Search results for: learning Maltese as a second language
7046 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams
Authors: Shael Brown, Reza Farivar
Abstract:
Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.Keywords: machine learning, persistence diagrams, R, statistical inference
Procedia PDF Downloads 877045 Towards a Deconstructive Text: Beyond Language and the Politics of Absences in Samuel Beckett’s Waiting for Godot
Authors: Afia Shahid
Abstract:
The writing of Samuel Beckett is associated with meaning in the meaninglessness and the production of what he calls ‘literature of unword’. The casual escape from the world of words in the form of silences and pauses, in his play Waiting for Godot, urges to ask question of their existence and ultimately leads to investigate the theory behind their use in the play. This paper proposes that these absences (silence and pause) in Beckett’s play force to think ‘beyond’ language. This paper asks how silence and pause in Beckett’s text speak for the emergence of poststructuralist text. It aims to identify the significant features of the philosophy of deconstruction in the play of Beckett to demystify the hostile complicity between literature and philosophy. With the interpretive paradigm of poststructuralism this research focuses on the text as a research data. It attempts to delineate the relationship between poststructuralist theoretical concerns and text of Beckett. Keeping in view the theoretical concerns of Poststructuralist theorist Jacques Derrida, the main concern of the discussion is directed towards the notion of ‘beyond’ language into the absences that are aimed at silencing the existing discourse with the ‘radical irony’ of this anti-formal art that contains its own denial and thus represents the idea of ceaseless questioning and radical contradiction in art and any text. This article asks how text of Beckett vibrates with loud silence and has disrupted language to demonstrate the emptiness of words and thus exploring the limitless void of absences. Beckett’s text resonates with silence and pause that is neither negation nor affirmation rather a poststructuralist’s suspension of reality that is ever changing with the undecidablity of all meanings. Within the theoretical notion of Derrida’s Différance this study interprets silence and pause in Beckett’s art. The silence and pause behave like Derrida’s Différance and have questioned their own existence in the text to deconstruct any definiteness and finality of reality to extend an undecidable threshold of poststructuralists that aims to evade the ‘labyrinth of language’.Keywords: Différance, language, pause, poststructuralism, silence, text
Procedia PDF Downloads 2127044 Factors Associated with Peer Assessment of Writing Skills among Foreign Languages Students
Authors: Marian Lissett Olaya
Abstract:
This article examined the factors associated with incorporating peer assessment into English language classes in a public university in Colombia. This is done in the context of writing English class for 4th-semester students. The research instruments consisted of peer assessment questionnaires, student diaries, and interviews. Findings showed that among the factors, motivation, frustration, anxiety, and lack of confidence appeared. Data revealed that peer assessment enables students to write competencies through training, teachers' guidance, and the provision of a collaborative environment.Keywords: writing skills, peer assessment, formative assessment, language acquisition
Procedia PDF Downloads 857043 Students’ Perceptions of the Use of Social Media in Higher Education in Saudi Arabia
Authors: Omar Alshehri, Vic Lally
Abstract:
This paper examined the attitudes of using social media tools to support learning at a university in Saudi Arabia. Moreover, it investigated the students’ current usage of these tools and examined the barriers they could face during the use of social media tools in the education process. Participants in this study were 42 university students. A web-based survey was used to collect data for this study. The results indicate that all of the students were familiar with social media and had used at least one type of social media for learning. It was found out that all students had very positive attitudes towards the use of social media and welcomed using these tools as a supplementary to the curriculum. However, the results indicated that the major barriers to using these tools in learning were distraction, opposing Islamic religious teachings, privacy issues, and cyberbullying. The study recommended that this study could be replicated at other Saudi universities to investigate factors and barriers that might affect Saudi students’ attitudes toward using social media to support learning.Keywords: barriers to social media use, benefits of social media use, higher education, Saudi Arabia, social media
Procedia PDF Downloads 1707042 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 177041 Towards Inclusive Learning Society: Learning for Work in the Swedish Context
Authors: Irina Rönnqvist
Abstract:
