Search results for: limit of detection
2157 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading
Authors: Robert Caulk
Abstract:
A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration
Procedia PDF Downloads 892156 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios
Procedia PDF Downloads 3242155 Business and Psychological Principles Integrated into Automated Capital Investment Systems through Mathematical Algorithms
Authors: Cristian Pauna
Abstract:
With few steps away from the 2020, investments in financial markets is a common activity nowadays. In the electronic trading environment, the automated investment software has become a major part in the business intelligence system of any modern financial company. The investment decisions are assisted and/or made automatically by computers using mathematical algorithms today. The complexity of these algorithms requires computer assistance in the investment process. This paper will present several investment strategies that can be automated with algorithmic trading for Deutscher Aktienindex DAX30. It was found that, based on several price action mathematical models used for high-frequency trading some investment strategies can be optimized and improved for automated investments with good results. This paper will present the way to automate these investment decisions. Automated signals will be built using all of these strategies. Three major types of investment strategies were found in this study. The types are separated by the target length and by the exit strategy used. The exit decisions will be also automated and the paper will present the specificity for each investment type. A comparative study will be also included in this paper in order to reveal the differences between strategies. Based on these results, the profit and the capital exposure will be compared and analyzed in order to qualify the investment methodologies presented and to compare them with any other investment system. As conclusion, some major investment strategies will be revealed and compared in order to be considered for inclusion in any automated investment system.Keywords: Algorithmic trading, automated investment systems, limit conditions, trading principles, trading strategies
Procedia PDF Downloads 1942154 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration
Authors: Danny Barash
Abstract:
Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods
Procedia PDF Downloads 2342153 Improving Lutein Bioavailability by Nanotechnology Applications
Authors: Hulya Ilyasoglu Buyukkestelli, Sedef Nehir El
Abstract:
Lutein is a member of xanthophyll group of carotenoids found in fruits and vegetables. Lutein accumulates in the macula region of the retina and known as macular pigment which absorbs damaging light in the blue wavelengths. The presence of lutein in retina has been related to decreased risk of two common eye diseases, age-related macular degeneration, and cataract. Being a strong antioxidant, it may also have effects on prevention some types of cancer, cardiovascular disease, cognitive dysfunction. Humans are not capable of synthesizing lutein de novo; therefore it must be provided naturally by the diet, fortified foods, and beverages or nutritional supplement. However, poor bioavailability and physicochemical stability limit its usage in the food industry. Poor solubility in digestive fluids and sensitivity to heat, light, and oxygen are both affect the stability and bioavailability of lutein. In this context, new technologies, delivery systems and formulations have been applied to improve stability and solubility of lutein. Nanotechnology, including nanoemulsion, nanocrystal, nanoencapsulation technology and microencapsulation by complex coacervation, spray drying are promising ways of increasing solubilization of lutein and stability of it in different conditions. Bioavailability of lutein is also dependent on formulations used, starch formulations and milk proteins, especially sodium caseinate are found effective in improving the bioavailability of lutein. Designing foods with highly bioavailable and stabile lutein needs knowledge about current technologies, formulations, and further needs. This review provides an overview of the new technologies and formulations used to improve bioavailability of lutein and also gives a future outlook to food researches.Keywords: bioavailability, formulation, lutein, nanotechnology
Procedia PDF Downloads 3802152 Adsorption and Transformation of Lead in Coimbatore Urban Soils
Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya
Abstract:
Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.Keywords: lead pollution, adsorption, transformation, heavy metal pollution
Procedia PDF Downloads 3232151 An Integrated Approach for Risk Management of Transportation of HAZMAT: Use of Quality Function Deployment and Risk Assessment
Authors: Guldana Zhigerbayeva, Ming Yang
Abstract:
Transportation of hazardous materials (HAZMAT) is inevitable in the process industries. The statistics show a significant number of accidents has occurred during the transportation of HAZMAT. This makes risk management of HAZMAT transportation an important topic. The tree-based methods including fault-trees, event-trees and cause-consequence analysis, and Bayesian network, have been applied to risk management of HAZMAT transportation. However, there is limited work on the development of a systematic approach. The existing approaches fail to build up the linkages between the regulatory requirements and the safety measures development. The analysis of historical data from the past accidents’ report databases would limit our focus on the specific incidents and their specific causes. Thus, we may overlook some essential elements in risk management, including regulatory compliance, field expert opinions, and suggestions. A systematic approach is needed to translate the regulatory requirements of HAZMAT transportation into specified safety measures (both technical and administrative) to support the risk management process. This study aims to first adapt the House of Quality (HoQ) to House of Safety (HoS) and proposes a new approach- Safety Function Deployment (SFD). The results of SFD will be used in a multi-criteria decision-support system to develop find an optimal route for HazMats transportation. The proposed approach will be demonstrated through a hypothetical transportation case in Kazakhstan.Keywords: hazardous materials, risk assessment, risk management, quality function deployment
Procedia PDF Downloads 1422150 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN
Authors: Kwangmin Joo
Abstract:
Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique
Procedia PDF Downloads 1252149 Dental Ethics versus Malpractice, as Phenomenon with a Growing Trend
Authors: Saimir Heta, Kers Kapaj, Rialda Xhizdari, Ilma Robo
Abstract:
Dealing with emerging cases of dental malpractice with justifications that stem from the clear rules of dental ethics is a phenomenon with an increasing trend in today's dental practice. Dentists should clearly understand how far the limit of malpractice goes, with or without minimal or major consequences, for the affected patient, which can be justified as a complication of dental treatment, in support of the rules of dental ethics in the dental office. Indeed, malpractice can occur in cases of lack of professionalism, but it can also come as a consequence of anatomical and physiological limitations in the implementation of the dental protocols, predetermined and indicated by the patient in the paragraph of the treatment plan in his personal card. This study is of the review type with the aim of the latest findings published in the literature about the problem of dealing with these phenomena. The combination of keywords is done in such a way with the aim to give the necessary space for collecting the right information in the networks of publications about this field, always first from the point of view of the dentist and not from that of the lawyer or jurist. From the findings included in this article, it was noticed the diversity of approaches towards the phenomenon depends on the different countries based on the legal basis that these countries have. There is a lack of or a small number of articles that touch on this topic, and these articles are presented with a limited number of data on the same topic. Conclusions: Dental malpractice should not be hidden under the guise of various dental complications that we justify with the strict rules of ethics for patients treated in the dental chair. The individual experience of dental malpractice must be published with the aim of serving as a source of experience for future generations of dentists.Keywords: dental ethics, malpractice, professional protocol, random deviation
Procedia PDF Downloads 962148 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research
Procedia PDF Downloads 1512147 Mercury Detection in Two Fishes from the Persian Gulf
Authors: Zahra Khoshnood, Mehdi Kazaie, Sajedeh Neisi
Abstract:
In 2013, 24 fish samples were taken from two fishery regions in the north of Persian Gulf near the Iranian coastal lines. The two flatfishes were Yellofin seabream (Acanthopagrus latus) and Longtail tuna (Thannus tonggol). We analyzed total Hg concentration of liver and muscle tissues by Mercury Analyzer (model LECO AMA 254). The average concentration of total Hg in edible Muscle tissue of deep-Flounder was measured in Bandar-Abbas and was found to be 18.92 and it was 10.19 µg.g-1 in Bandar-Lengeh. The corresponding values for Oriental sole were 8.47 and 0.08 µg.g-1. The average concentration of Hg in liver tissue of deep-Flounder, in Bandar-Abbas was 25.49 and that in Bandar-Lengeh was 12.52 µg.g-1.the values for Oriental sole were 11.88 and 3.2 µg.g-1 in Bandar-Abbas and Bandar-Lengeh, respectively.Keywords: mercury, Acanthopagrus latus, Thannus tonggol, Persian Gulf
Procedia PDF Downloads 6032146 New Employee on-Boarding Program: Effective Tool for Reducing the Prevalence of Workplace Injuries/Accidents
Authors: U. Ugochukwu, J. Lee, P. Conley
Abstract:
According to a recent survey by the UT Southwestern Workplace Safety Committee, the three most common on-the-job injuries reported by workers at the medical center are musculoskeletal injuries, slip-and-fall injuries and repetitive motion injuries. Last year alone, of the 650 documented workplace injuries and accidents, 45% were seen in employees in their first-two years of employment. UT Southwestern New Employee On-Boarding program was created and modeled to follows OSHA’s model that consist of: determining if training is needed, identifying training needs, identifying goals and objectives, developing learning activities, conducting the training, evaluating program effectiveness, and improving the program. The hospital’s management best practices were recreated to limit and control workplace injuries and accidents. Regular trainings and workshops on workplace safety and compliance were initiated for new employees. Various computer workstations were evaluated and recommendations were made to reduce musculoskeletal disorders. Post exposure protocols and workers protection programs were remodeled for infectious agents and chemicals used in the hospital, and medical surveillance programs were updated, for every emerging threat, to ensure they are in compliance with the US policy, regulatory and standard setting organizations. If ignorance of specific job hazards and of proper work practices is to blame for this higher injury rate, then training will help to provide a solution. Use of this program in training activities is just one of many ways UT Southwestern complied with the OSHA standards that relate to training while enhancing the safety and health of their employees.Keywords: ergonomics, hazard, on-boarding, surveillance, workplace
