Search results for: operative temperature.
4709 Low Plastic Deformation Energy to Induce High Superficial Strain on AZ31 Magnesium Alloy Sheet
Authors: Emigdio Mendoza, Patricia Fernandez, Cristian Gomez
Abstract:
Magnesium alloys have generated great interest for several industrial applications because their high specific strength and low density make them a very attractive alternative for the manufacture of various components; however, these alloys present a limitation with their hexagonal crystal structure that limits the deformation mechanisms at room temperature likewise the molding components alternatives, it is for this reason that severe plastic deformation processes have taken a huge relevance recently because these, allow high deformation rates to be applied that induce microstructural changes where the deficiency in the sliding systems is compensated with crystallographic grains reorientations or crystal twinning. The present study reports a statistical analysis of process temperature, number of passes and shear angle with respect to the shear stress in severe plastic deformation process denominated 'Equal Channel Angular Sheet Drawing (ECASD)' applied to the magnesium alloy AZ31B through Python Statsmodels libraries, additionally a Post-Hoc range test is performed using the Tukey statistical test. Statistical results show that each variable has a p-value lower than 0.05, which allows comparing the average values of shear stresses obtained, which are in the range of 7.37 MPa to 12.23 MPa, lower values in comparison to others severe plastic deformation processes reported in the literature, considering a value of 157.53 MPa as the average creep stress for AZ31B alloy. However, a higher stress level is required when the sheets are processed using a shear angle of 150°, due to a higher level of adjustment applied for the shear die of 150°. Temperature and shear passes are important variables as well, but there is no significant impact on the level of stress applied during the ECASD process. In the processing of AZ31B magnesium alloy sheets, ECASD technique is evidenced as a viable alternative in the modification of the elasto-plastic properties of this alloy, promoting the weakening of the basal texture, which means, a better response to deformation, whereby, during the manufacture of parts by drawing or stamping processes the formation of cracks on the surface can be reduced, presenting an adequate mechanical performance.Keywords: plastic deformation, strain, sheet drawing, magnesium
Procedia PDF Downloads 1094708 Feasibility Study of a Solar Solid Desiccant Cooling System in Algerian Areas
Authors: N. Hatraf, l. Merabeti, M. Abbas
Abstract:
The interest in air conditioning using renewable energies is increasing. The Thermal energy produced from the solar energy can be transformed to useful cooling and heating through the thermo chemical or thermo physical processes by using thermally activated energy conversion system. Solid desiccant conditioning systems can represent a reliable alternative solution compared with other thermal cooling technologies. Their basic characteristics refer to the capability to regulate both temperature and humidity of the conditioned space in one side and to its potential in electrical energy saving in the other side. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). Basically, solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: absorption process and the regeneration process; The silica gel in the desiccant wheel which is the most important device in the system absorbs the moisture from the incoming air to the desiccant material in this case the silica gel, then it changes the heat with an rotary heat exchanger, after that the air passes through an humidifier to have the humidity required before entering to the local. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software.Keywords: desiccation, dehumidification, TRNSYS, efficiency
Procedia PDF Downloads 4194707 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders
Authors: Gregory Sullivan
Abstract:
The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders
Procedia PDF Downloads 704706 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System
Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar
Abstract:
The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.Keywords: genetic algorithm, energy, exergy, PVT module, optimization
Procedia PDF Downloads 6054705 Phytoplankton of the Atlantic Ocean off Lagos
Authors: Ikenna Charles Onyema, Prince Tolut Bako
Abstract:
A study was carried out in the Atlantic Ocean off the Lighthouse Beach, Lagos. There were monthly and spatial variations in physical and chemical characteristics of the neritic ocean (August-December, 2014). Mean and standard deviation values for air temperature were 27. 67, ± 2.98 oC, water temperature (28.37 ± 1.88), pH (7.85 ± 0.17), Conductivity (44738.75 ± 6262.76 µS/cm), Total dissolved solids (29236.71 ± 4273.30 mg/L), Salinity (27.11 ± 3.91 ‰), Alkalinity (126.99 ± 42.81 mg/L) and Chloride (15056. 67 ± 2165.78 mg/L). Higher estimates were recorded in the dry than wet months for these characteristics. On the other hand, reducing values were recorded for Acidity (2.34 ± 0.63 mg/L), Total hardness (4711.98 ± 691.50 mg/L), Phosphate (1.1 ± 0.78 mg/L), Sulphate (2601.99 ± 447.04 mg/L) and Nitrate (0.12 ± 0.06 mg/L). Values for Total suspended solids and Biological oxygen demand values were low ( < 1mg/L). Twenty-one species of phytoplankton were recorded. Diatoms recorded 80.92% and were the dominant group. Hemidiscus cuneiformis, Coscinodiscus centralis, Coscinodiscus lineatus, Coscinodiscus radiatus and Oscillatoria limosa were more frequently occurring species. Biddulphia sinensis and four species of Ceratium, were representatives of the dry season. The dry season also recorded comparatively higher individuals of phytoplankton than the wet season. Spirogyra sp. (green algae) appeared only in the wet season. Species abundance (N) was highest in December at Station 1 (13.15%) (dry season) and lowest in August (wet season) at Station 3 (2.96%). The physico-chemical factors and phytoplankton reflected a tropical unpolluted neritic oceanic environment.Keywords: sea, physico-chemistry, micro-algae, lighthouse beach
Procedia PDF Downloads 2254704 Climatic and Environmental Factors Affecting Human Comfort Evaluation: Case Study of Shiraz Iran
Authors: Hamid Yazdani, Fatemeh Abbasi
Abstract:
Understanding the natural potentials, as the basis for the prevailing context of human activities, environmental planning, and land-use form shows. In this regard, regional characteristics and spatial distribution of the dominant elements in shaping human behavior and environment play a role Knndhayy. As far as today's studies of human Byvklymay basis for urban planning, settlement, architecture, Tourism and so on. In this study, comfort or lack of comfort in Shiraz in Horn of models and indices based on eco-Baker, Trjvng, were examined and the best time to do-using 39 years of data (TCI) stress, and the effective temperature Environmental activities and tourism in the city was established. The results showed that the worth parameters used, the ability to detect Terms of comfort and discomfort are Shiraz, despite minor differences, relatively homogenous aspects of the city provide a comfortable climate. Studies showed that having diversity in the worth of Shiraz during the year, the situation is heating up much coolness; during winter and summer Find out eco comfort zone and during the transition from cold to warm in spring and autumn (April) and warm to cold (November) climate Iran is close to human comfort. Totally, unique human comfort conditions in spring, the best season for environmental activities Tourism in Shiraz.Keywords: BIO comfort Klymayy, Trjvng, baker, effective temperature, stress and (TCI)
Procedia PDF Downloads 3484703 Comparative Evaluation of Different Extenders and Sperm Protectors to Keep the Spermatozoa Viable for More than 24 Hours
Authors: A. M. Raseona, D. M. Barry, T. L. Nedambale
Abstract:
Preservation of semen is an important process to ensure that semen quality is sufficient for assisted reproductive technology. This study evaluated the effectiveness of different extenders to preserve Nguni bull semen stored at controlled room temperature 24 °C for three days, as an alternative to frozen-thawed semen straws used for artificial insemination. Semen samples were collected from two Nguni bulls using an electro-ejaculator and transported to the laboratory for evaluation. Pooled semen was aliquot into three extenders Triladyl, Ham’s F10 and M199 at a dilution ratio of 1:4 then stored at controlled room temperature 24 °C. Sperm motility was analysed after 0, 24, 48 and 72 hours. Morphology and viability were analysed after 72 hours. The study was replicated four times and data was analysed by analysis of variance (ANOVA). Triladyl showed higher viability percentage and consistent total motility for three days. Ham’s F10 showed higher progressive motility compared to the other extenders. There was no significant difference in viability between Ham’s F10 and M199. No significant difference was also observed in total abnormality between the two Nguni bulls. In conclusion, Nguni semen can be preserved in Triladyl or Ham’s F10 and M199 culture media stored at 24 °C and stay alive for three days. Triladyl proved to be the best extender showing high viability and consistency in total motility as compared to Ham’s F10 and M199.Keywords: bull semen, artificial insemination, Triladyl, Ham’s F10, M199, viability
Procedia PDF Downloads 5004702 Accelerated Molecular Simulation: A Convolution Approach
Authors: Jannes Quer, Amir Niknejad, Marcus Weber
Abstract:
Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be ”steared” out of local minimizers of the potential energy surface – the so-called metastabilities – of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind ”stearing” is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points.Keywords: extrapolation, Eyring-Kramers, metastability, multilevel sampling
Procedia PDF Downloads 3284701 Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts
Authors: Atwari Rawani, Suresh Prasad Sharma, K. D. P. Singh
