Search results for: engineering design process;
257 Robust Numerical Solution for Flow Problems
Authors: Gregor Kosec
Abstract:
Simple and robust numerical approach for solving flow problems is presented, where involved physical fields are represented through the local approximation functions, i.e., the considered field is approximated over a local support domain. The approximation functions are then used to evaluate the partial differential operators. The type of approximation, the size of support domain, and the type and number of basis function can be general. The solution procedure is formulated completely through local computational operations. Besides local numerical method also the pressure velocity is performed locally with retaining the correct temporal transient. The complete locality of the introduced numerical scheme has several beneficial effects. One of the most attractive is the simplicity since it could be understood as a generalized Finite Differences Method, however, much more powerful. Presented methodology offers many possibilities for treating challenging cases, e.g. nodal adaptivity to address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in physical field. The stability versus computation complexity and accuracy can be regulated by changing number of support nodes, etc. All these features can be controlled on the fly during the simulation. The presented methodology is relatively simple to understand and implement, which makes it potentially powerful tool for engineering simulations. Besides simplicity and straightforward implementation, there are many opportunities to fully exploit modern computer architectures through different parallel computing strategies. The performance of the method is presented on the lid driven cavity problem, backward facing step problem, de Vahl Davis natural convection test, extended also to low Prandtl fluid and Darcy porous flow. Results are presented in terms of velocity profiles, convergence plots, and stability analyses. Results of all cases are also compared against published data.Keywords: fluid flow, meshless, low Pr problem, natural convection
Procedia PDF Downloads 231256 Environmental Assessment of Single-Industry Towns in Kazakhstan in the Context of Sustainable Development Goals
Authors: Almira Daulbayeva, Zhaukhar Yessenkulova, Rassima Salimbayeva
Abstract:
In this article, the regularities of the modern spatial and temporal distribution of main pollutants in the air space of single-industry towns are considered, and the level of pollutant emissions into the atmospheric air by urban areas of the Karaganda region is determined. We selected such cities as Temirtau, Abay, Saran, and Balkhash. Ecological and hygienic assessment of atmospheric air pollution in these cities for 2020 - 2023 and the beginning of 2024 was carried out on the materials of annual Information Bulletins on the state of the environment of the Republic of Kazakhstan, bulletins ‘On the state of atmospheric air in Karaganda region’. The general assessment of atmospheric air pollution in the territory was high, especially in 2020 and 2021, and corresponded to the level of ‘tense’. According to the results of the analysis of atmospheric air pollution, it was revealed that enterprises of thermal power engineering and mining industry (mines, enrichment plants, metallurgical production of ‘ArcelorMittal’ JSC) carry out emission of significant amounts of pollutants, particulate matter, and heavy metals into the atmosphere. The total number of ingredients present in the atmosphere of the city exceeds dozens, many of which belong to the first and second categories of hazard. The main pollutants were sulphur dioxide, carbon oxides, and nitrogen dioxide, as well as suspended solids. We have also considered and studied some types of major diseases of the population living in the region in different conditions in recent years. According to the results of the study, the cities with the highest rates and levels of morbidity were identified: Temirtau, Shakhtinsk, Abay, located in Karaganda region, where the main industrial facilities are concentrated, emitting harmful pollutants from ‘Corporation Kazakhmys’ LLP, ‘Arcelor Mittal’ JSC, Balkhash Mining and Metallurgical Combine.Keywords: atmospheric air, pollutants, single-industry towns, Karaganda region, morbidity, sustainable development
Procedia PDF Downloads 21255 A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing
Authors: Soultana Konstantinidou, Tiziana Schmidt, Elena Landi, Alessandro De Carli, Giovanni Maltinti, Darius Witt, Alicja Dziadosz, Agnieszka Lindstaedt, Michele Lai, Mauro Pistello, Valentina Cappello, Luciana Dente, Chiara Gabellini, Piotr Barski, Vittoria Raffa
Abstract:
CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties.Keywords: CRISPR/Cas9, gene editing, gold nanoparticles, nanotechnology
Procedia PDF Downloads 96254 Projects and Limits of Memory Engineering: A Case of Lithuanian Partisan War
Authors: Mingaile Jurkute, Vilnius University
Abstract:
The memory of the Lithuanian partisan war (1944-1953) underwent extremely dramatic transformations. During this war, the image of the resistance and a partisan was one of the key elements of Lithuanian identity. Its importance is evidenced by the extremely large legacy of songs about partisans, no other topic has collected so much folklore in Lithuania. In the Soviet years, this resistance was practically forced to be forgotten. Terror and Soviet laws have forced people to stop talking about the events, even in the family circle. In addition, the Soviets created their own propaganda story, reinterpreting the Lithuanian partisan war, presenting partisans as bandits who brutally tortured and murdered locals. But even in the Soviet years, the memory could neither be completely suppressed, nor completely transformed into wishful shape. The analysis of fiction and cinema shows that the traumatic memory of real events rushed to the surface, thus transforming the very propagandistic narrative. After the restoration of the Republic of Lithuania in 1990, the Lithuanian partisan war was gradually returned to the central place of Lithuanian history. After 2014 the nationalist heroic narrative about Lithuanian partisans became the central narrative of modern Lithuanian history. Nevertheless, interviews I conducted in Lithuanian villages reveal that the memory of local communities and families preserves quite different experiences that do not fit into neither the Soviet narrative nor the heroic one. Such experiences include, for example, partisan violence against local families. This paper is about the efforts of two political ideologies (the Soviet and the Lithuanian patriotic) to use the history of the Lithuanian partisans for their own needs, and the attempts of small communities (mostly families) to resist these efforts. The research reveals that family memory, even when opposed to aggressive state memory policies, can preserve counter-narratives by exploiting unexpected objects beyond the control of the state, such as nature and wildlife. Basically, the paper analyses the limits of the instrumentalization of memory, even by extremely aggressive political regimes.Keywords: collective memory, post-memory, violence, military conflict, family memory