The world is constantly changing; therefore previous views or cultural patterns and programs formed by the “old world” cannot be suitable for solving actual problems. Indeed, reformation of an education system is unlikely to be effective without understanding of the processes that emerge in the field of employment. There is a problem in overcoming of the negative trends that determine imbalance of needs of the qualified work force and preparation of professionals by an education system. At the contemporary stage of economics the processes occurring in the field of labor and employment reproduce the picture of economic development of the country that cannot be imagined without the factor of labor mobility (e.g. migration). On the one hand, adult education has a significant impact on multifaceted development of economy. On the other hand, Sweden has one of the world's most generous asylum reception systems and the most liberal labor migration policy among the OECD countries. This effect affects the increased productivity. The focus of this essay is on problems of education and employment concerning social inclusion of migrants in working life in Sweden.Keywords: migration, adaptation, formal learning, informal learning, Sweden
Procedia PDF Downloads 3277040 Uncertainty Estimation in Neural Networks through Transfer Learning
Authors: Ashish James, Anusha James
Abstract:
The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.Keywords: uncertainty estimation, neural networks, transfer learning, regression
Procedia PDF Downloads 1377039 Efficient Rehearsal Free Zero Forgetting Continual Learning Using Adaptive Weight Modulation
Authors: Yonatan Sverdlov, Shimon Ullman
Abstract:
Artificial neural networks encounter a notable challenge known as continual learning, which involves acquiring knowledge of multiple tasks over an extended period. This challenge arises due to the tendency of previously learned weights to be adjusted to suit the objectives of new tasks, resulting in a phenomenon called catastrophic forgetting. Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks. In contrast, our approach attempts to maximize the performance of the new task, while ensuring zero forgetting. This is accomplished through the introduction of task-specific modulation parameters for each task, and only these parameters are learned for the new task, after a set of initial tasks have been learned. Through comprehensive experimental evaluations, our model demonstrates superior performance in acquiring and retaining novel tasks that pose difficulties for other multi-task models. This emphasizes the efficacy of our approach in preventing catastrophic forgetting while accommodating the acquisition of new tasks.Keywords: continual learning, life-long learning, neural analogies, adaptive modulation
Procedia PDF Downloads 737038 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 667037 Architectural Design Studio (ADS) as an Operational Synthesis in Architectural Education
Authors: Francisco A. Ribeiro Da Costa
Abstract:
Who is responsible for teaching architecture; consider various ways to participate in learning, manipulating various pedagogical tools to streamline the creative process. The Architectural Design Studio (ADS) should become a holistic, systemic process responding to the complexity of our world. This essay corresponds to a deep reflection developed by the author on the teaching of architecture. The outcomes achieved are the corollary of experimentation; discussion and application of pedagogical methods that allowed consolidate the creativity applied by students. The purpose is to show the conjectures that have been considered effective in creating an intellectual environment that nurtures the subject of Architectural Design Studio (ADS), as an operational synthesis in the final stage of the degree. These assumptions, which are part of the proposed model, displaying theories and teaching methodologies that try to respect the learning process based on student learning styles Kolb, ensuring their latent specificities and formulating the structure of the ASD discipline. In addition, the assessing methods are proposed, which consider the architectural Design Studio as an operational synthesis in the teaching of architecture.Keywords: teaching-learning, architectural design studio, architecture, education
Procedia PDF Downloads 3927036 Biliteracy and Latinidad: Catholic Youth Group as a Site of Cosmopolitan Identity Building
Authors: Natasha Perez
Abstract:
This autobiographical narrative inquiry explores the relationship between religious practice, identity, language and literacy in the author’s life experience as a second-generation Cuban-American growing up in the bilingual spaces of South Florida. The author describes how the social practices around language, including the flexibility to communicate in English and Spanish simultaneously, known as translanguaging, were instrumental to developing a biliterate cosmopolitan identity, along with a greater sense of Latinidad through interactions with diverse Latinx church members. This narrative study involved cycles of writing, reading, and reflection within a three-dimensional narrative inquiry space in order to discover the ways in which language and literacy development in the relationship between the personal and the social, across time and space, as historically situated phenomena. The findings show that Catholic faith practices have always been a source and expression of Cuban-ness, a means of sustaining Cuban identity, as well as a medium for bilingual language and literacy practice in the author’s life. Despite lacking formal literacy education in Spanish, she benefitted from the Catholic Church’s response to the surge of Spanish-speaking immigrants in South Florida in the 1980s and the subsequent flexibility of language practice in church-sponsored youth groups. The faith-sharing practices of the youth group created a space to use Spanish in more sophisticated ways that served to build confidence as a bilingual speaker and expand bilingual competence. These experiences also helped the author develop a more salient identity as Cuban-American and a deeper connection to her Cuban-ness in relation to the Nicaraguan, Venezuelan, and first-generation Cuban identities of my peers. The youth group also fostered cosmopolitan identity building through interactions with pan-ethnic Spanish speakers, with Catholicism as a common language and culture that served as a uniting force. Interaction with these peers also fostered cosmopolitan understandings that deepened the author’s knowledge of the geographical boundaries, political realities, and socio-historical differences between these groups of immigrants. This narrative study opens a window onto the micro-processes and socio-cultural dynamics of language and identity development in the second generation, with the potential to deepen our understanding of the impact of religious practice on these.Keywords: literacy, religion, identity, comopolitanism, culture, language, translanguaging
