Search results for: energy demand model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24549

Search results for: energy demand model

21939 Parametric Study of Vertical Diffusion Stills for Water Desalination

Authors: A. Seleem, M. Mortada, M. El-Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semi-analytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55-90 °C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: analytical model, solar distillation, sustainable water systems, vertical diffusion still

Procedia PDF Downloads 396
21938 A Multi-Criteria Decision Making (MCDM) Approach for Assessing the Sustainability Index of Building Façades

Authors: Golshid Gilani, Albert De La Fuente, Ana Blanco

Abstract:

Sustainability assessment of new and existing buildings has generated a growing interest due to the evident environmental, social and economic impacts during their construction and service life. Façades, as one of the most important exterior elements of a building, may contribute to the building sustainability by reducing the amount of energy consumption and providing thermal comfort for the inhabitants, thus minimizing the environmental impact on both the building and on the environment. Various methods have been used for the sustainability assessment of buildings due to the importance of this issue. However, most of the existing methods mainly concentrate on environmental and economic aspects, disregarding the third pillar of sustainability, which is the social aspect. Besides, there is a little focus on comprehensive sustainability assessment of facades, as an important element of a building. This confirms the need of developing methods for assessing the sustainable performance of building façades as an important step in achieving building sustainability. In this respect, this paper aims at presenting a model for assessing the global sustainability of façade systems. for that purpose, the Integrated Value Model for Sustainable Assessment (MIVES), a Multi-Criteria Decision Making model that integrates the main sustainability requirements (economic, environmental and social) and includes the concept of value functions, used as an assessment tool.

Keywords: façade, MCDM, MIVES, sustainability

Procedia PDF Downloads 326
21937 Hydrodynamics of Wound Ballistics

Authors: Harpreet Kaur, Er. Arjun, Kirandeep Kaur, P. K. Mittal

Abstract:

Simulation of a human body from a 20% gelatin & 80% water mixture is examined from a wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of the human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to a permanent cavity. This occurs for 10mm size bullets & settles down to a permanent cavity in the case of 4 different bullets, i.e., 5.45, 5.56, 7.62,10 mm sizes. The obtained results are in excellent agreement with the body as a right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer.

Keywords: gelatine, gunshot, hydrodynamic model, oscillation time, temporary and permanent cavity, wound ballistics

Procedia PDF Downloads 58
21936 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: compressible flow, fluid mechanics, heat transfer, porous media

Procedia PDF Downloads 387
21935 The Result of Suggestion for Low Energy Diet (1,000 kcal-1,200 kcal) in Obese Women to the effect on Body Weight, Waist Circumference, and BMI

Authors: S. Kumchoo

Abstract:

The result of suggestion for low energy diet (1,000-1,200 kcal) in obese women to the effect on body weight, waist circumference and body mass index (BMI) in this experiment. Quisi experimental research was used for this study and it is a One-group pretest-posttest designs measurement method. The aim of this study was body weight, waist circumference and body mass index (BMI) reduction by using low energy diet (1,000-1,200 kcal) in obese women, the result found that in 15 of obese women that contained their body mass index (BMI) ≥ 30, after they obtained low energy diet (1,000-1,200 kcal) within 2 weeks. The data were collected before and after of testing the results showed that the average of body weight decrease 3.4 kilogram, waist circumference value decrease 6.1 centimeter and the body mass index (BMI) decrease 1.3 kg.m2 from their previous body weight, waist circumference and body mass index (BMI) before experiment started. After this study, the volunteers got healthy and they can choose or select some food for themselves. For this study, the research can be improved for data development for forward study in the future.

Keywords: body weight, waist circumference, BMI, low energy diet

Procedia PDF Downloads 439
21934 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime

Procedia PDF Downloads 321
21933 Geometrical Analysis of an Atheroma Plaque in Left Anterior Descending Coronary Artery

Authors: Sohrab Jafarpour, Hamed Farokhi, Mohammad Rahmati, Alireza Gholipour

Abstract:

In the current study, a nonlinear fluid-structure interaction (FSI) biomechanical model of atherosclerosis in the left anterior descending (LAD) coronary artery is developed to perform a detailed sensitivity analysis of the geometrical features of an atheroma plaque. In the development of the numerical model, first, a 3D geometry of the diseased artery is developed based on patient-specific dimensions obtained from the experimental studies. The geometry includes four influential geometric characteristics: stenosis ratio, plaque shoulder-length, fibrous cap thickness, and eccentricity intensity. Then, a suitable strain energy density function (SEDF) is proposed based on the detailed material stability analysis to accurately model the hyperelasticity of the arterial walls. The time-varying inlet velocity and outlet pressure profiles are adopted from experimental measurements to incorporate the pulsatile nature of the blood flow. In addition, a computationally efficient type of structural boundary condition is imposed on the arterial walls. Finally, a non-Newtonian viscosity model is implemented to model the shear-thinning behaviour of the blood flow. According to the results, the structural responses in terms of the maximum principal stress (MPS) are affected more compared to the fluid responses in terms of wall shear stress (WSS) as the geometrical characteristics are varying. The extent of these changes is critical in the vulnerability assessment of an atheroma plaque.

Keywords: atherosclerosis, fluid-Structure interaction modeling, material stability analysis, and nonlinear biomechanics

Procedia PDF Downloads 74
21932 Providing Additional Advantages for STATCOM in Power Systems by Integration of Energy Storage Device

Authors: Reza Sedaghati

Abstract:

The use of Flexible AC Transmission System (FACTS) devices in a power system can potentially overcome limitations of the present mechanically controlled transmission system. Also, the advance of technology makes possible to include new energy storage devices in the electrical power system. The integration of Superconducting Magnetic Energy Storage (SMES) into Static Synchronous Compensator (STATCOM) can lead to increase their flexibility in improvement of power system dynamic behaviour by exchanging both active and reactive powers with power grids. This paper describes structure and behaviour of SMES, specifications and performance principles of the STATCOM/SMES compensator. Moreover, the benefits and effectiveness of integrated SMES with STATCOM in power systems is presented. Also, the performance of the STATCOM/SMES compensator is evaluated using an IEEE 3-bus system through the dynamic simulation by PSCAD/EMTDC software.

Keywords: STATCOM/SMES compensator, chopper, converter, energy storage system, power systems

Procedia PDF Downloads 543
21931 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Zdeněk Veselý, Milan Honner, Jiří Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source

Procedia PDF Downloads 376
21930 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment

Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente

Abstract:

After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.

Keywords: sustainability, post-disaster temporary housing, integrated value model for sustainability assessment, life cycle assessment

Procedia PDF Downloads 242
21929 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 68
21928 Stationary Gas Turbines in Power Generation: Past, Present and Future Challenges

Authors: Michel Moliere

Abstract:

In the next decades, the thermal power generation segment will survive only if it achieves deep mutations, including drastical abatements of CO2 emissions and strong efficiency gains. In this challenging perspective, stationary gas turbines appear as serious candidates to lead the energy transition. Indeed, during the past decades, these turbomachines have made brisk technological advances in terms of efficiency, reliability, fuel flex (including the combustion of hydrogen), and the ability to hybridize with regenrables. It is, therefore, timely to summarize the progresses achieved by gas turbines in the recent past and to examine what are their assets to face the challenges of the energy transition.

Keywords: energy transition, gas turbines, decarbonization, power generation

Procedia PDF Downloads 194
21927 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization

Authors: Aitor Bilbao, Dragos Axinte, John Billingham

Abstract:

The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.

Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation

Procedia PDF Downloads 266
21926 Evaluating Energy Transition of a complex of buildings in a historic site of Rome toward Zero-Emissions for a Sustainable Future

Authors: Silvia Di Turi, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Domenico Palladino

Abstract:

Recent European policies have been set ambitious targets aimed at significantly reducing CO2 emissions by 2030, with a long-term vision of transforming existing buildings into Zero-Emissions Buildings (ZEmB) by 2050. This vision represents a key point for the energy transition as the whole building stock currently accounts for 36% of total energy consumption across the Europe, mainly due to their poor energy performance. The challenge towards Zero-Emissions Buildings is particularly felt in Italy, where a significant number of buildings with historical significance or situated within protected/constrained areas can be found. Furthermore, an estimated 70% of the national building stock are built before 1976, indicating a widespread issue of poor energy performance. Addressing the energy ineƯiciency of these buildings is crucial to refining a comprehensive energy renovation approach aimed at facilitating their energy transition. In this framework the current study focuses on analysing a challenging complex of buildings to be totally restored through significant energy renovation interventions. The goal is to recover these disused buildings situated in a significant archaeological zone of Rome, contributing to the restoration and reintegration of this historically valuable site, while also oƯering insights useful for achieving zeroemission requirements for buildings within such contexts. In pursuit of meeting the stringent zero-emission requirements, a comprehensive study was carried out to assess the complex of buildings, envisioning substantial renovation measures on building envelope and plant systems and incorporating renewable energy system solutions, always respecting and preserving the historic site. An energy audit of the complex of buildings was performed to define the actual energy consumption for each energy service by adopting the hourly calculation methods. Subsequently, significant energy renovation interventions on both building envelope and mechanical systems have been examined respecting the historical value and preservation of site. These retrofit strategies have been investigated with threefold aims: 1) to recover the existing buildings ensuring the energy eƯiciency of the whole complex of buildings, 2) to explore which solutions have allowed achieving and facilitating the ZEmB status, 3) to balance the energy transition requirements with the sustainable aspect in order to preserve the historic value of the buildings and site. This study has pointed out the potentiality and the technical challenges associated with implementing renovation solutions for such buildings, representing one of the first attempt towards realizing this ambitious target for this type of building.

Keywords: energy conservation and transition, complex of buildings in historic site, zero-emission buildings, energy efficiency recovery

Procedia PDF Downloads 44
21925 Pulsed Electric Field as Pretreatment for Different Drying Method in Chilean Abalone (Concholepas Concholepas) Mollusk: Effects on Product Physical Properties and Drying Methods Sustainability

Authors: Luis González-Cavieres, Mario Perez-Won, Anais Palma-Acevedo, Gipsy Tabilo-Munizaga, Erick Jara-Quijada, Roberto Lemus-Mondaca

Abstract:

In this study, pulsed electric field (PEF: 2.0 kV/cm) was used as pretreatment in drying methods, vacuum microwave (VMD); freeze-drying (FD); and hot air (HAD), in Chilean abalone mollusk. Drying parameters, quality, energy consumption, and Sustainability parameters were evaluated. PEF+VMD showed better values than the other drying systems, with drying times 67% and 83% lower than PEF+FD and FD. In the quality parameters, PEF+FD showed a significantly lower value for hardness (250 N), and a lower change of color value (ΔE = 12). In the case of HAD, the PEF application did not significantly influence its processing. In energy parameters, VMD and PEF+VMD reduced energy consumption and CO2 emissions.

Keywords: PEF technology, vacuum microwave drying, energy consumption, CO2 emissions

Procedia PDF Downloads 66
21924 Numerical Modelling of Wind Dispersal Seeds of Bromeliad Tillandsia recurvata L. (L.) Attached to Electric Power Lines

Authors: Bruna P. De Souza, Ricardo C. De Almeida

Abstract:

In some cities in the State of Parana – Brazil and in other countries atmospheric bromeliads (Tillandsia spp - Bromeliaceae) are considered weeds in trees, electric power lines, satellite dishes and other artificial supports. In this study, a numerical model was developed to simulate the seed dispersal of the Tillandsia recurvata species by wind with the objective of evaluating seeds displacement in the city of Ponta Grossa – PR, Brazil, since it is considered that the region is already infested. The model simulates the dispersal of each individual seed integrating parameters from the atmospheric boundary layer (ABL) and the local wind, simulated by the Weather Research Forecasting (WRF) mesoscale atmospheric model for the 2012 to 2015 period. The dispersal model also incorporates the approximate number of bromeliads and source height data collected from most infested electric power lines. The seeds terminal velocity, which is an important input data but was not available in the literature, was measured by an experiment with fifty-one seeds of Tillandsia recurvata. Wind is the main dispersal agent acting on plumed seeds whereas atmospheric turbulence is a determinant factor to transport the seeds to distances beyond 200 meters as well as to introduce random variability in the seed dispersal process. Such variability was added to the model through the application of an Inverse Fast Fourier Transform to wind velocity components energy spectra based on boundary-layer meteorology theory and estimated from micrometeorological parameters produced by the WRF model. Seasonal and annual wind means were obtained from the surface wind data simulated by WRF for Ponta Grossa. The mean wind direction is assumed to be the most probable direction of bromeliad seed trajectory. Moreover, the atmospheric turbulence effect and dispersal distances were analyzed in order to identify likely regions of infestation around Ponta Grossa urban area. It is important to mention that this model could be applied to any species and local as long as seed’s biological data and meteorological data for the region of interest are available.