Abstract:
In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions.Keywords: exergy efficiency, twisted tape ratio, turbulent flow, useful heat gain
Procedia PDF Downloads 1734700 Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions
Authors: Shirin Shafaei, James R. Bolton, Mohamed Gamal El Din
Abstract:
Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm2) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters.Keywords: photoreactivation, reactivation fluence, river water, temperature, ultraviolet disinfection, wastewater effluent
Procedia PDF Downloads 3054699 Investigating the Effects of Cylinder Disablement on Diesel Engine Fuel Economy and Exhaust Temperature Management
Authors: Hasan Ustun Basaran
Abstract:
Diesel engines are widely used in transportation sector due to their high thermal efficiency. However, they also release high rates of NOₓ and PM (particulate matter) emissions into the environment which have hazardous effects on human health. Therefore, environmental protection agencies have issued strict emission regulations on automotive diesel engines. Recently, these regulations are even increasingly strengthened. Engine producers search novel on-engine methods such as advanced combustion techniques, utilization of renewable fuels, exhaust gas recirculation, advanced fuel injection methods or use exhaust after-treatment (EAT) systems in order to reduce emission rates on diesel engines. Although those aforementioned on-engine methods are effective to curb emission rates, they result in inefficiency or cannot decrease emission rates satisfactorily at all operating conditions. Therefore, engine manufacturers apply both on-engine techniques and EAT systems to meet the stringent emission norms. EAT systems are highly effective to diminish emission rates, however, they perform inefficiently at low loads due to low exhaust gas temperatures (below 250°C). Therefore, the objective of this study is to demonstrate that engine-out temperatures can be elevated above 250°C at low-loaded cases via cylinder disablement. The engine studied and modeled via Lotus Engine Simulation (LES) software is a six-cylinder turbocharged and intercooled diesel engine. Exhaust temperatures and mass flow rates are predicted at 1200 rpm engine speed and several low loaded conditions using LES program. It is seen that cylinder deactivation results in a considerable exhaust temperature rise (up to 100°C) at low loads which ensures effective EAT management. The method also improves fuel efficiency through reduced total pumping loss. Decreased total air induction due to inactive cylinders is thought to be responsible for improved engine pumping loss. The technique reduces exhaust gas flow rate as air flow is cut off on disabled cylinders. Still, heat transfer rates to the after-treatment catalyst bed do not decrease that much since exhaust temperatures are increased sufficiently. Simulation results are promising; however, further experimental studies are needed to identify the true potential of the method on fuel consumption and EAT improvement.Keywords: cylinder disablement, diesel engines, exhaust after-treatment, exhaust temperature, fuel efficiency
Procedia PDF Downloads 1764698 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person
Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito
Abstract:
A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation
Procedia PDF Downloads 2514697 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice
Authors: T. Ewetumo, K. D. Adedayo, Festus Ben
Abstract:
Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation
Procedia PDF Downloads 3574696 Effectiveness of Gamified Virtual Physiotherapy Patients with Shoulder Problems
Authors: A. Barratt, M. H. Granat, S. Buttress, B. Roy
Abstract:
Introduction: Physiotherapy is an essential part of the treatment of patients with shoulder problems. The focus of treatment is usually centred on addressing specific physiotherapy goals, ultimately resulting in the improvement in pain and function. This study investigates if computerised physiotherapy using gamification principles are as effective as standard physiotherapy. Methods: Physiotherapy exergames were created using a combination of commercially available hardware, the Microsoft Kinect, and bespoke software. The exergames used were validated by mapping physiotherapy goals of physiotherapy which included; strength, range of movement, control, speed, and activation of the kinetic chain. A multicenter, randomised prospective controlled trial investigated the use of exergames on patients with Shoulder Impingement Syndrome who had undergone Arthroscopic Subacromial Decompression surgery. The intervention group was provided with the automated sensor-based technology, allowing them to perform exergames and track their rehabilitation progress. The control group was treated with standard physiotherapy protocols. Outcomes from different domains were used to compare the groups. An important metric was the assessment of shoulder range of movement pre- and post-operatively. The range of movement data included