Procedia PDF Downloads 3302145 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis
Procedia PDF Downloads 3932144 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley
Authors: Bal Deep Sharma, Suresh Ray Yadav
Abstract:
Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength
Procedia PDF Downloads 802143 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging
Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi
Abstract:
Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA
Procedia PDF Downloads 2802142 Novel Synthesis of Metal Oxide Nanoparticles from Type IV Deep Eutectic Solvents
Authors: Lorenzo Gontrani, Marilena Carbone, Domenica Tommasa Donia, Elvira Maria Bauer, Pietro Tagliatesta
Abstract:
One of the fields where DES shows remarkable added values is the synthesis Of inorganic materials, in particular nanoparticles. In this field, the higher- ent and highly-tunable nano-homogeneities of DES structure give origin to a marked templating effect, a precious role that has led to the recent bloom of a vast number of studies exploiting these new synthesis media to prepare Nanomaterials and composite structures of various kinds. In this contribution, the most recent developments in the field will be reviewed, and some ex-citing examples of novel metal oxide nanoparticles syntheses using non-toxic type-IV Deep Eutectic Solvents will be described. The prepared materials possess nanometric dimensions and show flower-like shapes. The use of the pre- pared nanoparticles as fluorescent materials for the detection of various contaminants is under development.Keywords: metal deep eutectic solvents, nanoparticles, inorganic synthesis, type IV DES, lamellar
Procedia PDF Downloads 1352141 The Role of Development in Settling Migration Crisis: The Preventive Approach of the European Union in Relations with Sub-Saharan African States
Authors: Artsiom Zinchanka
Abstract:
The world faces now one of the largest migration crisis and the European Union meets challenges in accepting the flow of migrants that could not be handled finally at this step. This crisis is complicated with many factors, such as military conflict in the Middle East; absence of the appropriate conditions in the refugees’ camps; but also with the complicity of the migration flow consisting of the Sub-Saharan migrants. This type of migrants leave their homelands for many reasons including poverty, not appropriate level of social and economic conditions, absence of infrastructure and access to the education and medical care. In practice, when the restrictive approach directed to limit the flow of illicit migration and to send illicit migrants back to their homelands is not always working, the approach directed to the root causes of the migration crisis can be more effective in settling the crisis. The Cotonou Agreement and the following treaties concluded between the European Union, and Sub-Saharan states show that the European Union considers the development of human rights and appropriate social and economic conditions in the Sub-Saharan states as one of the most important factors addressing the migration crisis. The preventive approach as the efforts of the European Union to develop appropriate social and economic conditions in Sub-Saharan states is considered in this article, as well as its evolution and current condition. This article also considers pros and cons of this approach and the obstacles that this approach faces. The research methods include review of literature and documents, analytical and descriptive methods.Keywords: migration crisis, preventive approach, Sub-Saharan States, the European Union
Procedia PDF Downloads 1342140 General Mathematical Framework for Analysis of Cattle Farm System
Authors: Krzysztof Pomorski
Abstract:
In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations
Procedia PDF Downloads 1452139 An Algorithm for Removal of Noise from X-Ray Images
Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See
Abstract:
In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF
Procedia PDF Downloads 3832138 Remote Patient Monitoring for Covid-19
Authors: Launcelot McGrath
Abstract:
The Coronavirus disease 2019 (COVID-19) has spread rapidly around the world, resulting in high mortality rates and very large numbers of people requiring medical treatment in ICU. Management of patient hospitalisation is a critical aspect to control this disease and reduce chaos in the healthcare systems. Remote monitoring provides a solution to protect vulnerable and elderly high-risk patients. Continuous remote monitoring of oxygen saturation, respiratory rate, heart rate, and temperature, etc., provides medical systems with up-to-the-minute information about their patients' statuses. Remote monitoring also limits the spread of infection by reducing hospital overcrowding. This paper examines the potential of remote monitoring for Covid-19 to assist in the rapid identification of patients at risk, facilitate the detection of patient deterioration, and enable early interventions.Keywords: remote monitoring, patient care, oxygen saturation, Covid-19, hospital management
