractors for the owners and the whole society. Because the construction contractors master more relevant information about the entrusted engineering project under construction while the owners are in unfavorable position of gaining information, asymmetric information may lead the contractors act against the owners in order to pursue their own interests. Building a powerful motivation mechanism is the key to guarantee investor economic interests and the life and property of users in construction projects. Based on principal-agent theory and game theory, the authors develop relevant mathematical models to analyze and compare the contractor’s utility functions under different combinations of contracts’ explicit incentive mechanism and reputation’s implicit incentive mechanism aiming at finding out the conditions for incentive validity. The research concludes that the most rational motivation way is to combine the explicit and implicit incentive effects of both contracts and reputation mechanism, and puts forth some measures for problems on account of China’s current situation.

Keywords: construction contractors, contract, reputation, incentive mechanism

Procedia PDF Downloads 513
20239 A Risk Management Framework for Selling a Mega Power Plant Project in a New Market

Authors: Negar Ganjouhaghighi, Amirali Dolatshahi

Abstract:

The origin of most risks of a mega project usually takes place in the phases before closing the contract. As a practical point of view, using project risk management techniques for preparing a proposal is not a total solution for managing the risks of a contract. The objective of this paper is to cover all those activities associated with risk management of a mega project sale’s processes; from entrance to a new market to awarding activities and the review of contract performance. In this study, the risk management happens in six consecutive steps that are divided into three distinct but interdependent phases upstream of the award of the contract: pre-tendering, tendering and closing. In the first step, by preparing standard market risk report, risks of the new market are identified. The next step is the bid or no bid decision making based on the previous gathered data. During the next three steps in tendering phase, project risk management techniques are applied for determining how much contingency reserve must be added or reduced to the estimated cost in order to put the residual risk to an acceptable level. Finally, the last step which happens in closing phase would be an overview of the project risks and final clarification of residual risks. The sales experience of more than 20,000 MW turn-key power plant projects alongside this framework, are used to develop a software that assists the sales team to have a better project risk management.

Keywords: project marketing, risk management, tendering, project management, turn-key projects

Procedia PDF Downloads 334
20238 Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Thore Magath, Ekmel Ozbay

Abstract:

Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 266
20237 Promoting Biofuels in India: Assessing Land Use Shifts Using Econometric Acreage Response Models

Authors: Y. Bhatt, N. Ghosh, N. Tiwari

Abstract:

Acreage response function are modeled taking account of expected harvest prices, weather related variables and other non-price variables allowing for partial adjustment possibility. At the outset, based on the literature on price expectation formation, we explored suitable formulations for estimating the farmer’s expected prices. Assuming that farmers form expectations rationally, the prices of food and biofuel crops are modeled using time-series methods for possible ARCH/GARCH effects to account for volatility. The prices projected on the basis of the models are then inserted to proxy for the expected prices in the acreage response functions. Food crop acreages in different growing states are found sensitive to their prices relative to those of one or more of the biofuel crops considered. The required percentage improvement in food crop yields is worked to offset the acreage loss.

Keywords: acreage response function, biofuel, food security, sustainable development

Procedia PDF Downloads 304
20236 Humor and Public Hygiene: A Critical Social Semiotic Analysis of Singapore’s National Campaigns

Authors: Kelsi Matwick, Keri Matwick

Abstract:

This presentation focuses on national campaigns as a government tactic of social behavior and order. Focusing on one of Singapore’s first national campaigns, Keep Singapore Clean (1968), particularly its iterations of public hygiene in recent years: Keep the Toilets Clean (2012-2019) and UnLittering with Mary Chongo (2019), the study examines how humor and the use of multimodality reflect contemporary practices in political practice. A critical social semiotic analysis involving the textual (linguistic and visual design) and material (print cartoons and videos) is undertaken to show how these messages are communicated. Incongruity and parody are humorous mechanisms used to project the government as likeable, effectively capture the public attention, and instill individual responsibility for the greater community. In focusing on public hygiene national campaigns, the study further illustrates how humor offers a polite way to address crude behavior while providing models of exemplary behavior.

Keywords: communication strategies, critical social semiotics, humor, national campaigns

Procedia PDF Downloads 122
20235 The Use of Empirical Models to Estimate Soil Erosion in Arid Ecosystems and the Importance of Native Vegetation

Authors: Meshal M. Abdullah, Rusty A. Feagin, Layla Musawi

Abstract:

When humans mismanage arid landscapes, soil erosion can become a primary mechanism that leads to desertification. This study focuses on applying soil erosion models to a disturbed landscape in Umm Nigga, Kuwait, and identifying its predicted change under restoration plans, The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the Demilitarized Zone (DMZ) adjacent to Iraq, and has been fenced off to restrict public access since 1994. The central objective of this project was to utilize GIS and remote sensing to compare the MPSIAC (Modified Pacific South West Inter Agency Committee), EMP (Erosion Potential Method), and USLE (Universal Soil Loss Equation) soil erosion models and determine their applicability for arid regions such as Kuwait. Spatial analysis was used to develop the necessary datasets for factors such as soil characteristics, vegetation cover, runoff, climate, and topography. Results showed that the MPSIAC and EMP models produced a similar spatial distribution of erosion, though the MPSIAC had more variability. For the MPSIAC model, approximately 45% of the land surface ranged from moderate to high soil loss, while 35% ranged from moderate to high for the EMP model. The USLE model had contrasting results and a different spatial distribution of the soil loss, with 25% of area ranging from moderate to high erosion, and 75% ranging from low to very low. We concluded that MPSIAC and EMP were the most suitable models for arid regions in general, with the MPSIAC model best. We then applied the MPSIAC model to identify the amount of soil loss between coastal and desert areas, and fenced and unfenced sites. In the desert area, soil loss was different between fenced and unfenced sites. In these desert fenced sites, 88% of the surface was covered with vegetation and soil loss was very low, while at the desert unfenced sites it was 3% and correspondingly higher. In the coastal areas, the amount of soil loss was nearly similar between fenced and unfenced sites. These results implied that vegetation cover played an important role in reducing soil erosion, and that fencing is much more important in the desert ecosystems to protect against overgrazing. When applying the MPSIAC model predictively, we found that vegetation cover could be increased from 3% to 37% in unfenced areas, and soil erosion could then decrease by 39%. We conclude that the MPSIAC model is best to predict soil erosion for arid regions such as Kuwait.

Keywords: soil erosion, GIS, modified pacific South west inter agency committee model (MPSIAC), erosion potential method (EMP), Universal soil loss equation (USLE)

Procedia PDF Downloads 300
20234 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 465
20233 Formulation of Corrector Methods from 3-Step Hybid Adams Type Methods for the Solution of First Order Ordinary Differential Equation

Authors: Y. A. Yahaya, Ahmad Tijjani Asabe

Abstract:

This paper focuses on the formulation of 3-step hybrid Adams type method for the solution of first order differential equation (ODE). The methods which was derived on both grid and off grid points using multistep collocation schemes and also evaluated at some points to produced Block Adams type method and Adams moulton method respectively. The method with the highest order was selected to serve as the corrector. The convergence was valid and efficient. The numerical experiments were carried out and reveal that hybrid Adams type methods performed better than the conventional Adams moulton method.

Keywords: adam-moulton type (amt), corrector method, off-grid, block method, convergence analysis

Procedia PDF Downloads 630
20232 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members

Authors: J. Bartus, J. Odrobinak

Abstract:

The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.

Keywords: Ansys, concrete, modeling, steel

Procedia PDF Downloads 129
20231 Generalization of Zhou Fixed Point Theorem

Authors: Yu Lu

Abstract:

Fixed point theory is a basic tool for the study of the existence of Nash equilibria in game theory. This paper presents a significant generalization of the Veinott-Zhou fixed point theorem for increasing correspondences, which serves as an essential framework for investigating the existence of Nash equilibria in supermodular and quasisupermodular games. To establish our proofs, we explore different conceptions of multivalued increasingness and provide comprehensive results concerning the existence of the largest/least fixed point. We provide two distinct approaches to the proof, each offering unique insights and advantages. These advancements not only extend the applicability of the Veinott-Zhou theorem to a broader range of economic scenarios but also enhance the theoretical framework for analyzing equilibrium behavior in complex game-theoretic models. Our findings pave the way for future research in the development of more sophisticated models of economic behavior and strategic interaction.

Keywords: fixed-point, Tarski’s fixed-point theorem, Nash equilibrium, supermodular game

Procedia PDF Downloads 61
20230 A Simulation-Based Method for Evaluation of Energy System Cooperation between Pulp and Paper Mills and a District Heating System: A Case Study

Authors: Alexander Hedlund, Anna-Karin Stengard, Olof Björkqvist

Abstract:

A step towards reducing greenhouse gases and energy consumption is to collaborate with the energy system between several industries. This work is based on a case study on integration of pulp and paper mills with a district heating system in Sundsvall, Sweden. Present research shows that it is possible to make a significant reduction in the electricity demand in the mechanical pulping process. However, the profitability of the efficiency measures could be an issue, as the excess steam recovered from the refiners decreases with the electricity consumption. A consequence will be that the fuel demand for steam production will increase. If the fuel price is similar to the electricity price it would reduce the profit of such a project. If the paper mill can be integrated with a district heating system, it is possible to upgrade excess heat from a nearby kraft pulp mill to process steam via the district heating system in order to avoid the additional fuel need. The concept is investigated by using a simulation model describing both the mass and energy balance as well as the operating margin. Three scenarios were analyzed: reference, electricity reduction and energy substitution. The simulation show that the total input to the system is lowest in the Energy substitution scenario. Additionally, in the Energy substitution scenario the steam from the incineration boiler covers not only the steam shortage but also a part of the steam produced using the biofuel boiler, the cooling tower connected to the incineration boiler is no longer needed and the excess heat can cover the whole district heating load during the whole year. The study shows a substantial economic advantage if all stakeholders act together as one system. However, costs and benefits are unequally shared between the actors. This means that there is a need for new business models in order to share the system costs and benefits.