abduction, forward flexion and external rotation which were measured by the software, pre-operatively, 6 weeks and 12 weeks post-operatively. Results: Both groups show significant improvement from pre-operative to 12 weeks in elevation in forward flexion and abduction planes. Results for abduction showed an improvement for the interventional group (p < 0.015) as well as the test group (p < 0.003). Forward flexion improvement was interventional group (p < 0.0201) with the control group (p < 0.004). There was however no significant difference between the groups at 12 weeks for abduction (p < 0.118067) , forward flexion (p < 0.189755) or external rotation (p < 0.346967). Conclusion: Exergames may be used as an alternative to standard physiotherapy regimes; however, further analysis is required focusing on patient engagement.Keywords: shoulder, physiotherapy, exergames, gamification
Procedia PDF Downloads 1944695 Daily Variations of Polycyclic Aromatic Hydrocarbons (PAHs) in Industrial Sites in an Suburban Area of Sour El Ghozlane, Algeria
Authors: Sidali Khedidji, Noureddine Yassaa, Riad Ladji
Abstract:
In this study, n-alkanes which are hazardous for the environment and human health were investigated in Sour El Ghozlane suburban atmosphere at a sampling point from April 2013 to Mai 2013. Ambient concentration measurements of n-Alkanes were carried out at a regional study of the cement industry in Sour El Ghozlane. During sampling, the airborne particulate matter was enriched onto PTFE filters by using a two medium volume samplers with or without a size-selective inlet for PM10 and TSP were used and each sampling period lasted approximately 24 h. The organic compounds were characterized using gas chromatography coupled with mass spectrometric detection (GC-MS). Total concentrations for n-Alkanes recorded in Sour El Ghozlane suburban ranged from 42 to 69 ng m-3. Gravimeter method was applied to the black smoke concentration data for Springer seasons. The 24 h average concentrations of n-alkanes contain the PM10 and TSP of Sour El Ghozlane suburban atmosphere were found in the range 0.50–7.06 ng/m3 and 0.29–6.97 ng/m3, respectively, in the sampling period. Meteorological factors, such as (relative humidity and temperature) were typically found to be affecting PMs, especially PM10. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations. The guide value fixed by the European Community, 40 μg/m3 was not to exceed 35 days, was exceeded in some samples. However, it should be noted that the value limit fixed by the Algerian regulations 80 μg/m3 has been exceeded in 1 sampler during the period study.Keywords: n-alkanes, PM10, TSP, particulate matter, cement industry
Procedia PDF Downloads 3934694 Effect of Temperature on Pervaporation Performance of Ag-Poly Vinyl Alcohol Nanocomposite Membranes
Authors: Asmaa Selim, Peter Mizsey
Abstract:
Bio-ethanol is considered of higher potential as a green renewable energy source owing to its environmental benefits and its high efficiency. In the present study, silver nanoparticles were in-situ generated in a poly (vinyl alcohol) in order to improve its potentials for pervaporation of ethanol-water mixture using solution-casting. Effect of silver content on the pervaporation separation index and the enrichment factor of the membrane at 15 percentage mass water at 40ᵒC was reported. Pervaporation data for nanocomposite membranes showed around 100% increase in the water permeance values while the intrinsic selectivity decreased. The water permeances of origin crosslinked PVA membrane, and the 2.5% silver loaded PVA membrane are 26.65 and 70.45 (g/m².kPa.h) respectively. The values of total flux and water flux are closed to each other, indicating that membranes could be effectively used to break the azeotropic point of ethanol-water. Effect of temperature on the pervaporation performance, permeation parameter and diffusion coefficient of both water and ethanol was discussed. The negative heat of sorption ∆Hs values calculated on the basis of the estimated Arrhenius activation energy values indicating that the sorption process was controlled by Langmuir’s mode. The overall results showed that the membrane containing 0.5 mass percentage of Ag salt exhibited excellent PV performance.Keywords: bio-ethanol, diffusion coefficient, nanocomposite, pervaporation, poly (vinyl alcohol), silver nanoparticles
Procedia PDF Downloads 1704693 Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production
Authors: Tie-Qing Zhang, Seunghun Jung, Young-Bae Kim
Abstract:
This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained.Keywords: hydrogen production, auto thermal reforming, membrane, fuel cell
Procedia PDF Downloads 1044692 Advanced Compound Coating for Delaying Corrosion of Fast-Dissolving Alloy in High Temperature and Corrosive Environment
Authors: Lei Zhao, Yi Song, Tim Dunne, Jiaxiang (Jason) Ren, Wenhan Yue, Lei Yang, Li Wen, Yu Liu
Abstract:
Fasting dissolving magnesium (DM) alloy technology has contributed significantly to the “Shale Revolution” in oil and gas industry. This application requires DM downhole tools dissolving initially at a slow rate, rapidly accelerating to a high rate after certain period of operation time (typically 8 h to 2 days), a contradicting requirement that can hardly be addressed by traditional Mg alloying or processing itself. Premature disintegration has been broadly reported in downhole DM tool from field trials. To address this issue, “temporary” thin polymers of various formulations are currently coated onto DM surface to delay its initial dissolving. Due to conveying parts, harsh downhole condition, and high dissolving rate of the base material, the current delay coatings relying on pure polymers are found to perform well only at low temperature (typical < 100 ℃) and parts without sharp edges or corners, as severe geometries prevent high quality thin film coatings from forming effectively. In this study, a coating technology combining Plasma Electrolytic Oxide (PEO) coatings with advanced thin film deposition has been developed, which can delay DM complex parts (with sharp corners) in corrosive fluid at 150 ℃ for over 2 days. Synergistic effects between porous hard PEO coating and chemical inert elastic-polymer sealing leads to its delaying dissolution improvement, and strong chemical/physical bonding between these two layers has been found to play essential role. Microstructure of this advanced coating and compatibility between PEO and various polymer selections has been thoroughly investigated and a model is also proposed to explain its delaying performance. This study could not only benefit oil and gas industry to unplug their High Temperature High Pressure (HTHP) unconventional resources inaccessible before, but also potentially provides a technical route for other industries (e.g., bio-medical, automobile, aerospace) where primer anti-corrosive protection on light Mg alloy is highly demanded.Keywords: dissolvable magnesium, coating, plasma electrolytic oxide, sealer
Procedia PDF Downloads 1114691 Investigation of Pollution and the Physical and Chemical Condition of Polour River, East of Tehran, Iran
Authors: Azita Behbahaninia
Abstract:
This research has been carried out to determine the water quality and physico-chemical properties Polour River, one of the most branch of Haraz River. Polour River was studied for a period of one year Samples were taken from different stations along the main branch of River polour. In water samples determined pH, DO, SO4, Cl, PO4, NO3, EC, BOD, COD, Temprature, color and number of Caliform per liter. ArcGIS was used for the zoning of phosphate concentration in the polour River basin. The results indicated that the river is polluted in polour village station, because of discharge domestic wastewater and also river is polluted in Ziar village station, because of agricultural wastewater and water is contaminated in aquaculture station, because of fish ponds wastewater. Statistical analysis shows that between independent traits and coliform regression relationship is significant at the 1% level. Coefficient explanation index indicated independent traits control 80% coliform and 20 % is for unknown parameters. The causality analysis showed Temperature (0.6) has the most positive and direct effect on coliform and sulfate has direct and negative effect on coliform. The results of causality analysis and the results of the regression analysis are matched and other forms direct and indirect effects were negligible and ignorable. Kruskal-Wallis test showed, there is different between sampling stations and studied characters. Between stations for temperature, DO, COD, EC, sulfate and coliform is at 1 % and for phosphate 5 % level of significance.Keywords: coliform, GIS, pollution, phosphate, river
Procedia PDF Downloads 4684690 Structural Property and Mechanical Behavior of Polypropylene–Elemental Sulfur (S8) Composites: Effect of Sulfur Loading
Authors: S. Vijay Kumar, Kishore K. Jena, Saeed M. Alhassan
Abstract:
Elemental sulfur is currently produced on the level of 70 million tons annually by petroleum refining, majority of which is used in the production of sulfuric acid, fertilizer and other chemicals. Still, over 6 million tons of elemental sulfur is generated in excess, which creates exciting opportunities to develop new chemistry to utilize sulfur as a feedstock for polymers. Development of new polymer composite materials using sulfur is not widely explored and remains an important challenge in the field. Polymer nanocomposites prepared by carbon nanotube, graphene, silica and other nanomaterials were well established. However, utilization of sulfur as filler in the polymer matrix could be an interesting study. This work is to presents the possibility of utilizing elemental sulfur as reinforcing fillers in the polymer matrix. In this study we attempted to prepare polypropylene/sulfur nanocomposite. The physical, mechanical and morphological properties of the newly developed composites were studied according to the sulfur loading. In the sample preparation, four levels of elemental sulfur loading (5, 10, 20 and 30 wt. %) were designed. Composites were prepared by the melt mixing process by using laboratory scale