Search results for: laser ultrasound technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7531

Search results for: laser ultrasound technique

4891 Inter-Complex Dependence of Production Technique and Preforms Construction on the Failure Pattern of Multilayer Homo-Polymer Composites

Authors: Ashraf Nawaz Khan, R. Alagirusamy, Apurba Das, Puneet Mahajan

Abstract:

The thermoplastic-based fibre composites are acquiring a market sector of conventional as well as thermoset composites. However, replacing the thermoset with a thermoplastic composite has never been an easy task. The inherent high viscosity of thermoplastic resin reveals poor interface properties. In this work, a homo-polymer towpreg is produced through an electrostatic powder spray coating methodology. The produced flexible towpreg offers a low melt-flow distance during the consolidation of the laminate. The reduced melt-flow distance demonstrates a homogeneous fibre/matrix distribution (and low void content) on consolidation. The composite laminate has been fabricated with two manufacturing techniques such as conventional film stack (FS) and powder-coated (PC) technique. This helps in understanding the distinct response of produced laminates on applying load since the laminates produced through the two techniques are comprised of the same constituent fibre and matrix (constant fibre volume fraction). The changed behaviour is observed mainly due to the different fibre/matrix configurations within the laminate. The interface adhesion influences the load transfer between the fibre and matrix. Therefore, it influences the elastic, plastic, and failure patterns of the laminates. Moreover, the effect of preform geometries (plain weave and satin weave structure) are also studied for corresponding composite laminates in terms of various mechanical properties. The fracture analysis is carried out to study the effect of resin at the interlacement points through micro-CT analysis. The PC laminate reveals a considerably small matrix-rich and deficient zone in comparison to the FS laminate. The different load tensile, shear, fracture toughness, and drop weight impact test) is applied to the laminates, and corresponding damage behaviour is analysed in the successive stage of failure. The PC composite has shown superior mechanical properties in comparison to the FS composite. The damage that occurs in the laminate is captured through the SEM analysis to identify the prominent mode of failure, such as matrix cracking, fibre breakage, delamination, debonding, and other phenomena.

Keywords: composite, damage, fibre, manufacturing

Procedia PDF Downloads 124
4890 Immobilizing Quorum Sensing Inhibitors on Biomaterial Surfaces

Authors: Aditi Taunk, George Iskander, Kitty Ka Kit Ho, Mark Willcox, Naresh Kumar

Abstract:

Bacterial infections on biomaterial implants and medical devices accounts for 60-70% of all hospital acquired infections (HAIs). Treatment or removal of these infected devices results in high patient mortality and morbidity along with increased hospital expenses. In addition, with no effective strategies currently available and rapid development of antibacterial resistance has made device-related infections extremely difficult to treat. Therefore, in this project we have developed biomaterial surfaces using antibacterial compounds that inhibit biofilm formation by interfering with the bacterial communication mechanism known as quorum sensing (QS). This study focuses on covalent attachment of potent quorum sensing (QS) inhibiting compounds, halogenated furanones (FUs) and dihydropyrrol-2-ones (DHPs), onto glass surfaces. The FUs were attached by photoactivating the azide groups on the surface, and the acid functionalized DHPs were immobilized on amine surface via EDC/NHS coupling. The modified surfaces were tested in vitro against pathogenic organisms such as Staphylococcus aureus and Pseudomonas aeruginosa using confocal laser scanning microscopy (CLSM). Successful attachment of compounds on the substrates was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antibacterial efficacy was assessed, and significant reduction in bacterial adhesion and biofilm formation was observed on the FU and DHP coated surfaces. The activity of the coating was dependent upon the type of substituent present on the phenyl group of the DHP compound. For example, the ortho-fluorophenyl DHP (DHP-2) exhibited 79% reduction in bacterial adhesion against S. aureus and para-fluorophenyl DHP (DHP-3) exhibited 70% reduction against P. aeruginosa. The results were found to be comparable to DHP coated surfaces prepared in earlier study via Michael addition reaction. FUs and DHPs were able to retain their in vitro antibacterial efficacy after covalent attachment via azide chemistry. This approach is a promising strategy to develop efficient antibacterial biomaterials to reduce device related infections.

Keywords: antibacterial biomaterials, biomedical device-related infections, quorum sensing, surface functionalization

Procedia PDF Downloads 253
4889 Inverted Geometry Ceramic Insulators in High Voltage Direct Current Electron Guns for Accelerators

Authors: C. Hernandez-Garcia, P. Adderley, D. Bullard, J. Grames, M. A. Mamun, G. Palacios-Serrano, M. Poelker, M. Stutzman, R. Suleiman, Y. Wang, , S. Zhang

Abstract:

High-energy nuclear physics experiments performed at the Jefferson Lab (JLab) Continuous Electron Beam Accelerator Facility require a beam of spin-polarized ps-long electron bunches. The electron beam is generated when a circularly polarized laser beam illuminates a GaAs semiconductor photocathode biased at hundreds of kV dc inside an ultra-high vacuum chamber. The photocathode is mounted on highly polished stainless steel electrodes electrically isolated by means of a conical-shape ceramic insulator that extends into the vacuum chamber, serving as the cathode electrode support structure. The assembly is known as a dc photogun, which has to simultaneously meet the following criteria: high voltage to manage space charge forces within the electron bunch, ultra-high vacuum conditions to preserve the photocathode quantum efficiency, no field emission to prevent gas load when field emitted electrons impact the vacuum chamber, and finally no voltage breakdown for robust operation. Over the past decade, JLab has tested and implemented the use of inverted geometry ceramic insulators connected to commercial high voltage cables to operate a photogun at 200kV dc with a 10 cm long insulator, and a larger version at 300kV dc with 20 cm long insulator. Plans to develop a third photogun operating at 400kV dc to meet the stringent requirements of the proposed International Linear Collider are underway at JLab, utilizing even larger inverted insulators. This contribution describes approaches that have been successful in solving challenging problems related to breakdown and field emission, such as triple-point junction screening electrodes, mechanical polishing to achieve mirror-like surface finish and high voltage conditioning procedures with Kr gas to extinguish field emission.

