Search results for: industrial revolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3511

Search results for: industrial revolution

931 TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes

Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud

Abstract:

Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys.

Keywords: ball milling, selective laser melting, surface roughness, titanium, wear

Procedia PDF Downloads 272
930 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)

Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi

Abstract:

The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.

Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco

Procedia PDF Downloads 121
929 Structural Damage Detection in a Steel Column-Beam Joint Using Piezoelectric Sensors

Authors: Carlos H. Cuadra, Nobuhiro Shimoi

Abstract:

Application of piezoelectric sensors to detect structural damage due to seismic action on building structures is investigated. Plate-type piezoelectric sensor was developed and proposed for this task. A film-type piezoelectric sheet was attached on a steel plate and covered by a layer of glass. A special glue is used to fix the glass. This glue is a silicone that requires the application of ultraviolet rays for its hardening. Then, the steel plate was set up at a steel column-beam joint of a test specimen that was subjected to bending moment when test specimen is subjected to monotonic load and cyclic load. The structural behavior of test specimen during cyclic loading was verified using a finite element model, and it was found good agreement between both results on load-displacement characteristics. The cross section of steel elements (beam and column) is a box section of 100 mm×100 mm with a thin of 6 mm. This steel section is specified by the Japanese Industrial Standards as carbon steel square tube for general structure (STKR400). The column and beam elements are jointed perpendicularly using a fillet welding. The resulting test specimen has a T shape. When large deformation occurs the glass plate of the sensor device cracks and at that instant, the piezoelectric material emits a voltage signal which would be the indicator of a certain level of deformation or damage. Applicability of this piezoelectric sensor to detect structural damages was verified; however, additional analysis and experimental tests are required to establish standard parameters of the sensor system.

Keywords: piezoelectric sensor, static cyclic test, steel structure, seismic damages

Procedia PDF Downloads 116
928 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines

Authors: R. T. Aggangan

Abstract:

Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.

Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand

Procedia PDF Downloads 318
927 Eliminating Injury in the Work Place and Realizing Vision Zero Using Accident Investigation and Analysis as Method: A Case Study

Authors: Ramesh Kumar Behera, Md. Izhar Hassan

Abstract:

Accident investigation and analysis are useful to identify deficiencies in plant, process, and management practices and formulate preventive strategies for injury elimination. In India and other parts of the world, industrial accidents are investigated to know the causes and also to fulfill legal compliances. However, findings of investigation are seldom used appropriately to strengthen Occupational Safety and Health (OSH) in expected lines. The mineral rich state of Odisha in eastern coast of India; known as a hub for Iron and Steel industries, witnessed frequent accidents during 2005-2009. This article based on study of 982 fatal ‘factory-accidents’ occurred in Odisha during the period 2001-2016, discusses the ‘turnaround-story’ resulting in reduction of fatal accident from 122 in 2009 to 45 in 2016. This paper examines various factors causing incidents; accident pattern in steel and chemical sector; role of climate and harsh weather conditions on accident causation. Software such as R, SQL, MS-Excel and Tableau were used for analysis of data. It is found that maximum fatality is caused due to ‘fall from height’ (24%); steel industries are relatively more accident prone; harsh weather conditions of summer increase chances of accident by 20%. Further, the study suggests that enforcement of partial work-restriction around lunch time during peak summer, screening and training of employees reduce accidents due to fall from height. The study indicates that learning from accident investigation and analysis can be used as a method to reduce work related accidents in the journey towards ‘Vision Zero’.

Keywords: accident investigation and analysis, fatal accidents in India, fall from height, vision zero

Procedia PDF Downloads 144
926 Evaluation of Groundwater and Seawater Intrusion at Tajoura Area, NW, Libya

Authors: Abdalraheem Huwaysh, Khalil Al Samarrai, Yasmin ElAhmar

Abstract:

Water quality is an important factor that determines its usage for domestic, agricultural and industrial uses. This study was carried out through the Tajoura Area, Jifarah Plain, Northwest Libya. Chemical and physical parameters were measured and analyzed for groundwater samples collected in 2021 from twenty-six wells distributed throughout the investigation area. Overexploitation of groundwater caused considerable deterioration in the water quality, especially at Tajoura Town (20 Km east of Tripoli). The aquifer shows an increase in salinization, which has reached an alarming level in many places during the past 25 years as a result of the seawater intrusion. The chemical composition of the water samples was compared with the drinking water standards of WHO and Libyan Standards. Groundwater from this area was not suitable to be a source for direct drinking based on Total Dissolved Solids. The dominant cation is sodium, while the dominant anion is chloride. Based on the Piper trilinear diagram, most of the groundwater samples (90%) were identified as sodium chloride type. The best groundwater quality exists at the southern part of the study area. Serious degradation in the water quality, expressed in salinity increase, occurs as we go towards the coastline. The abundance of NaCl waters is strong evidence to attribute the successive deterioration of the water quality to the seawater intrusion. Considering the values of Cl- concentration and the ratio of Cl-/HCO3-, about 70% of the groundwater samples were strongly affected by the saline water. Car wash stations in the study area as well as the unlined disposal pond used for the collection of untreated wastewater, contribute significantly to the deterioration of water quality. The water quality in this area needs to be monitored regularly and it is crucial to treat the water before consumption.

Keywords: Tajoura, groundwater, seawater intrusion, water quality

Procedia PDF Downloads 92
925 Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity

Authors: Amal A. Al-Kahlawy, Heba H. El-Maghrabi

Abstract:

Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials.