mini twin screw extruder at 180°C for 15 min. The reaction time and temperature were maintained constant for all prepared composites. The structure and crystallization behavior of composites was investigated by Raman, FTIR, XRD and DSC analysis. It was observed that sulfur interfere with the crystalline arrangement of polypropylene and depresses the crystallization, which affects the melting point, mechanical and thermal stability. In the tensile test, one level of test temperature (room temperature) and crosshead speed (10 mm/min) was designed. Tensile strengths and tensile modulus of the composites were slightly decreased with increasing in filler loading, however, percentage of elongation improved by more than 350% compared to neat polypropylene. The effect of sulfur on the morphology of polypropylene was studied with TEM and SEM techniques. Microscope analysis revels that sulfur is homogeneously dispersed in polymer matrix and behaves as single phase arrangement in the polymer. The maximum elongation for the polypropylene can be achieved by adjusting the sulfur loading in the polymer. This study reviles the possibility of using elemental sulfur as a solid plasticizer in the polypropylene matrix.Keywords: crystallization, elemental sulfur, morphology, thermo-mechanical properties, polypropylene, polymer nanocomposites
Procedia PDF Downloads 3464689 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions
Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde
Abstract:
MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.Keywords: boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer
Procedia PDF Downloads 5394688 Water Immersion Recovery for Swimmers in Hot Environments
Authors: Thanura Randula Abeywardena
Abstract:
This study recognized the effectiveness of cold-water immersion recovery post exhaustive short-term exercise. The purpose of this study was to understand if 16- 20°C of cold-water immersion would be beneficial in a tropical environment to achieve optimal recovery in sprint swim performance in comparison to 10-15°C of water immersion. Two 100m-sprint swim performance times were measured along with blood lactate (BLa), heart rate (HR) and rate of perceived exertion (RPE) in a 25m swimming pool with full body head out horizontal water immersions of 10-15°C, 16-20°C and 29-32°C (pool temperature) for 10 minutes followed by 5 minutes of seated passive rest outside; in between the two swim performances. Twelve well-trained adult swimmers (5 male and 5 female) within the top twenty in the Sri Lankan national swimming championships in 100m Butterfly and Freestyle in the years 2020 & 2021 volunteered for this study. One-way ANOVA analysis (p<0.05) suggested performance time, Bla and HR had no significant differences between the 3 conditions after the second sprint; however, RPE was significantly different with p=0.034 between 10-15°C and 16-20°C immersion conditions. The study suggested that the recovery post the two cold-water immersion conditions were similar in terms of performance and physiological factors; however, the 16-20°C temperature had a better “feel good” factor post sprint 2. Further study is recommended as there was participant bias with the swimmers not reaching optimal levels in sprint 1. Therefore, they might have possibly fully recovered before sprint 2, invalidating the physiological effect of recovery.Keywords: hydrotherapy, blood lactate, fatigue, recovery, sprint-performance, sprint-swimming
Procedia PDF Downloads 1024687 A Microsurgery-Specific End-Effector Equipped with a Bipolar Surgical Tool and Haptic Feedback
Authors: Hamidreza Hoshyarmanesh, Sanju Lama, Garnette R. Sutherland
Abstract:
In tele-operative robotic surgery, an ideal haptic device should be equipped with an intuitive and smooth end-effector to cover the surgeon’s hand/wrist degrees of freedom (DOF) and translate the hand joint motions to the end-effector of the remote manipulator with low effort and high level of comfort. This research introduces the design and development of a microsurgery-specific end-effector, a gimbal mechanism possessing 4 passive and 1 active DOFs, equipped with a bipolar forceps and haptic feedback. The robust gimbal structure is comprised of three light-weight links/joint, pitch, yaw, and roll, each consisting of low-friction support and a 2-channel accurate optical position sensor. The third link, which provides the tool roll, was specifically designed to grip the tool prongs and accommodate a low mass geared actuator together with a miniaturized capstan-rope mechanism. The actuator is able to generate delicate torques, using a threaded cylindrical capstan, to emulate the sense of pinch/coagulation during conventional microsurgery. While the tool left prong is fixed to the rolling link, the right prong bears a miniaturized drum sector with a large diameter to expand the force scale and resolution. The drum transmits the actuator output torque to the right prong and generates haptic force feedback at the tool level. The tool is also equipped with a hall-effect sensor and magnet bar installed vis-à-vis on the inner side of the two prongs to measure the tooltip distance and provide an analogue signal to the control system. We believe that such a haptic end-effector could significantly increase the accuracy of telerobotic surgery and help avoid high forces that are known to cause bleeding/injury.Keywords: end-effector, force generation, haptic interface, robotic surgery, surgical tool, tele-operation