Keywords: energy system, cooperation, simulation method, excess heat, district heating

Procedia PDF Downloads 228
20229 Adsorption of Cerium as One of the Rare Earth Elements Using Multiwall Carbon Nanotubes from Aqueous Solution: Modeling, Equilibrium and Kinetics

Authors: Saeb Ahmadi, Mohsen Vafaie Sefti, Mohammad Mahdi Shadman, Ebrahim Tangestani

Abstract:

Carbon nanotube has shown great potential for the removal of various inorganic and organic components due to properties such as large surface area and high adsorption capacity. Central composite design is widely used method for determining optimal conditions. Also due to the economic reasons and wide application, the rare earth elements are important components. The analyses of cerium (Ce(III)) adsorption as one of the Rare Earth Elements (REEs) adsorption on Multiwall Carbon Nanotubes (MWCNTs) have been studied. The optimization process was performed using Response Surface Methodology (RSM). The optimum amount conditions were pH of 4.5, initial Ce (III) concentration of 90 mg/l and MWCNTs dosage of 80 mg. Under this condition, the optimum adsorption percentage of Ce (III) was obtained about 96%. Next, at the obtained optimum conditions the kinetic and isotherm studied and result showed the pseudo-second order and Langmuir isotherm are more fitted with experimental data than other models.

Keywords: cerium, rare earth element, MWCNTs, adsorption, optimization

Procedia PDF Downloads 169
20228 Higher Relative Humidity from Pipping Increases Physical Problems in the Broiler Chicks

Authors: M. A. Nogueira, M. Thimotheo, G. C. Ripamonte, S. C. C. Aguiar, M. H. S. Ulian, J. C. Goncalves Netto, I. C. Boleli

Abstract:

Increasing in the relative humidity during the last incubation day is a usual practice in the commercial hatchery to facilitate hatching. This study analyzed whether higher relative humidity improves eclodibility as well as chick quality, and alters the hatch window. Fertile eggs (65- 67g) produced by 53 weeks old broiler breeders (Cobb 500®) were incubated at 37.5°C and 31°C in the wet bulb in incubators with automatic control of temperature and egg turning (1 each hour). Two-hundred ten were distributed randomly in three treatments: 31°C in the wet bulb from internal pipping (BI-31), 33°C from internal pipping (BI-33), and 33°C from external pipping (BE-33), all three hatchers maintained at 37.5°C and without egg turning. For this, eggs were checked for internal pipping by ovoscopy and external pipping by visual observation through the transparent cover of the incubators each hour from day 18 of incubation. No significant differences in the hatchability (BI-31:79.61%, BI-33:77.63%, BE-33:80.77%; by Q-square test, P > 0.05). Absence of significant effects of the treatments were also observed for incubation duration (BI-31:488.58 h, BI-33:488.30 h, BE-33:489.04 h), and chick body weight (BI-31: 49.40g, BI-33: 49.74g, BE-33: 49.34g) and quality scores (BI-31: 90.02, BI-33: 87.56, BE-33: 92.28 points), by variance analysis (P > 0.05). However, BI-33 increased the incidence of feathering and leg problems and remaining of alantoic membrane, and BE-33 increased the incidence of problems with feathering, navel and yolk sac and reduced the leg problems, compared to BI-31. In sum, the results show higher relative humidity from internal or external pipping did not influence hatchability and incubation duration, but reduced chick quality, affecting the incubation efficiency.

Keywords: chick quality, hatchability, hatcher humidity, incubation duration

Procedia PDF Downloads 174
20227 Statistical Modeling of Mobile Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Authors: Jihad S. Daba, J. P. Dubois

Abstract:

Understanding the statistics of non-isotropic scattering multipath channels that fade randomly with respect to time, frequency, and space in a mobile environment is very crucial for the accurate detection of received signals in wireless and cellular communication systems. In this paper, we derive stochastic models for the probability density function (PDF) of the shift in the carrier frequency caused by the Doppler Effect on the received illuminating signal in the presence of a dominant line of sight. Our derivation is based on a generalized Clarke’s and a two-wave partially developed scattering models, where the statistical distribution of the frequency shift is shown to be consistent with the power spectral density of the Doppler shifted signal.