Keywords: electron guns, high voltage techniques, insulators, vacuum insulation

Procedia PDF Downloads 104
4888 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 407
4887 Utilization of Sludge in the Manufacturing of Fired Clay Bricks

Authors: Anjali G. Pillai, S. Chadrakaran

Abstract:

The extensive amount of sludge generated throughout the world, as a part of water treatment works, have caused various social and economic issues, such as a demand on landfill spaces, increase in environmental pollution and raising the waste management cost. With growing social awareness about toxic incinerator emissions and the increasing concern over the disposal of sludge on the agricultural land, the recovery of sewage sludge as a building and construction raw material can be considered as an innovative approach to tackle the sludge disposal problem. The proposed work aims at studying the recycling ability of the sludge, generated from the water treatment process, by incorporating it into the fired clay brick units. The work involves initial study of the geotechnical characteristics of the brick-clay and the sludge. Chemical compatibility of both the materials will be analyzed by X-ray fluorescence technique. The variation in the strength aspects with varying proportions of sludge i.e. 10%, 20%, 30% and 40% in the sludge-clay mix will also be determined by the proctor density test. Based on the optimum moisture content, the sludge-clay bricks will be manufactured in a brick manufacturing plant and the modified brick units will be tested to determine the variation in compressive strength, bulk density, firing shrinkage, shrinkage loss and initial water absorption rate with respect to the conventional clay bricks. The results will be compared with the specifications given in Indian Standards to arrive at the potential use of the new bricks. The durability aspect will be studied by conducting the leachate analysis test using atomic adsorption spectrometry. The lightweight characteristics of the sludge modified bricks will be ascertained with the scanning electron microscope technique which will be indicative of the variation in pore structure with the increase in sludge content within the bricks. The work will determine the suitable proportion of the sludge – clay mix in the brick which can then be effectively implemented. The feasibility aspect of the work will be determined for commercial production of the units. The work involves providing a strategy for conversion of waste to resource. Moreover, it provides an alternative solution to the problem of growing scarcity of brick-clay for the manufacturing of fired clay bricks.

Keywords: eco-bricks, green construction material, sludge amended bricks, sludge disposal, waste management

Procedia PDF Downloads 290
4886 Preparation of Silver and Silver-Gold, Universal and Repeatable, Surface Enhanced Raman Spectroscopy Platforms from SERSitive

Authors: Pawel Albrycht, Monika Ksiezopolska-Gocalska, Robert Holyst

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) is a technique of growing importance not only in purely scientific research related to analytical chemistry. It finds more and more applications in broadly understood testing - medical, forensic, pharmaceutical, food - and everywhere works perfectly, on one condition that SERS substrates used for testing give adequate enhancement, repeatability, and homogeneity of SERS signal. This is a problem that has existed since the invention of this technique. Some laboratories use as SERS amplifiers colloids with silver or gold nanoparticles, others form rough silver or gold surfaces, but results are generally either weak or unrepeatable. Furthermore, these structures are very often highly specific - they amplify the signal only of a small group of compounds. It means that they work with some kinds of analytes but only with those which were used at a developer’s laboratory. When it comes to research on different compounds, completely new SERS 'substrates' are required. That underlay our decision to develop universal substrates for the SERS spectroscopy. Generally, each compound has different affinity for both silver and gold, which have the best SERS properties, and that's what depends on what signal we get in the SERS spectrum. Our task was to create the platform that gives a characteristic 'fingerprint' of the largest number of compounds with very high repeatability - even at the expense of the intensity of the enhancement factor (EF) (possibility to repeat research results is of the uttermost importance). As specified above SERS substrates are offered by SERSitive company. Applied method is based on cyclic potentiodynamic electrodeposition of silver or silver-gold nanoparticles on the conductive surface of ITO-coated glass at controlled temperature of the reaction solution. Silver nanoparticles are supplied in the form of silver nitrate (AgNO₃, 10 mM), gold nanoparticles are derived from tetrachloroauric acid (10 mM) while sodium sulfite (Na₂O₃, 5 mM) is used as a reductor. To limit and standardize the size of the SERS surface on which nanoparticles are deposited, photolithography is used. We secure the desired ITO-coated glass surface, and then etch the unprotected ITO layer which prevents nanoparticles from settling at these sites. On the prepared surface, we carry out the process described above, obtaining SERS surface with nanoparticles of sizes 50-400 nm. The SERSitive platforms present highly sensitivity (EF = 10⁵-10⁶), homogeneity and repeatability (70-80%).