Keywords: atmospheric turbulence, bromeliad, numerical model, seed dispersal, terminal velocity, wind

Procedia PDF Downloads 126
21923 Mitochondrial Energy Utilization is Unchanged with Age in the Trophocytes and Oenocytes of Queen Honeybees (Apis mellifera)

Authors: Chia-Ying Yen, Chin-Yuan Hsu

Abstract:

The lifespans of queen honeybees (Apis mellifera) are much longer than those of worker bees. The expression, concentration, and activity of mitochondrial energy-utilized molecules decreased with age in the trophocytes and oenocytes of worker bees, but they are unknown in queen bees. In this study, the expression, concentration, and activity of mitochondrial energy-utilized molecules were evaluated in the trophocytes and oenocytes of young and old queen bees by biochemical techniques. The results showed that mitochondrial density and mitochondrial membrane potential; nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide reduced form (NADH), and adenosine triphosphate (ATP) levels; the NAD+/NADH ratio; and relative expression of NADH dehydrogenase 1 and ATP synthase normalized against mitochondrial density were not significantly different between young and old queen bees. These findings reveal that mitochondrial energy utilization maintains a young status in the trophocytes and oenocytes of old queen bees and that trophocytes and oenocytes have aging-delaying mechanisms and can be used to study cellular longevity.

Keywords: aging, longevity, mitochondrial energy, queen bees

Procedia PDF Downloads 467
21922 Larger Diameter 22 MM-PDC Cutter Greatly Improves Drilling Efficiency of PDC Bit

Authors: Fangyuan Shao, Wei Liu, Deli Gao

Abstract:

With the increasing speed of oil and gas exploration, development and production at home and abroad, the demand for drilling speed up technology is becoming more and more critical to reduce the development cost. Highly efficient and personalized PDC bit is important equipment in the bottom hole assembly (BHA). Therefore, improving the rock-breaking efficiency of PDC bits will help reduce drilling time and drilling cost. Advances in PDC bit technology have resulted in a leapfrogging improvement in the rate of penetration (ROP) of PDC bits over roller cone bits in soft to medium-hard formations. Recently, with the development of PDC technology, the diameter of the PDC tooth can be further expanded. The maximum diameter of the PDC cutter used in this paper is 22 mm. According to the theoretical calculation, under the same depth of cut (DOC), the 22mm-PDC cutter increases the exposure of the cutter, and the increase of PDC cutter diameter helps to increase the cutting area of the PDC cutter. In order to evaluate the cutting performance of the 22 mm-PDC cutter and the existing commonly used cutters, the 16 mm, 19 mm and 22 mm PDC cutter was selected put on a vertical turret lathe (VTL) in the laboratory for cutting tests under different DOCs. The DOCs were 0.5mm, 1.0 mm, 1.5 mm and 2.0 mm, 2.5 mm and 3 mm, respectively. The rock sample used in the experiment was limestone. Results of laboratory tests have shown the new 22 mm-PDC cutter technology greatly improved cutting efficiency. On the one hand, as the DOC increases, the mechanical specific energy (MSE) of all cutters decreases, which means that the cutting efficiency increases. On the other hand, under the same DOC condition, the larger the cutter diameter is, the larger the working area of the cutter is, which leads to higher the cutting efficiency. In view of the high performance of the 22 mm-PDC cutters, which was applied to carry out full-scale bit field experiments. The result shows that the bit with 22mm-PDC cutters achieves a breakthrough improvement of ROP than that with conventional 16mm and 19mm cutters in offset well drilling.

Keywords: polycrystalline diamond compact, 22 mm-PDC cutters, cutting efficiency, mechanical specific energy

Procedia PDF Downloads 187
21921 Collapse Capacity and Energy Absorption Mechanism of High Rise Steel Moment Frame Considering Aftershock Effects

Authors: Mohammadmehdi Torfehnejad, Serhan Sensoy

Abstract:

Many structures sustain damage during a mainshock earthquake but undergo severe damage under aftershocks following the mainshock. Past researches have studied aftershock effects through different methodologies, but few structural systems have been evaluated for these effects. Collapse capacity and energy absorption mechanism of the Special Steel Moment Frame (SSMF) system is evaluated in this study, under aftershock earthquakes when prior damage is caused by the mainshock. A twenty-story building is considered in assessing the residual collapse capacity and energy absorption mechanism under aftershock excitation. In addition, various levels of mainshock damage are considered and reflected through two different response parameters. Aftershock collapse capacity is estimated using incremental dynamic analysis (IDA) applied following the mainshock. The study results reveal that the collapse capacity of high-rise structures undergoes a remarkable reduction for high level of mainshock damage. The energy absorption in the columns is decreased by increasing the level of mainshock damage.