Procedia PDF Downloads 1082137 Physical, Morphological, and Rheological Properties of Polypropylene Modified Bitumen
Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili
Abstract:
The common method to improve the performance of asphalt binders is through modification. The utilization of recycled plastics for asphalt modification has been the subject of research studies due to their environmental and economic benefits over using commercial polymers. Polypropylene (PP) is one of the most available recycled plastics in Australia. Unlike other plastics, its contamination with other plastics during the recycling process is negligible. Therefore, the quality of recycled plastic is high, which makes it a good candidate for road construction applications. To assess its effectiveness for bitumen modification, three different grades of PP were selected. The PP grades were compared for blendability with bitumen, and the best suitable grade was chosen for further studies. The PP-modified bitumen and the base bitumen were then compared through physical and rheological properties. The stability of the PP-modified bitumen at elevated temperatures was measured, and the morphology of the samples before and after the storage stability was characterized by fluorescent microscopy. The results showed that PP had a significant influence on reducing the penetration and increasing the viscosity and the rutting resistance of the virgin bitumen. Storage stability test results indicated that the difference between the softening point of the top and bottom section of the tube sample is below the defined limit, which means the PP-modified bitumen is storage stable. However, the fluorescence microscopy results showed that the distribution of the PP particles in the bitumen matrix in the top and bottom sections of the tube are significantly different, which is an indicator of poor storage stability.Keywords: polypropylene, waste plastic, bitumen, road pavements, storage stability, fluorescent microscopy, morphology
Procedia PDF Downloads 782136 A Comparative Assessment of Industrial Composites Using Thermography and Ultrasound
Authors: Mosab Alrashed, Wei Xu, Stephen Abineri, Yifan Zhao, Jörn Mehnen
Abstract:
Thermographic inspection is a relatively new technique for Non-Destructive Testing (NDT) which has been gathering increasing interest due to its relatively low cost hardware and extremely fast data acquisition properties. This technique is especially promising in the area of rapid automated damage detection and quantification. In collaboration with a major industry partner from the aerospace sector advanced thermography-based NDT software for impact damaged composites is introduced. The software is based on correlation analysis of time-temperature profiles in combination with an image enhancement process. The prototype software is aiming to a) better visualise the damages in a relatively easy-to-use way and b) automatically and quantitatively measure the properties of the degradation. Knowing that degradation properties play an important role in the identification of degradation types, tests and results on specimens which were artificially damaged have been performed and analyzed.Keywords: NDT, correlation analysis, image processing, damage, inspection
Procedia PDF Downloads 5472135 The Injection of a Freshly Manufactured Hyaluronan Fragment Promotes Healing of Chronic Wounds: A Clinical Study
Authors: Dylan Treger, Lujia Zhang, Xiaoxiao Jia, Jessica H. Hui, Munkh-Amgalan Gantumur, Mizhou Hui, Li Liu
Abstract:
Hyaluronic acid (HA) is involved in wound healing via inflammation, granulation, and re-epithelialization mechanisms. The poor physical properties of natural high-molecular-weight polymers limit their direct use in the medical field. In this clinical study, we investigated whether the local injection of a tissue-permeable 35 kDa HA fragment (HA35) could favor the healing process in patients with chronic wounds accompanied by neuropathic pain. The HA35 fragments were freshly manufactured by degradation of high-molecular-weight HA with bovine testis-derived hyaluronidase PH20. Twenty patients in this study had nonhealing wounds and wound-related pain for more than 3 months. Freshly produced HA35 was locally injected into healthy skin immediately surrounding chronic wounds once a day for 10 days. Wound-associated pain and the degree of wound healing were evaluated. The injection of HA35 relieved the pain associated with chronic wounds in 24 hours. HA35 treatment significantly promoted the healing of chronic wounds, including expanded fresh granulation tissue on the wounds; reduced darkness or redness, dryness, and damaged areas on the surface of the skin surrounding the wounds; and decreased the size of the wound area. It can be concluded that the topical injection of tissue-permeable HA35 around chronic wounds has great potential to promote wound healing.Keywords: 35 kDa hyaluronan fragment HA35, chronic wound, wound healing, tissue permeability
Procedia PDF Downloads 1672134 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels
Authors: Tal Remez, Or Litany, Alex Bronstein
Abstract:
The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.Keywords: binary pixels, maximum likelihood, neural networks, sparse coding
Procedia PDF Downloads 2012133 Fatigue Life Estimation of Spiral Welded Waterworks Pipelines
Authors: Suk Woo Hong, Chang Sung Seok, Jae Mean Koo
Abstract:
Recently, the welding is widely used in modern industry for joining the structures. However, the waterworks pipes are exposed to the fatigue load by cars, earthquake and etc because of being buried underground. Moreover, the residual stress exists in weld zone by welding process and it is well known that the fatigue life of welded structures is degraded by residual stress. Due to such reasons, the crack can occur in the weld zone of pipeline. In this case, The ground subsidence or sinkhole can occur, if the soil and sand are washed down by fluid leaked from the crack of water pipe. These problems can lead to property damage and endangering lives. For these reasons, the estimation of fatigue characteristics for water pipeline weld zone is needed. Therefore, in this study, for fatigue characteristics estimation of spiral welded waterworks pipe, ASTM standard specimens and Curved Plate specimens were collected from the spiral welded waterworks pipe and the fatigue tests were performed. The S-N curves of each specimen were estimated, and then the fatigue life of weldment Curved Plate specimen was predicted by theoretical and analytical methods. After that, the weldment Curved Plate specimens were collected from the pipe and verification fatigue tests were performed. Finally, it was verified that the predicted S-N curve of weldment Curved Plate specimen was good agreement with fatigue test data.Keywords: spiral welded pipe, prediction fatigue life, endurance limit modifying factors, residual stress
Procedia PDF Downloads 2992132 A Secure Routing Algorithm for Underwater Wireless Sensor Networks
Authors: Seyed Mahdi Jameii
Abstract:
Underwater wireless sensor networks have been attracting the interest of many researchers lately, and the past three decades have beheld the rapid progress of underwater acoustic communication. One of the major problems in underwater wireless sensor networks is how to transfer data from the moving node to the base stations and choose the optimized route for data transmission. Secure routing in underwater wireless sensor network (UWCNs) is necessary for packet delivery. Some routing protocols are proposed for underwater wireless sensor networks. However, a few researches have been done on secure routing in underwater sensor networks. In this article, a secure routing protocol is provided to resist against wormhole and sybil attacks. The results indicated acceptable performance in terms of increasing the packet delivery ratio with regards to the attacks, increasing network lifetime by creating balance in the network energy consumption, high detection rates against the attacks, and low-end to end delay.Keywords: attacks, routing, security, underwater wireless sensor networks
Procedia PDF Downloads 4182131 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System
Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray
Abstract:
The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.Keywords: back-propagation algorithm, load instability, neural network, power distribution system
Procedia PDF Downloads 4352130 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 1472129 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio
Authors: Habib Alehossein, M. S. K. Fernando
Abstract:
Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content
Procedia PDF Downloads 912128 Ambivalence as Ethical Practice: Methodologies to Address Noise, Bias in Care, and Contact Evaluations
Authors: Anthony Townsend, Robyn Fasser
Abstract:
While complete objectivity is a desirable scientific position from which to conduct a care and contact evaluation (CCE), it is precisely the recognition that we are inherently incapable of operating objectively that is the foundation of ethical practice and skilled assessment. Drawing upon recent research from Daniel Kahneman (2021) on the differences between noise and bias, as well as different inherent biases collectively termed “The Elephant in the Brain” by Kevin Simler and Robin Hanson (2019) from Oxford University, this presentation addresses both the various ways in which our judgments, perceptions and even procedures can be distorted and contaminated while conducting a CCE, but also considers the value of second order cybernetics and the psychodynamic concept of ‘ambivalence’ as a conceptual basis to inform our assessment methodologies to limit such errors or at least better identify them. Both a conceptual framework for ambivalence, our higher-order capacity to allow for the convergence and consideration of multiple emotional experiences and cognitive perceptions to inform our reasoning, and a practical methodology for assessment relying on data triangulation, Bayesian inference and hypothesis testing is presented as a means of promoting ethical practice for health care professionals conducting CCEs. An emphasis on widening awareness and perspective, limiting ‘splitting’, is demonstrated both in how this form of emotional processing plays out in alienating dynamics in families as well as the assessment thereof. In addressing this concept, this presentation aims to illuminate the value of ambivalence as foundational to ethical practice for assessors.Keywords: ambivalence, forensic, psychology, noise, bias, ethics
Procedia PDF Downloads 87