Procedia PDF Downloads 927035 From a Madwoman in the Attic to a Fairy Land: A Conversation with Antoinette in Jean Rhys's Wide Sargasso Sea
Authors: Prasenjit Panda
Abstract:
Jean Rhys’s Wide Sargasso Sea, a prequel to Bronte’s Jane Eyre, explores the history of the other and gives voices to the people who were silenced and kept under the darkness of negation and denial for a long time. Jean Wide Sargasso Sea provides an alternative understanding of Charlotte Brontë’s mad Creole woman, i.e., Bertha Mason of Jane Eyre in the postcolonial context. Rhys transforms Charlotte Bronte’s Victorian romance into a realistic narrative. In doing so, she re-reads Bertha as Antoinette, the unspeakable figure of otherness, into an unnameable self, and creates a new stage for the inner self. She in the novel is no longer a lunatic heiress in Rochester’s attic rather in this novel she finds her fantasy, dream and most importantly, voice. Rhys peeps through the character of Antoinette through her fragmented memories, dreams, and identity. Antoinette’s identity is mutilated constantly in the conflicts between colonizers and colonized, male and female, black and white. We shall use postcolonial theories like Bhaba’s hybridity and third space as a methodology to reveal the dialectics of struggle of a doubly colonized woman.We shall see that Bertha Mason was neglected by Bronte because of her madness and was locked in the Rochester’s Attic, but here Rhys beautifully converts her madness as a language of Antoinette, a language for her protest, a language for her liberation, a language for her dreams. In this present paper, we shall try to show how Antoinette tries to free her soul and body from the clutches of her multiple existences, identity, and narratives.Keywords: colonizer, dislocation, fragmented memories, identity, narratives
Procedia PDF Downloads 2757034 Teaching Research Methods at the Graduate Level Utilizing Flipped Classroom Approach; An Action Research Study
Authors: Munirah Alaboudi
Abstract:
This paper discusses a research project carried out with 12 first-year graduate students enrolled in research methods course prior to undertaking a graduate thesis during the academic year 2019. The research was designed for the objective of creating research methods course structure that embraces an individualized and activity-based approach to learning in a highly engaging group environment. This approach targeted innovating the traditional research methods lecture-based, theoretical format where students reported less engagement and limited learning. This study utilized action research methodology in developing a different approach to research methods course instruction where student performance indicators and feedback were periodically collected to assess the new teaching method. Student learning was achieved through utilizing the flipped classroom approach where students learned the material at home and classroom activities were designed to implement and experiment with the newly acquired information, with the guidance of the course instructor. Student learning in class was practiced through a series of activities based on different research methods. With the goal of encouraging student engagement, a wide range of activities was utilized including workshops, role play, mind-mapping, presentations, peer evaluations. Data was collected through an open-ended qualitative questionnaire to establish whether students were engaged in the material they were learning, and to what degree were they engaged, and to test their mastery level of the concepts discussed. Analysis of the data presented positive results as around 91% of the students reported feeling more engaged with the active learning experience and learning research by “actually doing research, not just reading about it”. The students expressed feeling invested in the process of their learning as they saw their research “gradually come to life” through peer learning and practice during workshops. Based on the results of this study, the research methods course structure was successfully remodeled and continues to be delivered.Keywords: research methods, higher education instruction, flipped classroom, graduate education
Procedia PDF Downloads 1047033 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 1077032 Quality Tools for Shaping Quality of Learning and Teaching in Education and Training
Authors: Renga Rao Krishnamoorthy, Raihan Tahir
Abstract:
The quality of classroom learning and teaching delivery has been and will continue to be debated at various levels worldwide. The regional cooperation programme to improve the quality and labour market orientation of the Technical and Vocational Education and Training (RECOTVET), ‘Deutsche Gesellschaft für Internationale Zusammenarbeit’ (GIZ), in line with the sustainable development goals (SDG), has taken the initiative in the development of quality TVET in the ASEAN region by developing the Quality Toolbox for Better TVET Delivery (Quality Toolbox). This initiative aims to provide quick and practical materials to trainers, instructors, and personnel involved in education and training at an institute to shape the quality of classroom learning and teaching. The Quality Toolbox for Better TVET Delivery was developed in three stages: literature review and development, validation, and finalization. Thematic areas in the Quality Toolbox were derived from collective input of concerns and challenges raised from experts’ workshops through moderated sessions involving representatives of TVET institutes from 9 ASEAN Member States (AMS). The sessions were facilitated by professional moderators and international experts. TVET practitioners representing AMS further analysed and discussed the structure of the Quality Toolbox and content of thematic areas and outlined a set of specific requirements and recommendations. The application exercise of the Quality Toolbox was carried out by TVET institutes among ASM. Experience sharing sessions from participating ASEAN countries were conducted virtually. The findings revealed that TVET institutes use two types of approaches in shaping the quality of learning and teaching, which is ascribed to inductive or deductive, shaping of quality in learning and teaching is a non-linear process and finally, Q-tools can be adopted and adapted to shape the quality of learning and teaching at TVET institutes in the following: improvement of the institutional quality, improvement of teaching quality and improvement on the organisation of learning and teaching for students and trainers. The Quality Toolbox has good potential to be used at education and training institutes to shape quality in learning and teaching.Keywords: AMS, GIZ, RECOTVET, quality tools
Procedia PDF Downloads 1297031 Large-Scale Electroencephalogram Biometrics through Contrastive Learning
Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes
Abstract:
EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification
Procedia PDF Downloads 1587030 Effectiveness of Self-Learning Module on the Academic Performance of Students in Statistics and Probability
Authors: Aneia Rajiel Busmente, Renato Gunio Jr., Jazin Mautante, Denise Joy Mendoza, Raymond Benedict Tagorio, Gabriel Uy, Natalie Quinn Valenzuela, Ma. Elayza Villa, Francine Yezha Vizcarra, Sofia Madelle Yapan, Eugene Kurt Yboa
Abstract:
COVID-19’s rapid spread caused a dramatic change in the nation, especially the educational system. The Department of Education was forced to adopt a practical learning platform without neglecting health, a printed modular distance learning. The Philippines' K–12 curriculum includes Statistics and Probability as one of the key courses as it offers students the knowledge to evaluate and comprehend data. Due to student’s difficulty and lack of understanding of the concepts of Statistics and Probability in Normal Distribution. The Self-Learning Module in Statistics and Probability about the Normal Distribution created by the Department of Education has several problems, including many activities, unclear illustrations, and insufficient examples of concepts which enables learners to have a difficulty accomplishing the module. The purpose of this study is to determine the effectiveness of self-learning module on the academic performance of students in the subject Statistics and Probability, it will also explore students’ perception towards the quality of created Self-Learning Module in Statistics and Probability. Despite the availability of Self-Learning Modules in Statistics and Probability in the Philippines, there are still few literatures that discuss its effectiveness in improving the performance of Senior High School students in Statistics and Probability. In this study, a Self-Learning Module on Normal Distribution is evaluated using a quasi-experimental design. STEM students in Grade 11 from National University's Nazareth School will be the study's participants, chosen by purposive sampling. Google Forms will be utilized to find at least 100 STEM students in Grade 11. The research instrument consists of 20-item pre- and post-test to assess participants' knowledge and performance regarding Normal Distribution, and a Likert scale survey to evaluate how the students perceived the self-learning module. Pre-test, post-test, and Likert scale surveys will be utilized to gather data, with Jeffreys' Amazing Statistics Program (JASP) software being used for analysis.Keywords: self-learning module, academic performance, statistics and probability, normal distribution
Procedia PDF Downloads 1167029 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision
Procedia PDF Downloads 1627028 The Effect of Using Computer-Assisted Translation Tools on the Translation of Collocations
Authors: Hassan Mahdi
Abstract:
The integration of computer-assisted translation (CAT) tools in translation creates several opportunities for translators. However, this integration is not useful in all types of English structures. This study aims at examining the impact of using CAT tools in translating collocations. Seventy students of English as a foreign language participated in this study. The participants were divided into three groups (i.e., CAT tools group, Machine Translation group, and the control group). The comparison of the results obtained from the translation output of the three groups demonstrated the improvement of translation using CAT tools. The results indicated that the participants who used CAT tools outscored the participants who used MT, and in turn, both groups outscored the control group who did not use any type of technology in translation. In addition, there was a significant difference in the use of CAT for translation different types of collocations. The results also indicated that CAT tools were more effective in translation fixed and medium-strength collocations than weak collocations. Finally, the results showed that CAT tools were effective in translation collocations in both types of languages (i.e. target language or source language). The study suggests some guidelines for translators to use CAT tools.Keywords: machine translation, computer-assisted translation, collocations, technology