Keywords: seismic collapse, mainshock-aftershock effect, incremental dynamic analysis, energy absorption

Procedia PDF Downloads 115
21920 Behavior of Helical Piles as Foundation of Photovoltaic Panels in Tropical Soils

Authors: Andrea J. Alarcón, Maxime Daulat, Raydel Lorenzo, Renato P. Da Cunha, Pierre Breul

Abstract:

Brazil has increased the use of renewable energy during the last years. Due to its sunshine and large surface area, photovoltaic panels founded in helical piles have been used to produce solar energy. Since Brazilian territory is mainly cover by highly porous structured tropical soils, when the helical piles are installed this structure is broken and its soil properties are modified. Considering the special characteristics of these soils, helical foundations behavior must be extensively studied. The first objective of this work is to determine the most suitable method to estimate the tensile capacity of helical piles in tropical soils. The second objective is to simulate the behavior of these piles in tropical soil. To obtain the rupture to assess load-displacement curves and the ultimate load, also a numerical modelling using Plaxis software was conducted. Lastly, the ultimate load and the load-displacements curves are compared with experimental values to validate the implemented model.

Keywords: finite element, helical piles, modelling, tropical soil, uplift capacity

Procedia PDF Downloads 155
21919 Dynamic Interaction between Renwable Energy Consumption and Sustainable Development: Evidence from Ecowas Region

Authors: Maman Ali M. Moustapha, Qian Yu, Benjamin Adjei Danquah

Abstract:

This paper investigates the dynamic interaction between renewable energy consumption (REC) and economic growth using dataset from the Economic Community of West African States (ECOWAS) from 2002 to 2016. For this study the Autoregressive Distributed Lag- Bounds test approach (ARDL) was used to examine the long run relationship between real gross domestic product and REC, while VECM based on Granger causality has been used to examine the direction of Granger causality. Our empirical findings indicate that REC has significant and positive impact on real gross domestic product. In addition, we found that REC and the percentage of access to electricity had unidirectional Granger causality to economic growth while carbon dioxide emission has bidirectional Granger causality to economic growth. Our findings indicate also that 1 per cent increase in the REC leads to an increase in Real GDP by 0.009 in long run. Thus, REC can be a means to ensure sustainable economic growth in the ECOWAS sub-region. However, it is necessary to increase further support and investments on renewable energy production in order to speed up sustainable economic development throughout the region

Keywords: Economic Growth, Renewable Energy, Sustainable Development, Sustainable Energy

Procedia PDF Downloads 189
21918 EarlyWarning for Financial Stress Events:A Credit-Regime Switching Approach

Authors: Fuchun Li, Hong Xiao

Abstract:

We propose a new early warning model for predicting financial stress events for a given future time. In this model, we examine whether credit conditions play an important role as a nonlinear propagator of shocks when predicting the likelihood of occurrence of financial stress events for a given future time. This propagation takes the form of a threshold regression in which a regime change occurs if credit conditions cross a critical threshold. Given the new early warning model for financial stress events, we evaluate the performance of this model and currently available alternatives, such as the model from signal extraction approach, and linear regression model. In-sample forecasting results indicate that the three types of models are useful tools for predicting financial stress events while none of them outperforms others across all criteria considered. The out-of-sample forecasting results suggest that the credit-regime switching model performs better than the two others across all criteria and all forecasting horizons considered.

Keywords: cut-off probability, early warning model, financial crisis, financial stress, regime-switching model, forecasting horizons

Procedia PDF Downloads 422
21917 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi

Abstract:

The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, energy harvesting, thermal harvesting

Procedia PDF Downloads 249
21916 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan

Authors: Muhammad Afzal, Muhammad Sajjad

Abstract:

Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.