Keywords: electrodeposition, nanoparticles, Raman spectroscopy, SERS, SERSitive, SERS platforms, SERS substrates

Procedia PDF Downloads 144
4885 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 433
4884 Iterative Linear Quadratic Regulator (iLQR) vs LQR Controllers for Quadrotor Path Tracking

Authors: Wesam Jasim, Dongbing Gu

Abstract:

This paper presents an iterative linear quadratic regulator optimal control technique to solve the problem of quadrotors path tracking. The dynamic motion equations are represented based on unit quaternion representation and include some modelled aerodynamical effects as a nonlinear part. Simulation results prove the ability and effectiveness of iLQR to stabilize the quadrotor and successfully track different paths. It also shows that iLQR controller outperforms LQR controller in terms of fast convergence and tracking errors.

Keywords: iLQR controller, optimal control, path tracking, quadrotor UAVs

Procedia PDF Downloads 424
4883 Effects of Group Cognitive Restructuring and Rational Emotive Behavioral Therapy on Psychological Distress of Awaiting-Trial Inmates in Correctional Centers in North-West, Nigeria

Authors: Muhammad Shafi’U Adamu

Abstract:

This study examined the effects of two groups of Cognitive Behavioral Therapies (CBT) which, includes Cognitive Restructuring (CB) and Rational Emotive Behavioral Therapy (REBT), on the Psychological Distress of awaiting-trial Inmates in Correctional Centers in North-West Nigeria. The study had four specific objectives, four research questions, and four null hypotheses. The study used a quasi-experimental design that involved pre-test and post-test. The population comprised of all 7,962 awaiting-trial inmates in correctional centers in North-west Nigeria. 131 awaiting trial inmates from three intact Correctional Centers were randomly selected using the census technique. The respondents were sampled and randomly put into 3 groups (CR, REBT and Control). Kessler Psychological Distress Scale (K10) was adapted for data collection in the study. The instrument was validated by experts and subjected to a pilot study using Cronbach's Alpha with a reliability coefficient of 0.772. Each group received treatment for 8 consecutive weeks (60 minutes/week). Data collected from the field were subjected to descriptive statistics of mean, standard deviation and mean difference to answer the research questions. Inferential statistics of ANOVA and independent sample t-test were used to test the null hypotheses at P≤ 0.05 level of significance. Results in the study revealed that there was no significant difference among the pre-treatment mean scores of experimental and control groups. Statistical evidence also showed a significant difference among the mean scores of the three groups, and thus, results of the Post Hoc multiple-comparison test indicated the posttreatment reduction of psychological distress in the awaiting-trial inmates. Documented output also showed a significant difference between the post-treatment psychologically distressed mean scores of male and female awaiting-trial inmates, but there was no difference in those exposed to REBT. The research recommends that a standardized structured CBT counseling technique treatment should be designed for correctional centers across Nigeria, and CBT counseling techniques could be used in the treatment of PD in both correctional and clinical settings.

Keywords: awaiting-trial inmates, cognitive restructuring, correctional centers, rational emotive behavioral therapy

Procedia PDF Downloads 56
4882 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube

Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda

Abstract:

In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75 mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.

Keywords: flow visualization, pressure measurement, reverse flow, vortex tube

Procedia PDF Downloads 501
4881 Liver Regeneration of Small in situ Injury

Authors: Ziwei Song, Junjun Fan, Jeremy Teo, Yang Yu, Yukun Ma, Jie Yan, Shupei Mo, Lisa Tucker-Kellogg, Peter So, Hanry Yu

Abstract:

Liver is the center of detoxification and exposed to toxic metabolites all the time. It is highly regenerative after injury, with the ability to restore even after 70% partial hepatectomy. Most of the previous studies were using hepatectomy as injury models for liver regeneration study. There is limited understanding of small-scale liver injury, which can be caused by either low dose drug consumption or hepatocyte routine metabolism. Although these small in situ injuries do not cause immediate symptoms, repeated injuries will lead to aberrant wound healing in liver. Therefore, the cellular dynamics during liver regeneration is critical for our understanding of liver regeneration mechanism. We aim to study the liver regeneration of small-scale in situ liver injury in transgenic mice labeling actin (Lifeact-GFP). Previous studies have been using sample sections and biopsies of liver, which lack real-time information. In order to trace every individual hepatocyte during the regeneration process, we have developed and optimized an intravital imaging system that allows in vivo imaging of mouse liver for consecutive 5 days, allowing real-time cellular tracking and quantification of hepatocytes. We used femtosecond-laser ablation to make controlled and repeatable liver injury model, which mimics the real-life small in situ liver injury. This injury model is the first case of its kind for in vivo study on liver. We found that small-scale in situ liver injury is repaired by the coordination of hypertrophy and migration of hepatocytes. Hypertrophy is only transient at initial phase, while migration is the main driving force to complete the regeneration process. From cellular aspect, Akt/mTOR pathway is activated immediately after injury, which leads to transient hepatocyte hypertrophy. From mechano-sensing aspect, the actin cable, formed at apical surface of wound proximal hepatocytes, provides mechanical tension for hepatocyte migration. This study provides important information on both chemical and mechanical signals that promote liver regeneration of small in situ injury. We conclude that hypertrophy and migration play a dominant role at different stages of liver regeneration.