Procedia PDF Downloads 1947027 The Effect of the Pronunciation of Emphatic Sounds on Perceived Masculinity/Femininity
Authors: M. Sayyour, M. Abdulkareem, O. Osman, S. Salmeh
Abstract:
Emphatic sounds in Arabic are /tˤ/, /sˤ/, /dˤ/, and /ðˤ/. They involve a secondary articulation in the pharynx area as opposed to their counterparts: /t/,/s/,/d/and /ð/. Although they are present in most Arabic dialects, some dialects have lost this class as a historical development, such as Maltese Arabic. It has been found that there is a difference in the pronunciation of these emphatic sounds between the two genders, arguing that males tend to produce more evident emphasis than females. This study builds on these studies by trying to investigate whether listeners perceive fully emphatic sounds as more masculine and less emphatic sounds as more feminine. Furthermore, the study aims to find out which is more important in this perception process: the emphatic consonant itself or the vowel following it. To test this, natural and manipulated tokens of two male and two female speakers were used. The natural tokens include words that have emphatic consonant and emphatic vowel and tokens that have plain consonant and plain vowel. The manipulated tokens include words that have emphatic consonant but central vowel and plain consonant followed by the same central vowel. These manipulated tokens allow us to see whether the consonant will still affect the perception even if the vowel is controlled. Another group of words that contained no emphatic sounds was used as a control group. The total number of tokens (natural, manipulated, and control) are 160 tokens. After that, 60 university students (30 males and 30 females) listened to these tokens and responded by choosing a specific character that they think is likely to produce each token. The characters’ descriptions are carefully written with two degrees of femininity and two degrees of masculinity. The preliminary results for the femininity level showed that the highest degree of femininity was for tokens that contain a plain consonant and a plain vowel. The lowest level of femininity was given for tokens that have fully emphatic consonant and vowel. For the manipulated tokens that contained plain consonant and central vowel, the femininity degree was high which indicates that the consonant is more important than the vowel, while for the manipulated tokens that contain emphatic consonant and a central vowel, the femininity level was higher than that for the tokens that have emphatic consonant and emphatic vowel, which indicates that the vowel is more important for the perception of emphatic consonants. These results are interpreted in light of feminist linguistic theories, linguistic expectations, performed gender and linguistic change theories.Keywords: Emphatic sounds, gender studies, perception, sociophonetics
Procedia PDF Downloads 3857026 Drama, a Microcosm of Life Experiences: An Analysis of Symbolic Order and Social Relationships in Olu Obafemi’s Play
Authors: Victor Ademulegun Arijeniwa
Abstract:
This is a sociolinguistic study of Olu Obafemi’s Naira Has No Gender as a microcosm of life experiences. The paper assesses how Olu Obafemi’s use of language in the dramatic world serves as both social relationships and symbolic order of communicative roadmap that are capable of yielding well expressed and richly articulated sociolinguistic implications. Being the interface between language and social institutions, sociolinguistics and its application is highly utilitarian in linguistics analysis, especially where the language of a text appears to be deeply tensed, such as found in dramatic texts. The aim of this paper has been (i) to assess the symbolic orderly presentation of form in Olu Obafemi’Naira Has No Gender; (ii) to find out the linguistic elements and textual organization that represent social relationships in Olu Obafemi’s Naira Has No Gender. Using qualitative research design in data generation with insights from John Gumperz Interactional Sociolinguistics Theory with particular reference to contextualization cues and miscommunication, the paper identifies the implication of the dramatic discourse on society.Keywords: sociolinguistics, Microcosm, contextualisation, miscommunication variable, identity, symbolic order
Procedia PDF Downloads 2007025 Online Graduate Students’ Perspective on Engagement in Active Learning in the United States
Authors: Ehi E. Aimiuwu
Abstract:
As of 2017, many researchers in educational journals are still wondering if students are effectively and efficiently engaged in active learning in the online learning environment. The goal of this qualitative single case study and narrative research is to explore if students are actively engaged in their online learning. Seven online students in the United States from LinkedIn and residencies were interviewed for this study. Eleven online learning techniques from research were used as a framework. Data collection tools were used for the study that included a digital audiotape, observation sheet, interview protocol, transcription, and NVivo 12 Plus qualitative software. Data analysis process, member checking, and key themes were used to reach saturation. About 85.7% of students preferred individual grading. About 71.4% of students valued professor’s interacting 2-3 times weekly, participating through posts and responses, having good internet access, and using email. Also, about 57.1% said students log in 2-3 times weekly to daily, professor’s social presence helps, regular punctuality in work submission, and prefer assessments style of research, essay, and case study. About 42.9% appreciated syllabus usefulness and professor’s expertise.Keywords: class facilitation, course management, online teaching, online education, student engagement
Procedia PDF Downloads 1317024 Impact of an Instructional Design Model in a Mathematics Game for Enhancing Students’ Motivation in Developing Countries
Authors: Shafaq Rubab
Abstract:
One of the biggest reasons of dropouts from schools is lack of motivation and interest among the students, particularly in mathematics. Many developing countries are facing this problem and this issue is lowering the literacy rate in these developing countries. The best solution for increasing motivation level and interest among the students is using tablet game-based learning. However, a pedagogically sound game required a well-planned instructional design model to enhance learner’s attention and confidence otherwise effectiveness of the learning games suffers badly. This research aims to evaluate the impact of the pedagogically sound instructional design model on students’ motivation by using tablet game-based learning. This research was conducted among the out-of-school-students having an age range from 7 to 12 years and the sample size of two hundred students was purposively selected without any gender discrimination. Qualitative research was conducted by using a survey tool named Instructional Material Motivational Survey (IMMS) adapted from Keller Arcs model. A comparison of results from both groups’ i.e. experimental group and control group revealed that motivation level of the students taught by the game was higher than the students instructed by using conventional methodologies. Experimental group’s students were more attentive, confident and satisfied as compared to the control group’s students. This research work not only promoted the trend of digital game-based learning in developing countries but also supported that a pedagogically sound instructional design model utilized in an educational game can increase the motivation level of the students and can make the learning process a totally immersive and interactive fun loving activity.Keywords: digital game-based learning, student’s motivation, instructional design model, learning process
Procedia PDF Downloads 4347023 Identifying and Understand Pragmatic Failures in Portuguese Foreign Language by Chinese Learners in Macau
Authors: Carla Lopes
Abstract:
It is clear nowadays that the proper performance of different speech acts is one of the most difficult obstacles that a foreign language learner has to overcome to be considered communicatively competent. This communication presents the results of an investigation on the pragmatic performance of Portuguese Language students at the University of Macau. The research discussed herein is based on a survey consisting of fourteen speaking situations to which the participants must respond in writing, and that includes different types of speech acts: apology, response to a compliment, refusal, complaint, disagreement and the understanding of the illocutionary force of indirect speech acts. The responses were classified in a five levels Likert scale (quantified from 1 to 5) according to their suitability for the particular situation. In general terms, we can summarize that about 45% of the respondents' answers were pragmatically competent, 10 % were acceptable and 45 % showed weaknesses at socio-pragmatic competence level. Given that the linguistic deviations were not taken into account, we can conclude that the faults are of cultural origin. It is natural that in the presence of orthogonal cultures, such as Chinese and Portuguese, there are failures of this type, barely solved in the four years of the undergraduate program. The target population, native speakers of Cantonese or Mandarin, make their first contact with the English language before joining the Bachelor of Portuguese Language. An analysis of the socio - pragmatic failures in the respondents’ answers suggests the conclusion that many of them are due to the lack of cultural knowledge. They try to compensate for this either using their native culture or resorting to a Western culture that they consider close to the Portuguese, that is the English or US culture, previously studied, and also widely present in the media and on the internet. This phenomenon, known as 'pragmatic transfer', can result in a linguistic behavior that may be considered inauthentic or pragmatically awkward. The resulting speech act is grammatically correct but is not pragmatically feasible, since it is not suitable to the culture of the target language, either because it does not exist or because the conditions of its use are in fact different. Analysis of the responses also supports the conclusion that these students present large deviations from the expected and stereotyped behavior of Chinese students. We can speculate while this linguistic behavior is the consequence of the Macao globalization that culturally casts the students, makes them more open, and distinguishes them from the typical Chinese students.Keywords: Portuguese foreign language, pragmatic failures, pragmatic transfer, pragmatic competence