Procedia PDF Downloads 91253 A Molecular Dynamic Simulation Study to Explore Role of Chain Length in Predicting Useful Characteristic Properties of Commodity and Engineering Polymers
Authors: Lokesh Soni, Sushanta Kumar Sethi, Gaurav Manik
Abstract:
This work attempts to use molecular simulations to create equilibrated structures of a range of commercially used polymers. Generated equilibrated structures for polyvinyl acetate (isotactic), polyvinyl alcohol (atactic), polystyrene, polyethylene, polyamide 66, poly dimethyl siloxane, poly carbonate, poly ethylene oxide, poly amide 12, natural rubber, poly urethane, and polycarbonate (bisphenol-A) and poly ethylene terephthalate are employed to estimate the correct chain length that will correctly predict the chain parameters and properties. Further, the equilibrated structures are used to predict some properties like density, solubility parameter, cohesive energy density, surface energy, and Flory-Huggins interaction parameter. The simulated densities for polyvinyl acetate, polyvinyl alcohol, polystyrene, polypropylene, and polycarbonate are 1.15 g/cm3, 1.125 g/cm3, 1.02 g/cm3, 0.84 g/cm3 and 1.223 g/cm3 respectively are found to be in good agreement with the available literature estimates. However, the critical repeating units or the degree of polymerization after which the solubility parameter showed saturation were 15, 20, 25, 10 and 20 respectively. This also indicates that such properties that dictate the miscibility of two or more polymers in their blends are strongly dependent on the chosen polymer or its characteristic properties. An attempt has been made to correlate such properties with polymer properties like Kuhn length, free volume and the energy term which plays a vital role in predicting the mentioned properties. These results help us to screen and propose a useful library which may be used by the research groups in estimating the polymer properties using the molecular simulations of chains with the predicted critical lengths. The library shall help to obviate the need for researchers to spend efforts in finding the critical chain length needed for simulating the mentioned polymer properties.Keywords: Kuhn length, Flory Huggins interaction parameter, cohesive energy density, free volume
Procedia PDF Downloads 191252 Experimental Studies on Stress Strain Behavior of Expanded Polystyrene Beads-Sand Mixture
Authors: K. N. Ashna
Abstract:
Lightweight fills are a viable alternative where weak soils such as soft clay, peat, and loose silt are encountered. Materials such as Expanded Polystyrene (EPS) geo-foam, plastics, tire wastes, rubber wastes have been used along with soil in order to obtain a lightweight fill. Out of these, Expanded Polystyrene (EPS) geo-foam has gained wide popularity in civil engineering over the past years due to its wide variety of applications. It is extremely lightweight, durable and is available in various densities to meet the strength requirements. It can be used as backfill behind retaining walls to reduce lateral load, as a fill over soft clay or weak soils to prevent the excessive settlements and to reduce seismic forces. Geo-foam is available in block form as well as beads form. In this project Expanded Polystyrene (EPS) beads of various diameters and varying densities were mixed along with sand to study their lightweight as well as strength properties. Four types of EPS beads were used 1mm, 2mm, 3-7 mm and a mix of 1-7 mm. In this project, EPS beads were varied at .25%, .5%, .75% and 1% by weight of sand. A water content of 10% by weight of sand was added to prevent segregation of the mixture. Unconsolidated Unconfined (UU) tri-axial test was conducted at 100kPa, 200 kPa and 300 kPa and angle of internal friction, and cohesion was obtained. Unit weight of the mix was obtained for a relative density of 65%. The results showed that by increasing the EPS content by weight, maximum deviator stress, unit weight, angle of internal friction and initial elastic modulus decreased. An optimum EPS bead content was arrived at by considering the strength as well as the unit weight. The stress-strain behaviour of the mix was found to be dependent on type of bead, bead content and density of the beads. Finally, regression equations were developed to predict the initial elastic modulus of the mix.Keywords: expanded polystyrene beads, geofoam, lightweight fills, stress-strain behavior, triaxial test
Procedia PDF Downloads 262251 Application of Hydrological Engineering Centre – River Analysis System (HEC-RAS) to Estuarine Hydraulics
Authors: Julia Zimmerman, Gaurav Savant
Abstract:
This study aims to evaluate the efficacy of the U.S. Army Corp of Engineers’ River Analysis System (HEC-RAS) application to modeling the hydraulics of estuaries. HEC-RAS has been broadly used for a variety of riverine applications. However, it has not been widely applied to the study of circulation in estuaries. This report details the model development and validation of a combined 1D/2D unsteady flow hydraulic model using HEC-RAS for estuaries and they are associated with tidally influenced rivers. Two estuaries, Galveston Bay and Delaware Bay, were used as case studies. Galveston Bay, a bar-built, vertically mixed estuary, was modeled for the 2005 calendar year. Delaware Bay, a drowned river valley estuary, was modeled from October 22, 2019, to November 5, 2019. Water surface elevation was used to validate both models by comparing simulation results to NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) gauge data. Simulations were run using the Diffusion Wave Equations (DW), the Shallow Water Equations, Eulerian-Lagrangian Method (SWE-ELM), and the Shallow Water Equations Eulerian Method (SWE-EM) and compared for both accuracy and computational resources required. In general, the Diffusion Wave Equations results were found to be comparable to the two Shallow Water equations sets while requiring less computational power. The 1D/2D combined approach was valid for study areas within the 2D flow area, with the 1D flow serving mainly as an inflow boundary condition. Within the Delaware Bay estuary, the HEC-RAS DW model ran in 22 minutes and had an average R² value of 0.94 within the 2-D mesh. The Galveston Bay HEC-RAS DW ran in 6 hours and 47 minutes and had an average R² value of 0.83 within the 2-D mesh. The longer run time and lower R² for Galveston Bay can be attributed to the increased length of the time frame modeled and the greater complexity of the estuarine system. The models did not accurately capture tidal effects within the 1D flow area.Keywords: Delaware bay, estuarine hydraulics, Galveston bay, HEC-RAS, one-dimensional modeling, two-dimensional modeling
Procedia PDF Downloads 198250 Thermal Regulation of Channel Flows Using Phase Change Material
Authors: Kira Toxopeus, Kamran Siddiqui
Abstract:
Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.Keywords: channel flow, phase change material, thermal energy storage, thermal regulation
Procedia PDF Downloads 138249 Assessing the Correlation between Environmental Awareness and Variability of Employees’ Positions in Aviation and Aerospace Industries
Authors: Eva Maleviti, Evan Stamoulis
Abstract:
This paper is part of a wider research project, on environmental management in aviation and aerospace industries. The core elements of this research are the level of knowledge, awareness, applicability of environmental management systems, according to employees’ perspectives. This paper focuses at employees’ level of environmental awareness. The main scope of this research is to evaluate the level of environmental awareness and the adoption of environmental management practices. The primary scope of the research is to define a method to quantify the key indicators that would improve the implementation of environmental management. The opinion of people employed in aviation industry is considered, based on the versatility of their working positions. Up to this stage, 330 respondents have participated globally in the current research. This study uses a questionnaire survey to gain an understanding of the views and attitudes of aerospace staff toward environmental management. The results are analyzed through a quantitative approach using SPSS. The statistical significance shows that the data could follow the same distribution as the distribution of the total population that the sample belongs. As of the above, the number of respondents constitutes a representative sample of the total population. A descriptive analysis is presented. According to the responses given in the survey, the data are analyzed according to the working positions and the characteristics of each position that all the respondents hold. The results demonstrate that the level of environmental awareness is immediately linked with the employees’ positions. Managerial/post holder positions, as expected have, a higher level of environmental awareness. However, the level of applicability of environmental practices by the same group is considered low. The other working groups show variability in environmental awareness, which also depends on their operating task and the applicability or not of environmental practices. Flight operations and engineering/maintenance employees, that their tasks involve higher safety considerations, there are more reluctant in applying environmental practices in their positions. In the current paper an analysis of the data collection is presented, correlating them with the working positions and responsibilities of respondents.Keywords: environmental awareness, environmental management, sustainability, sustainable aviation
Procedia PDF Downloads 453248 Rapid Formation of Ortho-Boronoimines and Derivatives for Reversible and Dynamic Bioconjugation Under Physiological Conditions
Authors: Nicholas C. Rose, Christopher D. Spicer
Abstract:
The regeneration of damaged or diseased tissues would provide an invaluable therapeutic tool in biological research and medicine. Cells must be provided with a number of different biochemical signals in order to form mature tissue through complex signaling networks that are difficult to recreate in synthetic materials. The ability to attach and detach bioactive proteins from material in an iterative and dynamic manner would therefore present a powerful way to mimic natural biochemical signaling cascades for tissue growth. We propose to reversibly attach these bioactive proteins using ortho-boronoimine (oBI) linkages and related derivatives formed by the reaction of an ortho-boronobenzaldehyde with a nucleophilic amine derivative. To enable the use of oBIs for biomaterial modification, we have studied binding and cleavage processes with precise detail in the context of small molecule models. A panel of oBI complexes has been synthesized and screened using a novel Förster resonance energy transfer (FRET) assay, using a cyanine dye FRET pair (Cy3 and Cy5), to identify the most reactive boron-aldehyde/amine nucleophile pairs. Upon conjugation of the dyes, FRET occurs under Cy3 excitation and the resultant ratio of Cy3:Cy5 emission directly correlates to conversion. Reaction kinetics and equilibria can be accurately quantified for reactive pairs, with dissociation constants of oBI derivatives in water (KD) found to span 9-orders of magnitude (10⁻²-10⁻¹¹ M). These studies have provided us with a better understanding of oBI linkages that we hope to exploit to reversibly attach bioconjugates to materials. The long-term aim of the project is to develop a modular biomaterial platform that can be used to help combat chronic diseases such as osteoarthritis, heart disease, and chronic wounds by providing cells with potent biological stimuli for tissue engineering.Keywords: dynamic, bioconjugation, bornoimine, rapid, physiological