Keywords: hepatocyte, hypertrophy, intravital imaging, liver regeneration, migration

Procedia PDF Downloads 196
4880 Teachers’ Role and Principal’s Administrative Functions as Correlates of Effective Academic Performance of Public Secondary School Students in Imo State, Nigeria

Authors: Caroline Nnokwe, Iheanyi Eneremadu

Abstract:

Teachers and principals are vital and integral parts of the educational system. For educational objectives to be met, the role of teachers and the functions of the principals are not to be overlooked. However, the inability of teachers and principals to carry out their roles effectively has impacted the outcome of the students’ performance. The study, therefore, examined teachers’ roles and principal’s administrative functions as correlates of effective academic performance of public secondary school students in Imo state, Nigeria. Four research questions and two hypotheses guided the study. The study adopted a correlation research design. The sample size was 5,438 respondents via the Yaro-Yamane technique, which consists of 175 teachers, 13 principals and 5,250 students using the proportional stratified random sampling technique. The instruments for data collection were a researcher-made questionnaire titled Teachers’ Role/Principals’ Administrative Functions Questionnaire (TRPAFQ) with a Cronbach Alpha coefficient of .82 and student's internal results obtained from the school authorities. Data collected were analyzed using the Pearson product-moment correlation coefficient and simple linear regression. Research questions were answered using Pearson Product Moment Correlation statistics, while the hypotheses were tested at 0.05 level of significance using regression analysis. The findings of the study showed that the educational qualification of teachers, organizing, and planning correlated student’s academic performance to a great extent, while availability and proper use of instructional materials by teachers correlated the academic performance of students to a very high extent. The findings also revealed that there is a significant relationship between teachers’ role, principals’ administrative functions and student’s academic performance of public secondary schools in Imo State, The study recommended among others that there is the need for government, through the ministry of education, and education authorities to adequately staff their supervisory department in order to carry out proper supervision of secondary school teachers, and also provide adequate instructional materials to ensure greater academic performance among secondary school students of Imo state, Nigeria.

Keywords: instructional materials, principals’ administrative functions, students’ academic performance, teacher role

Procedia PDF Downloads 69
4879 Comparison of Iodine Density Quantification through Three Material Decomposition between Philips iQon Dual Layer Spectral CT Scanner and Siemens Somatom Force Dual Source Dual Energy CT Scanner: An in vitro Study

Authors: Jitendra Pratap, Jonathan Sivyer

Abstract:

Introduction: Dual energy/Spectral CT scanning permits simultaneous acquisition of two x-ray spectra datasets and can complement radiological diagnosis by allowing tissue characterisation (e.g., uric acid vs. non-uric acid renal stones), enhancing structures (e.g. boost iodine signal to improve contrast resolution), and quantifying substances (e.g. iodine density). However, the latter showed inconsistent results between the 2 main modes of dual energy scanning (i.e. dual source vs. dual layer). Therefore, the present study aimed to determine which technology is more accurate in quantifying iodine density. Methods: Twenty vials with known concentrations of iodine solutions were made using Optiray 350 contrast media diluted in sterile water. The concentration of iodine utilised ranged from 0.1 mg/ml to 1.0mg/ml in 0.1mg/ml increments, 1.5 mg/ml to 4.5 mg/ml in 0.5mg/ml increments followed by further concentrations at 5.0 mg/ml, 7mg/ml, 10 mg/ml and 15mg/ml. The vials were scanned using Dual Energy scan mode on a Siemens Somatom Force at 80kV/Sn150kV and 100kV/Sn150kV kilovoltage pairing. The same vials were scanned using Spectral scan mode on a Philips iQon at 120kVp and 140kVp. The images were reconstructed at 5mm thickness and 5mm increment using Br40 kernel on the Siemens Force and B Filter on Philips iQon. Post-processing of the Dual Energy data was performed on vendor-specific Siemens Syngo VIA (VB40) and Philips Intellispace Portal (Ver. 12) for the Spectral data. For each vial and scan mode, the iodine concentration was measured by placing an ROI in the coronal plane. Intraclass correlation analysis was performed on both datasets. Results: The iodine concentrations were reproduced with a high degree of accuracy for Dual Layer CT scanner. Although the Dual Source images showed a greater degree of deviation in measured iodine density for all vials, the dataset acquired at 80kV/Sn150kV had a higher accuracy. Conclusion: Spectral CT scanning by the dual layer technique has higher accuracy for quantitative measurements of iodine density compared to the dual source technique.

Keywords: CT, iodine density, spectral, dual-energy

Procedia PDF Downloads 106
4878 Microstructure and Mechanical Properties Evaluation of Graphene-Reinforced AlSi10Mg Matrix Composite Produced by Powder Bed Fusion Process

Authors: Jitendar Kumar Tiwari, Ajay Mandal, N. Sathish, A. K. Srivastava

Abstract:

Since the last decade, graphene achieved great attention toward the progress of multifunction metal matrix composites, which are highly demanded in industries to develop energy-efficient systems. This study covers the two advanced aspects of the latest scientific endeavor, i.e., graphene as reinforcement in metallic materials and additive manufacturing (AM) as a processing technology. Herein, high-quality graphene and AlSi10Mg powder mechanically mixed by very low energy ball milling with 0.1 wt. % and 0.2 wt. % graphene. Mixed powder directly subjected to the powder bed fusion process, i.e., an AM technique to produce composite samples along with bare counterpart. The effects of graphene on porosity, microstructure, and mechanical properties were examined in this study. The volumetric distribution of pores was observed under X-ray computed tomography (CT). On the basis of relative density measurement by X-ray CT, it was observed that porosity increases after graphene addition, and pore morphology also transformed from spherical pores to enlarged flaky pores due to improper melting of composite powder. Furthermore, the microstructure suggests the grain refinement after graphene addition. The columnar grains were able to cross the melt pool boundaries in case of the bare sample, unlike composite samples. The smaller columnar grains were formed in composites due to heterogeneous nucleation by graphene platelets during solidification. The tensile properties get affected due to induced porosity irrespective of graphene reinforcement. The optimized tensile properties were achieved at 0.1 wt. % graphene. The increment in yield strength and ultimate tensile strength was 22% and 10%, respectively, for 0.1 wt. % graphene reinforced sample in comparison to bare counterpart while elongation decreases 20% for the same sample. The hardness indentations were taken mostly on the solid region in order to avoid the collapse of the pores. The hardness of the composite was increased progressively with graphene content. Around 30% of increment in hardness was achieved after the addition of 0.2 wt. % graphene. Therefore, it can be concluded that powder bed fusion can be adopted as a suitable technique to develop graphene reinforced AlSi10Mg composite. Though, some further process modification required to avoid the induced porosity after the addition of graphene, which can be addressed in future work.

Keywords: graphene, hardness, porosity, powder bed fusion, tensile properties

Procedia PDF Downloads 115
4877 Application of Fuzzy Clustering on Classification Agile Supply Chain

Authors: Hamidreza Fallah Lajimi , Elham Karami, Fatemeh Ali nasab, Mostafa Mahdavikia

Abstract:

Being responsive is an increasingly important skill for firms in today’s global economy; thus firms must be agile. Naturally, it follows that an organization’s agility depends on its supply chain being agile. However, achieving supply chain agility is a function of other abilities within the organization. This paper analyses results from a survey of 71 Iran manufacturing companies in order to identify some of the factors for agile organizations in managing their supply chains. Then we classification this company in four cluster with fuzzy c-mean technique and with four validations functional determine automatically the optimal number of clusters.

Keywords: agile supply chain, clustering, fuzzy clustering

Procedia PDF Downloads 454
4876 Lentil Protein Fortification in Cranberry Squash

Authors: Sandhya Devi A

Abstract:

The protein content of the cranberry squash (protein: 0g) may be increased by extracting protein from the lentils (9 g), which is particularly linked to a lower risk of developing heart disease. Using the technique of alkaline extraction from the lentils flour, protein may be extracted. Alkaline extraction of protein from lentil flour was optimized utilizing response surface approach in order to maximize both protein content and yield. Cranberry squash may be taken if a protein fortification syrup is prepared and processed into the squash.

Keywords: alkaline extraction, cranberry squash, protein fortification, response surface methodology

Procedia PDF Downloads 91
4875 Web Map Service for Fragmentary Rockfall Inventory

Authors: M. Amparo Nunez-Andres, Nieves Lantada

Abstract:

One of the most harmful geological risks is rockfalls. They cause both economic lost, damaged in buildings and infrastructures, and personal ones. Therefore, in order to estimate the risk of the exposed elements, it is necessary to know the mechanism of this kind of events, since the characteristics of the rock walls, to the propagation of fragments generated by the initial detached rock mass. In the framework of the research RockModels project, several inventories of rockfalls were carried out along the northeast of the Spanish peninsula and the Mallorca island. These inventories have general information about the events, although the important fact is that they contained detailed information about fragmentation. Specifically, the IBSD (Insitu Block Size Distribution) is obtained by photogrammetry from drone or TLS (Terrestrial Laser Scanner) and the RBSD (Rock Block Size Distribution) from the volume of the fragment in the deposit measured by hand. In order to share all this information with other scientists, engineers, members of civil protection, and stakeholders, it is necessary a platform accessible from the internet and following interoperable standards. In all the process, open-software have been used: PostGIS 2.1., Geoserver, and OpenLayers library. In the first step, a spatial database was implemented to manage all the information. We have used the data specifications of INSPIRE for natural risks adding specific and detailed data about fragmentation distribution. The next step was to develop a WMS with Geoserver. A previous phase was the creation of several views in PostGIS to show the information at different scales of visualization and with different degrees of detail. In the first view, the sites are identified with a point, and basic information about the rockfall event is facilitated. In the next level of zoom, at medium scale, the convex hull of the rockfall appears with its real shape and the source of the event and fragments are represented by symbols. The queries at this level offer a major detail about the movement. Eventually, the third level shows all elements: deposit, source, and blocks, in their real size, if it is possible, and in their real localization. The last task was the publication of all information in a web mapping site (www.rockdb.upc.edu) with data classified by levels using libraries in JavaScript as OpenLayers.

Keywords: geological risk, web mapping, WMS, rockfalls

Procedia PDF Downloads 146
4874 Approximation of Intersection Curves of Two Parametric Surfaces

Authors: Misbah Irshad, Faiza Sarfraz

Abstract:

The problem of approximating surface to surface intersection is considered to be very important in computer aided geometric design and computer aided manufacturing. Although it is a complex problem to handle, its continuous need in the industry makes it an active topic in research. A technique for approximating intersection curves of two parametric surfaces is proposed, which extracts boundary points and turning points from a sequence of intersection points and interpolate them with the help of rational cubic spline functions. The proposed approach is demonstrated with the help of examples and analyzed by calculating error.