Keywords: Doppler shift, filtered Poisson process, generalized Clark’s model, non-isotropic scattering, partially developed scattering, Rician distribution

Procedia PDF Downloads 376
20226 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm

Authors: Suparman Suparman

Abstract:

A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.

Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)

Procedia PDF Downloads 359
20225 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 136
20224 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.

Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics

Procedia PDF Downloads 276
20223 A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting

Authors: Analise Borg, Paul Micallef

Abstract:

Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organize the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that non-parametric analysis offer potential results as the ones mentioned in the literature.

Keywords: audio fingerprinting, mapping algorithm, Gaussian Mixture Models, MFCC, MPEG-7

Procedia PDF Downloads 425
20222 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 308
20221 Laser Powder Bed Fusion Awareness for Engineering Students in France and Qatar

Authors: Hiba Naccache, Rima Hleiss

Abstract:

Additive manufacturing AM or 3D printing is one of the pillars of Industry 4.0. Compared to traditional manufacturing, AM provides a prototype before production in order to optimize the design and avoid the stock market and uses strictly necessary material which can be recyclable, for the benefit of leaning towards local production, saving money, time and resources. Different types of AM exist and it has a broad range of applications across several industries like aerospace, automotive, medicine, education and else. The Laser Powder Bed Fusion (LPBF) is a metal AM technique that uses a laser to liquefy metal powder, layer by layer, to build a three-dimensional (3D) object. In industry 4.0 and aligned with the numbers 9 (Industry, Innovation and Infrastructure) and 12 (Responsible Production and Consumption) of the Sustainable Development Goals of the UNESCO 2030 Agenda, the AM’s manufacturers committed to minimizing the environmental impact by being sustainable in every production. The LPBF has several environmental advantages, like reduced waste production, lower energy consumption, and greater flexibility in creating components with lightweight and complex geometries. However, LPBF also have environmental drawbacks, like energy consumption, gas consumption and emissions. It is critical to recognize the environmental impacts of LPBF in order to mitigate them. To increase awareness and promote sustainable practices regarding LPBF, the researchers use the Elaboration Likelihood Model (ELM) theory where people from multiple universities in France and Qatar process information in two ways: peripherally and centrally. The peripheral campaigns use superficial cues to get attention, and the central campaigns provide clear and concise information. The authors created a seminar including a video showing LPBF production and a website with educational resources. The data is collected using questionnaire to test attitude about the public awareness before and after the seminar. The results reflected a great shift on the awareness toward LPBF and its impact on the environment. With no presence of similar research, to our best knowledge, this study will add to the literature on the sustainability of the LPBF production technique.

Keywords: additive manufacturing, laser powder bed fusion, elaboration likelihood model theory, sustainable development goals, education-awareness, France, Qatar, specific energy consumption, environmental impact, lightweight components

Procedia PDF Downloads 95
20220 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 134
20219 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges

Authors: Francesco Morgan Bono, Simone Cinquemani

Abstract:

This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.

Keywords: structural health monitoring, dynamic models, sindy, railway bridges

Procedia PDF Downloads 48
20218 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings

Authors: Jude K. Safo

Abstract:

Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.

Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics

Procedia PDF Downloads 72
20217 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 114
20216 DUSP16 Inhibition Rescues Neurogenic and Cognitive Deficits in Alzheimer's Disease Mice Models

Authors: Huimin Zhao, Xiaoquan Liu, Haochen Liu

Abstract:

The major challenge facing Alzheimer's Disease (AD) drug development is how to effectively improve cognitive function in clinical practice. Growing evidence indicates that stimulating hippocampal neurogenesis is a strategy for restoring cognition in animal models of AD. The mitogen-activated protein kinase (MAPK) pathway is a crucial factor in neurogenesis, which is negatively regulated by Dual-specificity phosphatase 16 (DUSP16). Transcriptome analysis of post-mortem brain tissue revealed up-regulation of DUSP16 expression in AD patients. Additionally, DUSP16 was involved in regulating the proliferation and neural differentiation of neural progenitor cells (NPCs). Nevertheless, whether the effect of DUSP16 on ameliorating cognitive disorders by influencing NPCs differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, we found that increased DUSP16 expression in both 3×Tg and SAMP8 models of AD led to NPC differentiation impairments. By silencing DUSP16, cognitive benefits, the induction of AHN and synaptic plasticity, were observed in AD mice. Furthermore, we found that DUSP16 is involved in the process of NPC differentiation by regulating c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, the increased DUSP16 may be regulated by the ETS transcription factor (ELK1), which binds to the promoter region of DUSP16. Loss of ELK1 resulted in decreased DUSP16 mRNA and protein levels. Our data uncover a potential regulatory role for DUSP16 in adult hippocampal neurogenesis and provide a possibility to find the target of AD intervention.

Keywords: alzheimer's disease, cognitive function, DUSP16, hippocampal neurogenesis

Procedia PDF Downloads 75