Procedia PDF Downloads 96247 Geospatial Assessments on Impacts of Land Use Changes and Climate Change in Nigeria Forest Ecosystems
Authors: Samuel O. Akande
Abstract:
The human-induced climate change is likely to have severe consequences on forest ecosystems in Nigeria. Recent discussions and emphasis on issues concerning the environment justify the need for this research which examined deforestation monitoring in Oban Forest, Nigeria using Remote Sensing techniques. The Landsat images from TM (1986), ETM+ (2001) and OLI (2015) sensors were obtained from Landsat online archive and processed using Erdas Imagine 2014 and ArcGIS 10.3 to obtain the land use/land cover and Normalized Differential Vegetative Index (NDVI) values. Ground control points of deforested areas were collected for validation. It was observed that the forest cover decreased in area by about 689.14 km² between 1986 and 2015. The NDVI was used to determine the vegetation health of the forest and its implications on agricultural sustainability. The result showed that the total percentage of the healthy forest cover has reduced to about 45.9% from 1986 to 2015. The results obtained from analysed questionnaires shown that there was a positive correlation between the causes and effects of deforestation in the study area. The coefficient of determination value was calculated as R² ≥ 0.7, to ascertain the level of anthropogenic activities, such as fuelwood harvesting, intensive farming, and logging, urbanization, and engineering construction activities, responsible for deforestation in the study area. Similarly, temperature and rainfall data were obtained from Nigerian Meteorological Agency (NIMET) for the period of 1986 to 2015 in the study area. It was observed that there was a significant increase in temperature while rainfall decreased over the study area. Responses from the administered questionnaires also showed that futile destruction of forest ecosystem in Oban forest could be reduced to its barest minimum if fuelwood harvesting is disallowed. Thus, the projected impacts of climate change on Nigeria’s forest ecosystems and environmental stability is better imagined than experienced.Keywords: deforestation, ecosystems, normalized differential vegetative index, sustainability
Procedia PDF Downloads 192246 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding
Authors: Indunil Jayatilake, Warna Karunasena
Abstract:
Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.Keywords: debonding, dynamic response, finite element modelling, novel FRP beams
Procedia PDF Downloads 116245 Nanostructured Oxide Layer by Anodization on Austenitic Stainless Steels: Structural and Corrosion Insights
Authors: Surya Prakash Gajagouni, Akram Alfantazi, Imad Barsoum
Abstract:
Austenitic stainless steels are widely recognized for their exceptional corrosion resistance and mechanical properties, rendering them indispensable materials across various industries from construction to biomedical applications. However, in chloride and high temperature atmosphere it to further enhance their surface properties, anodization has emerged as a promising surface treatment technique. Anodization modifies the surface of stainless steels by creating a protective oxide layer, improving corrosion resistance and imparting additional functional characteristics. This paper explores the structural and corrosion characteristics of anodized austenitic stainless steels (AISI 304) using a two-step anodic technique. We utilized a perchloric acid-based electrolyte followed by an ammonium fluoride-based electrolyte. This sequential approach aimed to cultivate deeper and intricately self-ordered nanopore oxide arrays on a substrate made of 304 stainless steel. Electron Microscopic (SEM and TEM) images revealed nanoporous layered structures with increased length and crack development correlating with higher voltage and anodization time. Surface composition and chemical oxidation state of surface-treated SS were determined using X-ray photoelectron spectroscopy (XPS) techniques, revealing a surface layer rich in Ni and suppressed Cr, resulting in a thin film composed of Ni and Fe oxide compared to untreated SS. Electrochemical studies demonstrated enhanced corrosion resistance in a strong alkaline medium compared to untreated SS. Understanding the intricate relationship between the structural features of anodized stainless steels and their corrosion resistance is crucial for optimizing the performance of these materials in diverse applications. This study aims to contribute to the advancement of surface engineering strategies for enhancing the durability and functionality of austenitic stainless steels in aggressive environments.Keywords: austenitic stainless steel, anodization, nanoporous oxides, marine corrosion
Procedia PDF Downloads 33244 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites
Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras
Abstract:
Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.Keywords: ceria, graphene, luminescence, blue shift, band gap widening
Procedia PDF Downloads 190243 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 88242 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)
Authors: Feridun Demir, Pelin Okdem
Abstract:
Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor
Procedia PDF Downloads 19241 Effect of Dynamic Loading by Cyclic Triaxial Tests on Sand Stabilized with Cement
Authors: Priyanka Devi, Mohammad Muzzaffar Khan, G. Kalyan Kumar
Abstract:
Liquefaction of saturated soils due to dynamic loading is an important and interesting area in the field of geotechnical earthquake engineering. When the soil liquefies, the structures built on it develops uneven settlements thereby producing cracks in the structure and weakening the foundation. The 1964 Alaskan Good Friday earthquake, the 1989 San Francisco earthquake and 2011 Tōhoku earthquake are some of the examples of liquefaction occurred due to an earthquake. To mitigate the effect of liquefaction, several methods such use of stone columns, increasing the vertical stress, compaction and removal of liquefiable soil are practiced. Grouting is one of those methods used to increase the strength of the foundation and develop resistance to liquefaction of soil without affecting the superstructure. In the present study, an attempt has been made to investigate the undrained cyclic behavior of locally available soil, stabilized by cement to mitigate the seismically induced soil liquefaction. The specimens of 75mm diameter and 150mm height were reconstituted in the laboratory using water sedimentation technique. A series of strain-controlled cyclic triaxial tests were performed on saturated soil samples followed by consolidation. The effects of amplitude, confining pressure and relative density on the dynamic behavior of sand was studied for soil samples with varying cement content. The results obtained from the present study on loose specimens and medium dense specimens indicate that (i) the higher the relative density, the more will be the liquefaction resistance, (ii) with increase of effective confining pressure, a decrease in developing of excess pore water pressure during cyclic loading was observed and (iii) sand specimens treated with cement showed reduced excess pore pressures and increased liquefaction resistance suggesting it as one of the mitigation methods.Keywords: cyclic triaxial test, liquefaction, soil-cement stabilization, pore pressure ratio
Procedia PDF Downloads 294240 Summer STEM Institute in Environmental Science and Data Sciencefor Middle and High School Students at Pace University
Authors: Lauren B. Birney
Abstract:
Summer STEM Institute for Middle and High School Students at Pace University The STEM Collaboratory NYC® Summer Fellows Institute takes place on Pace University’s New York City campus during July and provides the following key features for all participants: (i) individual meetings with Pace faculty to discuss and refine future educational goals; (ii) mentorship, guidance, and new friendships with program leaders; and (iii) guest lectures from professionals in STEM disciplines and businesses. The Summer STEM Institute allows middle school and high school students to work in teams to conceptualize, develop, and build native mobile applications that teach and reinforce skills in the sciences and mathematics. These workshops enhance students’STEM problem solving techniques and teach advanced methods of computer science and engineering. Topics include: big data and analytics at the Big Data lab at Seidenberg, Data Science focused on social and environmental advancement and betterment; Natural Disasters and their Societal Influences; Algal Blooms and Environmental Impacts; Green CitiesNYC; STEM jobs and growth opportunities for the future; renew able energy and sustainable infrastructure; and climate and the economy. In order to better align the existing Summer STEM, Institute with the CCERS model and expand the overall network, Pace is actively recruiting new content area specialists from STEM industries and private sector enterprises to participate in an enhanced summer institute in order to1) nurture student progress and connect summer learning to school year curriculum, 2) increase peer-to-peer collaboration amongst STEM professionals and private sector technologists, and 3) develop long term funding and sponsorship opportunities for corporate sector partners to support CCERS schools and programs directly.Keywords: environmental restoration science, citizen science, data science, STEM
Procedia PDF Downloads 85239 Evaluation of Duncan-Chang Deformation Parameters of Granular Fill Materials Using Non-Invasive Seismic Wave Methods
Authors: Ehsan Pegah, Huabei Liu
Abstract:
Characterizing the deformation properties of fill materials in a wide stress range always has been an important issue in geotechnical engineering. The hyperbolic Duncan-Chang model is a very popular model of stress-strain relationship that captures the nonlinear deformation of granular geomaterials in a very tractable manner. It consists of a particular set of the model parameters, which are generally measured from an extensive series of laboratory triaxial tests. This practice is both time-consuming and costly, especially in large projects. In addition, undesired effects caused by soil disturbance during the sampling procedure also may yield a large degree of uncertainty in the results. Accordingly, non-invasive geophysical seismic approaches may be utilized as the appropriate alternative surveys for measuring the model parameters based on the seismic wave velocities. To this end, the conventional seismic refraction profiles were carried out in the test sites with the granular fill materials to collect the seismic waves information. The acquired shot gathers are processed, from which the P- and S-wave velocities can be derived. The P-wave velocities are extracted from the Seismic Refraction Tomography (SRT) technique while S-wave velocities are obtained by the Multichannel Analysis of Surface Waves (MASW) method. The velocity values were then utilized with the equations resulting from the rigorous theories of elasticity and soil mechanics to evaluate the Duncan-Chang model parameters. The derived parameters were finally compared with those from laboratory tests to validate the reliability of the results. The findings of this study may confidently serve as the useful references for determination of nonlinear deformation parameters of granular fill geomaterials. Those are environmentally friendly and quite economic, which can yield accurate results under the actual in-situ conditions using the surface seismic methods.Keywords: Duncan-Chang deformation parameters, granular fill materials, seismic waves velocity, multichannel analysis of surface waves, seismic refraction tomography
Procedia PDF Downloads 181238 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.Keywords: mathematical sciences, data analytics, advances, unveiling
Procedia PDF Downloads 92237 Crystalline Silica Exposure in Tunnel Construction: Identifying Barriers to Safe Practices
Authors: Frederick Anlimah, Vinod Gopaldasani, Catherine MacPhail, Brian Davies
Abstract:
Aim: This study aims to identify the barriers and challenges hindering the implementation of effective controls and the adoption of safe work practices to protect workers from respirable crystalline silica (RCS) exposure. Problem or Situation: Tunnelling is one of many occupations that expose workers to the harmful effects of respirable crystalline silica. Despite various control measures, such as engineering controls and personal protective equipment, exposures remain inadequately controlled, leading to incurable silicosis and other severe illnesses, such as lung cancer. Methods: The research involved surveying tunnel construction workers, conducting interviews, and facilitating focus group discussions. Additionally, site observations and content analysis of work procedures and instructions were performed. Results: Preliminary data analysis reveals notable findings. While there is a commendable level of knowledge and commitment among management and workers concerning RCS exposure in tunnelling, there is a striking lack of prioritization regarding dust control. Moreover, the risks associated with dust exposure are not sufficiently acknowledged. Additionally, the data suggests that engineers and supervisors responsible for implementing dust controls often possess limited knowledge regarding the factors influencing the effectiveness of these measures. These findings emphasise the need for a paradigm shift, including higher prioritisation of dust control, adoption of holistic dust reduction strategies, and enhanced knowledge about effective control measures. Conclusion: This research shed light on tunnel construction workers' barriers and challenges in protecting themselves from RCS exposure. This knowledge will be essential in developing interventions and strategies to enhance dust exposure and prevent the adverse health effects of respirable crystalline silica exposure in tunnelling and similar industries.Keywords: respirable crystalline silica, dust control, worker practices, exposure prevention, silicosis
Procedia PDF Downloads 69236 The Influence of Mycelium Species and Incubation Protocols on Heat and Moisture Transfer Properties of Mycelium-Based Composites
Authors: Daniel Monsalve, Takafumi Noguchi
Abstract:
Mycelium-based composites (MBC) are made by growing living mycelium on lignocellulosic fibres to create a porous composite material which can be lightweight, and biodegradable, making them suitable as a sustainable thermal insulation. Thus, they can help to reduce material extraction while improving the energy efficiency of buildings, especially when agricultural by-products are used. However, as MBC are hygroscopic materials, moisture can reduce their thermal insulation efficiency. It is known that surface growth, or “mycelium skin”, can form a natural coating due to the hydrophobic properties in the mycelium cell wall. Therefore, this research aims to biofabricate a homogeneous mycelium skin and measure its influence on the final composite material by testing material properties such as thermal conductivity, vapour permeability and water absorption by partial immersion over 24 hours. In addition, porosity, surface morphology and chemical composition were also analyzed. The white-rot fungi species Pleurotus ostreatus, Ganoderma lucidum, and Trametes versicolor were grown on 10 mm hemp fibres (Cannabis sativa), and three different biofabrication protocols were used during incubation, varying the time and surface treatment, including the addition of pre-colonised sawdust. The results indicate that density can be reduced by colonisation time, which will favourably impact thermal conductivity but will negatively affect vapour and liquid water control. Additionally, different fungi can exhibit different resistance to prolonged water absorption, and due to osmotic sensitivity, mycelium skin may also diminish moisture control. Finally, a collapse in the mycelium network after water immersion was observed through SEM, indicating how the microstructure is affected, which is also dependent on fungi species and the type of skin achieved. These results help to comprehend the differences and limitations of three of the most common species used for MBC fabrication and how precise engineering is needed to effectively control the material output.Keywords: mycelium, thermal conductivity, vapor permeability, water absorption
Procedia PDF Downloads 41235 Conductivity-Depth Inversion of Large Loop Transient Electromagnetic Sounding Data over Layered Earth Models
Authors: Ravi Ande, Mousumi Hazari
Abstract:
One of the common geophysical techniques for mapping subsurface geo-electrical structures, extensive hydro-geological research, and engineering and environmental geophysics applications is the use of time domain electromagnetic (TDEM)/transient electromagnetic (TEM) soundings. A large transmitter loop for energising the ground and a small receiver loop or magnetometer for recording the transient voltage or magnetic field in the air or on the surface of the earth, with the receiver at the center of the loop or at any random point inside or outside the source loop, make up a large loop TEM system. In general, one can acquire data using one of the configurations with a large loop source, namely, with the receiver at the center point of the loop (central loop method), at an arbitrary in-loop point (in-loop method), coincident with the transmitter loop (coincidence-loop method), and at an arbitrary offset loop point (offset-loop method), respectively. Because of the mathematical simplicity associated with the expressions of EM fields, as compared to the in-loop and offset-loop systems, the central loop system (for ground surveys) and coincident loop system (for ground as well as airborne surveys) have been developed and used extensively for the exploration of mineral and geothermal resources, for mapping contaminated groundwater caused by hazardous waste and thickness of permafrost layer. Because a proper analytical expression for the TEM response over the layered earth model for the large loop TEM system does not exist, the forward problem used in this inversion scheme is first formulated in the frequency domain and then it is transformed in the time domain using Fourier cosine or sine transforms. Using the EMLCLLER algorithm, the forward computation is initially carried out in the frequency domain. As a result, the EMLCLLER modified the forward calculation scheme in NLSTCI to compute frequency domain answers before converting them to the time domain using Fourier Cosine and/or Sine transforms.Keywords: time domain electromagnetic (TDEM), TEM system, geoelectrical sounding structure, Fourier cosine
Procedia PDF Downloads 91234 Understanding the Productivity Effect on Industrial Management: The Portuguese Wood Furniture Industry Case Study
Authors: Jonas A. R. H. Lima, Maria Antonia Carravilla
Abstract:
As productivity concepts are widely related to industrial savings, it is becoming particularly important in a more and more competitive world, to really understand how productivity can be well used in industrial management techniques. Nowadays, consumers are no more willing to pay for mistakes and inefficiencies. Therefore, one way for companies to stay competitive is to control and increase their productivity. This study aims to define clearly the productivity concept, understand how a company can affect productivity, and, if possible, identify the relation between each identified productivity factor. This will help managers, by clarifying the main issues behind productivity concepts and proposing a methodology to measure, control and increase productivity. The main questions to be answered are: what is the importance of productivity for the Portuguese Wood Furniture Industry? Is it possible to control productivity internally, or is it a phenomenon external to companies, hard or even impossible to control? How to understand, control and adjust productivity performance? How to make productivity to become one main asset for maximizing the use of the available resources? This essay will follow a constructive approach mostly based in the research hypothesis mentioned above. For that, a literature review is being done to find the main conceptual frameworks and empirical studies that already exist, and by doing so, highlight eventual knowledge or conflicting research to be addressed in this work. We expect to build theoretical explanations and test theoretical predictions from participants understandings and own experiences, by elaborating field surveys and interviews, to select adjusted productivity indicators and analyze the productivity evolution according the adjustments on other variables. Its intended the conduction of an exploratory work that can simultaneous clarify productivity concepts, objectives, and define frameworks. This investigation intends to migrate from merely academic concepts to a daily basis operational reality of the companies from the Portuguese Wood Furniture Industry highlighting productivity increased importance within modern engineering and industrial management. The ambition is to clarify, systemize and develop a management tool that may not only control but positively influence the way resources are used.Keywords: industrial management, motivation, productivity, performance indicators, reward management, wood furniture industry
Procedia PDF Downloads 228233 Fabrication of Electrospun Microbial Siderophore-Based Nanofibers: A Wound Dressing Material to Inhibit the Wound Biofilm Formation
Authors: Sita Lakshmi Thyagarajan
Abstract:
Nanofibers will leave no field untouched by its scientific innovations; the medical field is no exception. Electrospinning has proven to be an excellent method for the synthesis of nanofibers which, have attracted the interest for many biomedical applications. The formation of biofilms in wounds often leads to chronic infections that are difficult to treat with antibiotics. In order to minimize the biofilms and enhance the wound healing, preparation of potential nanofibers was focused. In this study, siderophore incorporated nanofibers were electrospun using biocompatible polymers onto the collagen scaffold and were fabricated into a biomaterial suitable for the inhibition of biofilm formation. The purified microbial siderophore was blended with Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO in a suitable solvent. Fabrication of siderophore blended nanofibers onto the collagen surface was done using standard protocols. The fabricated scaffold was subjected to physical-chemical characterization. The results indicated that the fabrication processing parameters of nanofiberous scaffold was found to possess the characteristics expected of the potential scaffold with nanoscale morphology and microscale arrangement. The influence of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO solution concentration, applied voltage, tip-to-collector distance, feeding rate, and collector speed were studied. The optimal parameters such as the ratio of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO concentration, applied voltage, tip-to-collector distance, feeding rate, collector speed were finalized based on the trial and error experiments. The fibers were found to have a uniform diameter with an aligned morphology. The overall study suggests that the prepared siderophore entrapped nanofibers could be used as a potent tool for wound dressing material for inhibition of biofilm formation.Keywords: biofilms, electrospinning, nano-fibers, siderophore, tissue engineering scaffold
Procedia PDF Downloads 121232 Examination of the Main Behavioral Patterns of Male and Female Students in Islamic Azad University
Authors: Sobhan Sobhani
Abstract:
This study examined the behavioral patterns of student and their determinants according to the "symbolic interaction" sociological perspective in the form of 7 hypotheses. Behavioral patterns of students were classified in 8 categories: religious, scientific, political, artistic, sporting, national, parents and teachers. They were evaluated by student opinions by a five-point Likert rating scale. The statistical population included all male and female students of Islamic Azad University, Behabahan branch, among which 600 patients (268 females and 332 males) were selected randomly. The following statistical methods were used: frequency and percentage, mean, t-test, Pearson correlation coefficient and multi-way analysis of variance. The results obtained from statistical analysis showed that: 1-There is a significant difference between male and female students in terms of disposition to religious figures, artists, teachers and parents. 2-There is a significant difference between students of urban and rural areas in terms of assuming behavioral patterns of religious, political, scientific, artistic, national figures and teachers. 3-The most important criterion for selecting behavioral patterns of students is intellectual understanding with the pattern. 4-The most important factor influencing the behavioral patterns of male and female students is parents followed by friends. 5-Boys are affected by teachers, the Internet and satellite programs more than girls. Girls assume behavioral patterns from books more than boys. 6-There is a significant difference between students in human sciences, technical, medical and engineering disciplines in terms of selecting religious and political figures as behavioral patterns. 7-There is a significant difference between students belonging to different subcultures in terms of assuming behavioral patterns of religious, scientific and cultural figures. 8-Between the first and fourth year students in terms of selecting behavioral patterns, there is a significant difference only in selecting religious figures. 9-There is a significant negative correlation between the education level of parents and the selection of religious and political figures and teachers. 10-There is a significant negative correlation between family income and the selection of political and religious figures.Keywords: behavioral patterns, behavioral patterns, male and female students, Islamic Azad University