Keywords: approximation, parametric surface, spline function, surface intersection

Procedia PDF Downloads 247
4873 Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer

Authors: Erwin San Juan Martinez, Miguel Angel Aguilar Mendez, Manuel Sandoval Villa, Libia Iris Trejo Tellez

Abstract:

Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.

Keywords: calcium, controlled release, gelatin, nano spraydryer, nanofertilizer

Procedia PDF Downloads 164
4872 Crafting of Paper Cutting Techniques for Embellishment of Fashion Textiles

Authors: A. Vaidya-Soocheta, K. M. Wong-Hon-Lang

Abstract:

Craft and fashion have always been interlinked. The combination of both often gives stunning results. The present study introduces ‘Paper Cutting Craft Techniques’ like the Japanese –Kirigami, Mexican –PapelPicado, German –Scherenschnitte, Polish –Wycinankito in textiles to develop innovative and novel design structures as embellishments and ornamentation. The project studies various ways of using these paper cutting techniques to obtain interesting features and delicate design patterns on fabrics. While paper has its advantages and related uses, it is fragile rigid and thus not appropriate for clothing. Fabric is sturdy, flexible, dimensionally stable and washable. In the present study, the cut out techniques develop creative design motifs and patterns to give an inventive and unique appeal to the fabrics. The beauty and fascination of lace in garments have always given them a nostalgic charm. Laces with their intricate and delicate complexity in combination with other materials add a feminine touch to a garment and give it a romantic, mysterious appeal. Various textured and decorative effects through fabric manipulation are experimented along with the use of paper cutting craft skills as an innovative substitute for developing lace or “Broderie Anglaise” effects on textiles. A number of assorted fabric types with varied textures were selected for the study. Techniques to avoid fraying and unraveling of the design cut fabrics were introduced. Fabrics were further manipulated by use of interesting prints with embossed effects on cut outs. Fabric layering in combination with assorted techniques such as cutting of folded fabric, printing, appliqué, embroidery, crochet, braiding, weaving added a novel exclusivity to the fabrics. The fabrics developed by these innovative methods were then tailored into garments. The study thus tested the feasibility and practicability of using these fabrics by designing a collection of evening wear garments based on the theme ‘Nostalgia’. The prototypes developed were complemented by designing fashion accessories with the crafted fabrics. Prototypes of accessories add interesting features to the study. The adaptation and application of this novel technique of paper cutting craft on textiles can be an innovative start for a new trend in textile and fashion industry. The study anticipates that this technique will open new avenues in the world of fashion to incorporate its use commercially.

Keywords: collection, fabric cutouts, nostalgia, prototypes

Procedia PDF Downloads 338
4871 Computer Simulations of Stress Corrosion Studies of Quartz Particulate Reinforced ZA-27 Metal Matrix Composites

Authors: K. Vinutha

Abstract:

The stress corrosion resistance of ZA-27 / TiO2 metal matrix composites (MMC’s) in high temperature acidic media has been evaluated using an autoclave. The liquid melt metallurgy technique using vortex method was used to fabricate MMC’s. TiO2 particulates of 50-80 µm in size are added to the matrix. ZA-27 containing 2,4,6 weight percentage of TiO2 are prepared. Stress corrosion tests were conducted by weight loss method for different exposure time, normality and temperature of the acidic medium. The corrosion rates of composites were lower to that of matrix ZA-27 alloy under all conditions.

Keywords: autoclave, MMC’s, stress corrosion, vortex method

Procedia PDF Downloads 457
4870 Study and Experimental Analysis of a Photovoltaic Pumping System under Three Operating Modes

Authors: Rekioua D., Mohammedi A., Rekioua T., Mehleb Z.

Abstract:

Photovoltaic water pumping systems is considered as one of the most promising areas in photovoltaic applications, the economy and reliability of solar electric power made it an excellent choice for remote water pumping. Two conventional techniques are currently in use; the first is the directly coupled technique and the second is the battery buffered photovoltaic pumping system. In this paper, we present different performances of a three operation modes of photovoltaic pumping system. The aim of this work is to determine the effect of different parameters influencing the photovoltaic pumping system performances, such as pumping head, System configuration and climatic conditions. The obtained results are presented and discussed.

Keywords: batteries charge mode, photovoltaic pumping system, pumping head, submersible pump

Procedia PDF Downloads 490
4869 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan

Abstract:

Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.

Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film

Procedia PDF Downloads 316
4868 Rt-Pcr Negative COVID-19 Infection in a Bodybuilding Competitor Using Anabolic Steroids: A Case Report

Authors: Mariana Branco, Nahida Sobrino, Cristina Neves, Márcia Santos, Afonso Granja, João Rosa Oliveira, Joana Costa, Luísa Castro Leite

Abstract:

This case reports a COVID-19 infection in an unvaccinated adult man with no history of COVID-19 and no relevant clinical history besides anabolic steroid use, undergoing weaning with tamoxifen after a bodybuilding competition. The patient presented a 4cm cervical mass 3 weeks after COVID-19 infection in his cohabitants. He was otherwise asymptomatic and tested negative to multiple RT-PCR tests. Nevertheless, the IgG COVID-19 antibody was positive, suggesting the previous infection. This report raises a potential link between anabolic steroid use and atypical COVID-19 onset. Objectives: The goals of this paper are to raise a potential link between anabolic steroid use and atypical COVID-19 onset but also to report an uncommon case of COVID-19 infection with consecutive negative gold standard tests. Methodology: The authors used CARE guidelines for case report writing. Introduction: This case reports a COVID-19 infection case in an unvaccinated adult man, with multiple serial negative reverse transcription polymerase chain reaction (RT-PCR) test results, presenting with single cervical lymphadenopathy. Although the association between COVID-19 and lymphadenopathy is well established, there are no cases with this presentation, and consistently negative RT-PCR tests have been reported. Methodologies: The authors used CARE guidelines for case report writing. Case presentation: This case reports a 28-year-old Caucasian man with no previous history of COVID-19 infection or vaccination and no relevant clinical history besides anabolic steroid use undergoing weaning with tamoxifendue to participation in a bodybuilding competition. He visits his primary care physician because of a large (4 cm) cervical lump, present for 3 days prior to the consultation. There was a positive family history for COVID-19 infection 3 weeks prior to the visit, during which the patient cohabited with the infected family members. The patient never had any previous clinical manifestation of COVID-19 infection and, despite multiple consecutive RT-PCR testing, never tested positive. The patient was treated with an NSAID and a broad-spectrum antibiotic, with little to no effect. Imagiological testing was performed via a cervical ultrasound, followed by a needle biopsy for histologic analysis. Serologic testing for COVID-19 immunity was conducted, revealing a positive Anti-SARS-CoV-2 IgG (Spike S1) antibody, suggesting the previous infection, given the unvaccinated status of our patient Conclusion: In patients with a positive epidemiologic context and cervical lymphadenopathy, physicians should still consider COVID-19 infection as a differential diagnosis, despite negative PCR testing. This case also raises a potential link between anabolic steroid use and atypical COVID-19 onset, never before reported in scientific literature.

Keywords: COVID-19, cervical lymphadenopathy, anabolic steroids, primary care

Procedia PDF Downloads 100
4867 A Review on the Re-Usage of Single-Use Medical Devices

Authors: Lucas B. Naves, Maria José Abreu

Abstract:

Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV).

Keywords: reusing, reprocessing, single-use medical device, HIV, hepatitis B and C

Procedia PDF Downloads 378
4866 Experiences of Community Midwives Receiving Helping Baby Breathe Training Through the Low Dose High-frequency Approach in Gujrat, Pakistan

Authors: Anila Naz, Arusa Lakhani, Kiran Mubeen, Yasmeen Amarsi

Abstract:

Pakistan's neonatal mortality rate has the highest proportion in the South Asian region and it is higher in the rural areas as compared to the urban areas. Poor resuscitation techniques and lack of basic newborn resuscitation skills in birth attendants, are contributing factors towards neonatal deaths. Based on the significant outcomes of the Helping Baby Breath (HBB) training, a similar training was implemented for Community Midwives (CMWs) in a low resource setting in Gujrat, Pakistan, to improve their knowledge and skills. The training evaluation was conducted and participant feedback was obtained through both qualitative and quantitative methods. The findings of the quantitative assessment of the training evaluation will be published elsewhere. This paper presents the qualitative evaluation of the training. Objective: The objective of the study was to determine the perceptions of HBB trained CMWs about the effectiveness of the HBB training, and the challenges faced in the implementation of HBB skills for newborn resuscitation, at their work settings. The qualitative descriptive design was used in this study. The purposive sampling technique was chosen to recruit midwives and key informants as participants of the training. Interviews were conducted by using a semi-structured interview guide. The study included a total of five interviews: two focus group interviews for CMWs (10 in each group), and three individual interviews of key informants. The content analysis of the qualitative data yielded three themes: the effectiveness of training, challenges, and suggestions. The findings revealed that the HBB training was effective for the CMWs in terms of its usability, regarding improvement in newborn resuscitation knowledge and skills. Moreover, it enhanced confidence and satisfaction in CMWs. However, less volume of patients was a challenge for a few CMWs with regards to practicing their skills. Due to the inadequate number of patients and less opportunities of practice for several CMWs, they required such trainings frequently, in order to maintain their competency. The CMWs also recommended that HBB training should be part of the Midwifery program curriculum. Moreover, similar trainings were also recommended for other healthcare providers working in low resource settings, including doctors and nurses.

Keywords: neonatal resuscitation technique, helping baby breathe, community midwives, training evaluation

Procedia PDF Downloads 82
4865 Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case

Authors: Jose Daniel Giraldo Arias, Camilo Rojas Gomez, David Villegas Delgado, Gullermo Idarraga Alarcon, Juan Meza Meza

Abstract:

The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part.

Keywords: reverse engineering, sandwich-structured composite parts, helicopter, mechanical properties, prototype

Procedia PDF Downloads 396
4864 Recovery of Boron from Industrial Wastewater by Chemical Oxo-Precipitation

Authors: Yao-Hui Huang, Ming-Chun Yen, Jui-Yen Lin, Yu-Jen Shih

Abstract:

This work investigated the reclamation of boron in industrial wastewaters by a chemical oxo-precipitation (COP) technique at room temperature. In COP, the boric acid was pretreated with H₂O₂, yielding various perborate anions. Afterwards, calcium chloride was used to efficiently remove boron through precipitation of calcium perborate. The important factors included reacted pH and the molar ratio of [Ca]/[B]. Under conditions of pH 11 and [Ca]/[B] of 1, the boron concentration could be reduced immediately from 600 ppm to 50 ppm in 10 minutes. The boron removal was enhanced with a higher [Ca]/[B], which further reduced boron to 20 ppm in 10 minutes. Nevertheless, the dissolution of carbon dioxide potentially affected the efficacy of COP and increased the boron concentration after 10 minutes.