Procedia PDF Downloads 1184686 Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair
Authors: J. S. Rudas, J. M. Gutiérrez Cabeza, A. Corz Rodríguez, L. M. Gómez, A. O. Toro
Abstract:
The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid.Keywords: degradation, dissipative mechanism, dry sliding, entropy, friction, wear
Procedia PDF Downloads 5024685 Oral Supplementation of Sweet Orange Extract “Citrus Sinensis” as Substitute for Synthetic Vitamin C on Transported Pullets in Humid Tropics
Authors: Mathew O. Ayoola, Foluke Aderemi, Tunde E. Lawal, Opeyemi Oladejo, Micheal A. Abiola
Abstract:
Food animals reared for meat require transportation during their life cycle. The transportation procedures could initiate stressors capable of disrupting the physiological homeostasis. Such stressors associated with transportation may include; loading and unloading, crowding, environmental temperature, fear, vehicle motion/vibration, feed / water deprivation, and length of travel. This may cause oxidative stress and damage to excess free radicals or reactive oxygen species (ROS). In recent years, the application of natural products as a substitute for synthetic electrolytes and tranquilizers as anti-stress agents during the transportation is yet under investigation. Sweet orange, a predominant fruit in humid tropics, has been reported to have a good content of vitamin C (Ascorbic acid). Vitamin C, which is an active ingredient in orange juice, plays a major role in the biosynthesis of Corticosterone, a hormone that enhances energy supply during transportation and heat stress. Ninety-six, 15weeks, Isa brown pullets were allotted to four (4) oral treatments; sterile water (T1), synthetic vit C (T2), 30ml orange/liter of water (T3), 50ml orange/1 liter (T4). Physiological parameters; body temperature (BTC), rectal temperature (RTC), respiratory rate (RR), and panting rate (PR) were measured pre and post-transportation. The birds were transported with a specialized vehicle for a distance of 50km at a speed of 60 km/hr. The average environmental THI and within the vehicle was 81.8 and 74.6, respectively, and the average wind speed was 11km/hr. Treatments and periods had a significant (p>0.05) effect on all the physiological parameters investigated. Birds on T1 are significantly (p<0.05) different as compared to T2, T3, and T4. Values recorded post-transportation are significantly (p<0.05) higher as compared to pre-transportation for all parameters. In conclusion, this study showed that transportation as a stressor can affect the physiological homeostasis of pullets. Oral supplementation of electrolytes or tranquilizers is essential as an anti-stress during transportation. The application of the organic product in form of sweet orange could serve as a suitable alternative for the synthetic vitamin C.Keywords: physiological, pullets, sweet orange, transportation stress, and vitamin C
Procedia PDF Downloads 1204684 Benefits and Drawbacks of Robotic Firefighting
Authors: Mukhtar Ibrahim Bello, Ibrahim U. Aikawa, Abubakar Sadiq Muhammad, Muhammad Baballe Ahmad
Abstract:
These vital signs can be tracked by wearable sensors, which can also be used to assess patients' health. As a result, they can be very beneficial to patients and healthcare professionals in the diagnosis of diseases, particularly when it comes to taking a patient's body temperature in infectious disorders.Keywords: fire out-break, robots, saving, dangerous environments, impacts
Procedia PDF Downloads 934683 Use of Waste Active Sludge for Reducing Fe₂O₃
Authors: A. Parra Parra, M. Vlasova, P. A. Marquez, M. Kakazey, M. C. Resendiz Gonzalez
Abstract:
The work of water treatment plants from various sources of pollution includes a biological treatment stage using activated sludge. Due to the large volume of toxic activated sludge waste (WAS) generated and soil contamination during its storage, WAS disposal technologies are being continuously developed. The most common is the carbonization of WAS. The carbonization products are various forms of ordered and disordered carbon material having different reactivity. The aim of this work was to study the reduction process of Fe₂O₃ mixed with activated sludge waste (WAS). It could be assumed that the simultaneous action of the WAS thermal decomposition process, accompanied by the formation of reactive nano-carbon, with carbothermal reduction of the Fe₂O₃, will permit intensify reduction of metal oxide up to stage of metal and iron carbide formation. The studies showed that the temperature treatment in the region of (800-1000) °C for 1 hour under conditions of oxygen deficiency is accompanied by the occurrence of reactions: Fe₂O₃ → Fe₃O₄ → FeO → Fe, which are typical for the metallurgical process of iron smelting, but less energy-intensive. Depending on the ratio of the WAS - Fe₂O₃ components and the temperature-time regime of reduction of iron oxide, it is possible to distinguish the stages of the predominant formation of ferromagnetic compounds, cast iron, and iron carbide. The results indicated the promise of using WAS as a metals oxide reducing agent and obtaining of ceramic-based on metal carbides.Keywords: carbothermal reduction, Fe₂O₃, FeₓOᵧ-C, waste activated sludge