Procedia PDF Downloads 364231 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary
Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet
Abstract:
The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.Keywords: dry conservation, optimization, sizing, water station
Procedia PDF Downloads 261230 European Standardization in Nanotechnologies and Relation with International Work: The Standardization Can Help Industry and Regulators in Developing Safe Products
Authors: Patrice Conner
Abstract:
Nanotechnologies have enormous potential to contribute to human flourishing in responsible and sustainable ways. They are rapidly developing field of science, technology and innovation. As enabling technologies, their full scope of applications is potentially very wide. Major implications are expected in many areas, e.g. healthcare, information and communication technologies, energy production and storage, materials science/chemical engineering, manufacturing, environmental protection, consumer products, etc. However, nanotechnologies are unlikely to realize their full potential unless their associated societal and ethical issues are adequately attended. Namely nanotechnologies and nanoparticles may expose humans and the environment to new health risks, possibly involving quite different mechanisms of interference with the physiology of human and environmental species. One of the building blocks of the ‘safe, integrated and responsible’ approach is standardization. Both the Economic and Social Committee and the European Parliament have highlighted the importance to be attached to standardization as a means to accompany the introduction on the market of nanotechnologies and nanomaterials, and a means to facilitate the implementation of regulation. ISO and CEN have respectively started in 2005 and 2006 to deal with selected topics related to this emerging and enabling technology. In the beginning of 2010, EC DG ‘Enterprise and Industry’ addressed the mandate M/461 to CEN, CENELEC and ETSI for standardization activities regarding nanotechnologies and nanomaterials. Thus CEN/TC 352 ‘Nanotechnologies’ has been asked to take the leadership for the coordination in the execution of M/461 (46 topics to be standardized) and to contact relevant European and International Technical committees and interested stakeholders as appropriate (56 structures have been identified). Prior requests from M/461 deal with characterization and exposure of nanomaterials and any matters related to Health, Safety and Environment. Answers will be given to: - What are the structures and how they work? - Where are we right now and how work is going from now onwards? - How CEN’s work and targets deal with and interact with global matters in this field?Keywords: characterization, environmental protection, exposure, health risks, nanotechnologies, responsible and sustainable ways, safety
Procedia PDF Downloads 188229 Mathematics Bridging Theory and Applications for a Data-Driven World
Authors: Zahid Ullah, Atlas Khan
Abstract:
In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models
Procedia PDF Downloads 75228 On Cloud Computing: A Review of the Features
Authors: Assem Abdel Hamed Mousa
Abstract:
The Internet of Things probably already influences your life. And if it doesn’t, it soon will, say computer scientists; Ubiquitous computing names the third wave in computing, just now beginning. First were mainframes, each shared by lots of people. Now we are in the personal computing era, person and machine staring uneasily at each other across the desktop. Next comes ubiquitous computing, or the age of calm technology, when technology recedes into the background of our lives. Alan Kay of Apple calls this "Third Paradigm" computing. Ubiquitous computing is essentially the term for human interaction with computers in virtually everything. Ubiquitous computing is roughly the opposite of virtual reality. Where virtual reality puts people inside a computer-generated world, ubiquitous computing forces the computer to live out here in the world with people. Virtual reality is primarily a horse power problem; ubiquitous computing is a very difficult integration of human factors, computer science, engineering, and social sciences. The approach: Activate the world. Provide hundreds of wireless computing devices per person per office, of all scales (from 1" displays to wall sized). This has required new work in operating systems, user interfaces, networks, wireless, displays, and many other areas. We call our work "ubiquitous computing". This is different from PDA's, dynabooks, or information at your fingertips. It is invisible; everywhere computing that does not live on a personal device of any sort, but is in the woodwork everywhere. The initial incarnation of ubiquitous computing was in the form of "tabs", "pads", and "boards" built at Xerox PARC, 1988-1994. Several papers describe this work, and there are web pages for the Tabs and for the Boards (which are a commercial product now): Ubiquitous computing will drastically reduce the cost of digital devices and tasks for the average consumer. With labor intensive components such as processors and hard drives stored in the remote data centers powering the cloud , and with pooled resources giving individual consumers the benefits of economies of scale, monthly fees similar to a cable bill for services that feed into a consumer’s phone.Keywords: internet, cloud computing, ubiquitous computing, big data
Procedia PDF Downloads 380