Procedia PDF Downloads 2137022 An Experimental Study of Scalar Implicature Processing in Chinese
Authors: Liu Si, Wang Chunmei, Liu Huangmei
Abstract:
A prominent component of the semantic versus pragmatic debate, scalar implicature (SI) has been gaining great attention ever since it was proposed by Horn. The constant debate is between the structural and pragmatic approach. The former claims that generation of SI is costless, automatic, and dependent mostly on the structural properties of sentences, whereas the latter advocates both that such generation is largely dependent upon context, and that the process is costly. Many experiments, among which Katsos’s text comprehension experiments are influential, have been designed and conducted in order to verify their views, but the results are not conclusive. Besides, most of the experiments were conducted in English language materials. Katsos conducted one off-line and three on-line text comprehension experiments, in which the previous shortcomings were addressed on a certain extent and the conclusion was in favor of the pragmatic approach. We intend to test the results of Katsos’s experiment in Chinese scalar implicature. Four experiments in both off-line and on-line conditions to examine the generation and response time of SI in Chinese "yixie" (some) and "quanbu (dou)" (all) will be conducted in order to find out whether the structural or the pragmatic approach could be sustained. The study mainly aims to answer the following questions: (1) Can SI be generated in the upper- and lower-bound contexts as Katsos confirmed when Chinese language materials are used in the experiment? (2) Can SI be first generated, then cancelled as default view claimed or can it not be generated in a neutral context when Chinese language materials are used in the experiment? (3) Is SI generation costless or costly in terms of processing resources? (4) In line with the SI generation process, what conclusion can be made about the cognitive processing model of language meaning? Is it a parallel model or a linear model? Or is it a dynamic and hierarchical model? According to previous theoretical debates and experimental conflicts, presumptions could be made that SI, in Chinese language, might be generated in the upper-bound contexts. Besides, the response time might be faster in upper-bound than that found in lower-bound context. SI generation in neutral context might be the slowest. At last, a conclusion would be made that the processing model of SI could not be verified by either absolute structural or pragmatic approaches. It is, rather, a dynamic and complex processing mechanism, in which the interaction of language forms, ad hoc context, mental context, background knowledge, speakers’ interaction, etc. are involved.Keywords: cognitive linguistics, pragmatics, scalar implicture, experimental study, Chinese language
Procedia PDF Downloads 3647021 The Value of Dynamic Priorities in Motor Learning between Some Basic Skills in Beginner's Basketball, U14 Years
Authors: Guebli Abdelkader, Regiueg Madani, Sbaa Bouabdellah
Abstract:
The goals of this study are to find ways to determine the value of dynamic priorities in motor learning between some basic skills in beginner’s basketball (U14), based on skills of shooting and defense against the shooter. Our role is to expose the statistical results in compare & correlation between samples of study in tests skills for the shooting and defense against the shooter. In order to achieve this objective, we have chosen 40 boys in middle school represented in four groups, two controls group’s (CS1, CS2) ,and two experimental groups (ES1: training on skill of shooting, skill of defense against the shooter, ES2: experimental group training on skill of defense against the shooter, skill of shooting). For the statistical analysis, we have chosen (F & T) tests for the statistical differences, and test (R) for the correlation analysis. Based on the analyses statistics, we confirm the importance of classifying priorities of basketball basic skills during the motor learning process. Admit that the benefits of experimental group training are to economics in the time needed for acquiring new motor kinetic skills in basketball. In the priority of ES2 as successful dynamic motor learning method to enhance the basic skills among beginner’s basketball.Keywords: basic skills, basketball, motor learning, children
Procedia PDF Downloads 1717020 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP
Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis
Abstract:
The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.Keywords: chatbot, depression diagnosis, LSTM model, natural language process
Procedia PDF Downloads 737019 Exploring Students’ Satisfaction Levels with Online Facilitation Provided by National Open University of Nigeria’s Facilitators
Authors: Louis Okon Akpan
Abstract:
National Open University of Nigeria (NOUN) is an open and distance learning institution whose aim is to provide education for all and also promote lifelong learning in Nigeria. Before now, student-centred learning was adopted. In recent times, online facilitation has been introduced. Therefore, the study explores ways in which students are satisfied with online facilitation provided by NOUN lecturers. A qualitative approach was adopted. The interpretive paradigm was employed as a lens to interpret narratives from the participants. In order to gather information for the study, a semi-structured interview was developed for sixteen participants who were purposively selected from eight facilities of the university. After data gathering from the field, it was subjected to transcription and coding. The emergence of themes from the coded data was analysed using thematic analysis. Findings indicated that students found online learning, recently introduced by the university management, extremely fulfilling and rewarding.Keywords: online facilitation, lecturer, students’ satisfaction, National Open University of Nigeria