Keywords: chemical oxo-precipitation, boron, carbon dioxide, hydrogen peroxide

Procedia PDF Downloads 268
4863 Burnout among Healthcare Workers in Poland during the COVID-19 Pandemic

Authors: Zbigniew Izdebski, Alicja Kozakiewicz, Maciej Białorudzki, Joanna Mazur

Abstract:

Work is an extremely important part of everyone's life and affects functioning in daily life. Healthcare workers (HCW) are suffering from negative actions in and out of the workplace, such as harassment, abuse, long working hours, mental suffering, exhaustion, and professional burnout. Staff burnout is detrimental not only in terms of individual employees but also to working with patients and to the healthcare institution as a whole. The purpose of this study was to explore the level of professional burnout among HCW working in medical institutions during the COVID-19 pandemic in Poland. The extent to which selected sociodemographic factors and perceived stress increase the risk of professional burnout was assessed. In addition, the frequency of use of professional psychological help and less formal support groups by HCW in relation to the level of professional burnout was presented. The survey was conducted as part of a larger project on the humanization of medicine and clinical communication from February-April 2022. This study used a self-administered online survey (CAWI) technique and PAPI (pen and paper interview) technique. The BAT-12 scale was used to measure burnout, the PSS-4 scale was used to measure stress, and questions formulated by the research team were also used. For the purpose of analysis, the sample was limited to 2196 HCWs who worked on a daily basis with patients during the COVID-19 pandemic. Frequency distributions were analyzed, and multivariate logistic regression was performed. The mean scores (scores) of job burnout as measured by the BAT-12 scale ranged among the professional groups from 2.15(0.69) to 2.30 (0.69) and remained highest for the nurses' group. The groups differed significantly in levels of burnout (chi-sq=17.719; d.f.=8; p<0.023). In the final model, raised stress most likely increased the risk of burnout (OR=3.88; 95%CI <3.13-3.81>; p<0,001). Other significant predictors of burnout included: traumatic work-related experience (OR=1.91, p<0.001), mobbing (OR=1.83, p<0.001), and a higher workload than before the pandemic (OR=1.41, p=0.002). Only 7% of respondents decided to use various forms of psychological support during the pandemic. HCW experiences challenges in dealing with an unpredictable pandemic. Limited preparedness can lead to physical and psychological problems such as high-stress levels, anxiety, fear, helplessness, hopelessness, anger and stigma. The workload can lead to professional burnout, as well as threaten patient safety.

Keywords: burnout, work, healthcare, healthcare worker, stress

Procedia PDF Downloads 69
4862 The Effect of Stent Coating on the Stent Flexibility: Comparison of Covered Stent and Bare Metal Stent

Authors: Keping Zuo, Foad Kabinejadian, Gideon Praveen Kumar Vijayakumar, Fangsen Cui, Pei Ho, Hwa Liang Leo

Abstract:

Carotid artery stenting (CAS) is the standard procedure for patients with severe carotid stenosis at high risk for carotid endarterectomy (CAE). A major drawback of CAS is the higher incidence of procedure-related stroke compared with traditional open surgical treatment for carotid stenosis - CEA, even with the use of the embolic protection devices (EPD). As the currently available bare metal stents cannot address this problem, our research group developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet maintaining the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid atherosclerotic stenosis. The purpose of this study is to evaluate the effect of membrane coating on the stent flexibility in order to improve the clinical performance of our novel covered stents. A total of 21 stents were evaluated in this study: 15 self expanding bare nitinol stents and 6 PTFE-covered stents. 10 of the bare stents were coated with 11%, 16% and 22% Polyurethane(PU), 4%, 6.25% and 11% EE, as well as 22% PU plus 5 μm Parylene. Different laser cutting designs were performed on 4 of the PTFE covert stents. All the stents, with or without the covered membrane, were subjected to a three-point flexural test. The stents were placed on two supports that are 30 mm apart, and the actuator is applying a force in the exact middle of the two supports with a loading pin with radius 2.5 mm. The loading pin displacement change, the force and the variation in stent shape were recorded for analysis. The flexibility of the stents was evaluated by the lumen area preservation at three displacement bending levels: 5mm, 7mm, and 10mm. All the lumen areas in all stents decreased with the increase of the displacement from 0 to 10 mm. The bare stents were able to maintain 0.864 ± 0.015, 0.740 ± 0.025 and 0.597 ± 0.031of original lumen area at 5 mm, 7 mm and 10mm displacement respectively. For covered stents, the stents with EE coating membrane showed the best lumen area preservation (0.839 ± 0.005, 0.7334 ± 0.043 and 0.559 ± 0.014), whereas, the stents with PU and Parylene coating were only 0.662, 0.439 and 0.305. Bending stiffness was also calculated and compared. These results provided optimal material information and it was crucial for enhancing clinical performance of our novel covered stents.

Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain

Procedia PDF Downloads 285