Keywords: climate change, economic growth, energy, environment

Procedia PDF Downloads 154
21915 Reflector Arrangement Effect on Ultraviolet Lamp Performance by CFX Simulation

Authors: William Sidharta, Chin-Tu Lu

Abstract:

Fluorescent ultraviolet lamp generates ultraviolet light which is commonly used in industrial field with certain purposes especially for curing process. Due to the value of inefficiency, there are changes in energy from electrical energy to the heat energy and this would make a defect on the industrial product caused by high temperature of lamp tube during ultraviolet light emission. The condition of industrial scale is further worsening, since commonly using dozens of fluorescent ultraviolet lamps to support huge production process and then it will generates much more heat energy. The maximum temperature of fluorescent ultraviolet lamp will get affected by arranging the lamp tube reflector and this study presents CFX simulation results of the maximum lamp tube temperature with some different reflector arrangements on purely natural convection phenomena. There exists certain spaces value of the reflector and the lamp tube to obtaining lower maximum temperature of the fluorescent ultraviolet lamp.

Keywords: CFX simulation, fluorescent UV lamp, lamp tube reflector, UV light

Procedia PDF Downloads 449
21914 A Practical Protection Method for Parallel Transmission-Lines Based on the Fault Travelling-Waves

Authors: Mohammad Reza Ebrahimi

Abstract:

In new restructured power systems, swift fault detection is very important. The parallel transmission-lines are vastly used in this kind of power systems because of high amount of energy transferring. In this paper, a method based on the comparison of two schemes, i.e., i) maximum magnitude of travelling-wave (TW) energy ii) the instants of maximum energy occurrence at the circuits of parallel transmission-line is proposed. Using the travelling-wave of fault in order to faulted line identification this method has noticeable operation time. Moreover, the algorithm can cover for identification of faults as external or internal faults. For an internal fault, the exact location of the fault can be estimated confidently. A lot of simulations have been done with PSCAD/EMTDC to verify the performance of the proposed algorithm.

Keywords: travelling-wave, maximum energy, parallel transmission-line, fault location

Procedia PDF Downloads 170
21913 Lubricating Grease from Waste Cooking Oil and Waste Motor Sludge

Authors: Aseem Rajvanshi, Pankaj Kumar Pandey

Abstract:

Increase in population has increased the demand of energy to fulfill all its needs. This will result in burden on fossil fuels especially crude oil. Waste oil due to its disposal problem creates environmental degradation. In this context, this paper studies utilization of waste cooking oil and waste motor sludge for making lubricating grease. Experimental studies have been performed by variation in time and concentration of mixture of waste cooking oil and waste motor sludge. The samples were analyzed using penetration test (ASTM D-217), dropping point (ASTM D-566), work penetration (ASTM D-217) and copper strip test (ASTM D-408). Among 6 samples, sample 6 gives the best results with a good drop point and a fine penetration value. The dropping point and penetration test values were found to be 205 °C and 315, respectively. The penetration value falls under the category of NLGI (National Lubricating Grease Institute) consistency number 1.

Keywords: crude oil, copper strip corrosion test, dropping point, penetration test

Procedia PDF Downloads 276
21912 Model of the Increasing the Capacity of the Train and Railway Track by Using the New Type of Wagon

Authors: Martin Kendra, Jaroslav Mašek, Juraj Čamaj, Martin Búda

Abstract:

The paper deals with possibilities of increase train capacity by using a new type of railway wagon. In the first part is created a mathematical model to calculate the capacity of the train. The model is based on the main limiting parameters of the train - maximum number of axles per train, the maximum gross weight of the train, the maximum length of train and number of TEUs per one wagon. In the second part is the model applied to four different model trains with different composition of the train set and three different average weights of TEU and a train consisting of a new type of wagons. The result is to identify where the carrying capacity of the original trains is higher, respectively less than a capacity of the train consisting of a new type of wagons.

Keywords: loading units, theoretical capacity model, train capacity, wagon for intermodal transport

Procedia PDF Downloads 479
21911 Transfer of Electrical Energy by Magnetic Induction

Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa

Abstract:

Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.

Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor

Procedia PDF Downloads 498
21910 High Harmonics Generation in Hexagonal Graphene Quantum Dots

Authors: Armenuhi Ghazaryan, Qnarik Poghosyan, Tadevos Markosyan

Abstract:

We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Keywords: strong wave field, multiphoton, bandgap, wave field strength, nanostructure

Procedia PDF Downloads 128