Procedia PDF Downloads 1344682 Influence of Long-Term Variability in Atmospheric Parameters on Ocean State over the Head Bay of Bengal
Authors: Anindita Patra, Prasad K. Bhaskaran
Abstract:
The atmosphere-ocean is a dynamically linked system that influences the exchange of energy, mass, and gas at the air-sea interface. The exchange of energy takes place in the form of sensible heat, latent heat, and momentum commonly referred to as fluxes along the atmosphere-ocean boundary. The large scale features such as El Nino and Southern Oscillation (ENSO) is a classic example on the interaction mechanism that occurs along the air-sea interface that deals with the inter-annual variability of the Earth’s Climate System. Most importantly the ocean and atmosphere as a coupled system acts in tandem thereby maintaining the energy balance of the climate system, a manifestation of the coupled air-sea interaction process. The present work is an attempt to understand the long-term variability in atmospheric parameters (from surface to upper levels) and investigate their role in influencing the surface ocean variables. More specifically the influence of atmospheric circulation and its variability influencing the mean Sea Level Pressure (SLP) has been explored. The study reports on a critical examination of both ocean-atmosphere parameters during a monsoon season over the head Bay of Bengal region. A trend analysis has been carried out for several atmospheric parameters such as the air temperature, geo-potential height, and omega (vertical velocity) for different vertical levels in the atmosphere (from surface to the troposphere) covering a period from 1992 to 2012. The Reanalysis 2 dataset from the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) was used in this study. The study signifies that the variability in air temperature and omega corroborates with the variation noticed in geo-potential height. Further, the study advocates that for the lower atmosphere the geo-potential heights depict a typical east-west contrast exhibiting a zonal dipole behavior over the study domain. In addition, the study clearly brings to light that the variations over different levels in the atmosphere plays a pivotal role in supporting the observed dipole pattern as clearly evidenced from the trends in SLP, associated surface wind speed and significant wave height over the study domain.Keywords: air temperature, geopotential height, head Bay of Bengal, long-term variability, NCEP reanalysis 2, omega, wind-waves
Procedia PDF Downloads 2254681 Investigations of the Crude Oil Distillation Preheat Section in Unit 100 of Abadan Refinery and Its Recommendation
Authors: Mahdi GoharRokhi, Mohammad H. Ruhipour, Mohammad R. ZamaniZadeh, Mohsen Maleki, Yusef Shamsayi, Mahdi FarhaniNejad, Farzad FarrokhZadeh
Abstract:
Possessing massive resources of natural gas and petroleum, Iran has a special place among all other oil producing countries, according to international institutions of energy. In order to use these resources, development and functioning optimization of refineries and industrial units is mandatory. Heat exchanger is one of the most important and strategic equipment which its key role in the process of production is clear to everyone. For instance, if the temperature of a processing fluid is not set as needed by heat exchangers, the specifications of desired product can change profoundly. Crude oil enters a network of heat exchangers in atmospheric distillation section before getting into the distillation tower; in this case, well-functioning of heat exchangers can significantly affect the operation of distillation tower. In this paper, different scenarios for pre-heating of oil are studied using oil and gas simulation software, and the results are discussed. As we reviewed various scenarios, adding a heat exchanger to pre-heating network is proposed as the most efficient factor in improving all governing parameters of the tower i.e. temperature, pressure, and reflux rate. This exchanger is embedded in crude oil’s path. Crude oil enters the exchanger after E-101 and exchanges heat with discharging kerosene pump around from E-136. As depicted in the results, it will efficiently assist the improvement of process operation and side expenses.Keywords: atmospheric distillation unit, heat exchanger, preheat, simulation
Procedia PDF Downloads 6604680 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets
Authors: K. R. Sultana, K. Pope, Y. S. Muzychka
Abstract:
In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.Keywords: droplets, CFD, thermos-physical properties, solidification
Procedia PDF Downloads 243