Procedia PDF Downloads 867018 Efficacy of Phonological Awareness Intervention for People with Language Impairment
Authors: I. Wardana Ketut, I. Suparwa Nyoman
Abstract:
This study investigated the form and characteristic of speech sound produced by three Balinese subjects who have recovered from aphasia as well as intervened their language impairment on side of linguistic and neuronal aspects of views. The failure of judging the speech sound was caused by impairment of motor cortex that indicated there were lesions in left hemispheric language zone. Sound articulation phenomena were in the forms of phonemes deletion, replacement or assimilation in individual words and meaning building for anomic aphasia. Therefore, the Balinese sound patterns were stimulated by showing pictures to the subjects and recorded to recognize what individual consonants or vowels they unclearly produced and to find out how the sound disorder occurred. The physiology of sound production by subject’s speech organs could not only show the accuracy of articulation but also any level of severity the lesion they suffered from. The subjects’ speech sounds were investigated, classified and analyzed to know how poor the lingual units were and observed to clarify weaknesses of sound characters occurred either for place or manner of articulation. Many fricative and stopped consonants were replaced by glottal or palatal sounds because the cranial nerve, such as facial, trigeminal, and hypoglossal underwent impairment after the stroke. The phonological intervention was applied through a technique called phonemic articulation drill and the examination was conducted to know any change has been obtained. The finding informed that some weak articulation turned into clearer sound and simple meaning of language has been conveyed. The hierarchy of functional parts of brain played important role of language formulation and processing. From this finding, it can be clearly emphasized that this study supports the role of right hemisphere in recovery from aphasia is associated with functional brain reorganization.Keywords: aphasia, intervention, phonology, stroke
Procedia PDF Downloads 1977017 Investigating Educator Perceptions of Body-Rich Language on Student Self-Image, Body-Consciousness and School Climate
Authors: Evelyn Bilias-Lolis, Emily Louise Winter
Abstract:
Schools have a responsibility to implement school-wide frameworks that actively prevent, detect, and support all aspects of child development and learning. Such efforts can range from individual or classroom-level supports to school-wide primary prevention practices for the school’s infrastructure or climate. This study assessed the perceptions of educators across a variety of disciplines in Connecticut (i.e., elementary and secondary education, special education, school psychology, and school social work) on the perceived impact of their beliefs, language, and behavior about food and body consciousness on student self-image and school climate. Participants (N=50) completed a short electronic questionnaire measuring perceptions of how their behavior can influence their students’ opinions about themselves, their emerging self-image, and the overall climate of the school community. Secondly, the beliefs that were directly assessed in the first portion of the survey were further measured through the use of applied social vignettes involving students directly or as bystanders. Preliminary findings are intriguing. When asked directly, 100% of the respondents reported that what they say to students directly could influence student opinions about themselves and 98% of participants further agreed that their behavior both to and in front of students could impact a student’s developing self-image. Likewise, 82% of the sample agreed that their personal language and behavior affect the overall climate of a school building. However, when the above beliefs were assessed via applied social vignettes depicting routine social exchanges, results were significantly more widespread (i.e., results were evenly dispersed among levels of agreement and disagreement across participants in all areas). These preliminary findings offer humble but critical implications for informing integrated school wellness frameworks that aim to create body-sensitive school communities. Research indicates that perceptions about body image, attitudes about eating, and the onset of disordered eating practices surface in school-aged years. Schools provide a natural setting for instilling foundations for child wellness as a natural extension of existing school climate reform efforts. These measures do not always need to be expansive or extreme. Rather, educators have a ripe opportunity to become champions for health and wellness through increased self-awareness and subtle shifts in language and behavior. Future psychological research needs to continue to explore this line of inquiry using larger and more varied samples of educators in order to identify needs in teacher training and development that can yield positive and preventative health outcomes for children.Keywords: body-sensitive schools, integrated school health, school climate reform, teacher awareness
Procedia PDF Downloads 160