Keywords: nanocomposite, photocatalyst, solar energy, titanium dioxide nanotubes

Procedia PDF Downloads 235
924 Application of a Series of New Platinum Organometallic Complexes Derived from Bidentate Schiff Base Ligands in the Hydrogenative and Dehydrogenative Silylation of Styrene

Authors: M. Belhadj Lachachi, Tayeb Benabdallah, M. Hadj Youcef, Jason M. Lynama

Abstract:

The application of inorganic chemistry to catalysis and environmental chemistry is a rapidly developing field, and novel catalytic metal complexes are now having an impact on the industrial development practice. Advances in organometallic chemistry are crucial for improving the design of compounds to reduce toxic side effects and understand their mechanisms of action. The reaction of platinum(II) organometallic complexes with bidentate Schiff bases derived from 2-Hydroxynaphtalydeneaniline have been carried out. It concerns N,N’-naphtalidene para-nitroaniline (1-a), the, the N,N’-naphtalidene para-ethoxyaniline (1-b), the N,N’-naphtalideneaniline (1-c), the N,N’-naphtalidene para-chloroaniline (1-d) and the N,N’-naphtalidene para-methoxyaniline (1-e). The ligands were fully characterized by I.R., elemental analysis, 1H-NMR, 13C-NMR, ESI Mass Spectrometry and X-Ray Diffraction. The resulting metal complexes were obtained as a cationic species, through a simple substitution reaction, leading to two geometric isomers [1, 2], and characterized by IR, 1H-NMR, 13C-NMR, LIFDI Mass Spectrometry and supported by Elemental Analysis and X-Ray diffraction. Furthermore, a bimetallic platinum complex was prepared from the same ligands and dichloro(1,5-cyclooctadiene)platinum and characterized by X-Ray diffraction [3]The catalytic properties of the prepared platinum complexes in the hydrogenative and dehydrogenative silylation of styrene were investigated, and reaction kinetics conversion to products was determined by 1H-NMR and confirmed by GC-MS. This presentation will detail a comparison of the catalytic activity of five platinum organometallic complexes bearing different Schiff base ligands in the hydrosilylation of styrene, varying the experimental conditions of temperature, nature of the complex and the loading of the catalyst.

Keywords: catalysis, hydrosilylation, organometallic, schiff base

Procedia PDF Downloads 234
923 The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete

Authors: Gashaw Abebaw

Abstract:

Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading.

Keywords: metakaolin, compressive strength, sulphate attack, water absorption, N pozzolan

Procedia PDF Downloads 111
922 Classification of Small Towns: Three Methodological Approaches and Their Results

Authors: Jerzy Banski

Abstract:

Small towns represent a key element of settlement structure and serve a number of important functions associated with the servicing of rural areas that surround them. It is in light of this that scientific studies have paid considerable attention to the functional structure of centers of this kind, as well as the relationships with both surrounding rural areas and other urban centers. But a preliminary to such research has typically involved attempts at classifying the urban centers themselves, with this also assisting with the planning and shaping of development policy on different spatial scales. The purpose of the work is to test out the methods underpinning three different classifications of small urban centers, as well as to offer a preliminary interpretation of the outcomes obtained. Research took in 722 settlement units in Poland, granted town rights and populated by fewer than 20,000 inhabitants. A morphologically-based classification making reference to the database of topographic objects as regards land cover within the administrative boundaries of towns and cities was carried out, and it proved possible to distinguish the categories of “housing-estate”, industrial and R&R towns, as well as towns characterized by dichotomy. Equally, a functional/morphological approach taken with the same database allowed for the identification – via an alternative method – of three main categories of small towns (i.e., the monofunctional, multifunctional or oligo functional), which could then be described in far greater detail. A third, multi-criterion classification made simultaneous reference to the conditioning of a structural, a location-related, and an administrative hierarchy-related nature, allowing for distinctions to be drawn between small towns in 9 different categories. The results obtained allow for multifaceted analysis and interpretation of the geographical differentiation characterizing the distribution of Poland’s urban centers across space in the country.

Keywords: small towns, classification, local planning, Poland

Procedia PDF Downloads 72
921 Back Extraction and Isolation of Alkaloids from Ionic Liquid-Based Extracts

Authors: Rozalina Keremedchieva, Ivan Svinyarov, Milen G. Bogdanov

Abstract:

In continuation of a research project on the application of ionic liquids (ILs) as an alternative to the conventional organic solvents used in the recovery of value added chemicals of industrial interest1-3 we developed a procedure for back extraction and isolation in pure form of the biologically active alkaloid glaucine from IL-based aqueous solutions. One of the approaches applied was the formation of two-phase systems (IL-ATPS) by the addition of kosmotropic salts to the plant extract. The ability of the salts (Na2CO3, MgSO4, (NH4)2SO4, NaH2PO4) to induce the formation of two-phase systems and the influence of pH value on the partition coefficients of glaucine was comprehensively studied. As a result, it was found that the target alkaloid is preferably partitioned into the IL-rich phase regardless of the pH value of the medium and thus shows the inapplicability of the approach used for the isolation of the target compound from the ionic liquid. However, the results obtained can be used as a platform for the development of an analytical method for the quantitative determination of low concentrations of glaucine in biological samples. We further examined the ability of a series of organic solvents such as diethyl ether, Tert-butylmethyl ether, ethyl acetate, butyl acetate, toluene, chloroform, dichloromethane to recover glaucine form raw IL-based aqueous extracts. Optimal conditions for quantitative extraction of glaucine into chloroform were found from which, after removal of the solvent and subsequent recrystallization from ethanol, the target compound was isolated in a high purity as a hydrobromide salt – The form in which it entrance as an active ingredient in various medicines.

Keywords: natural products, ionic liquids, solid-liquid extraction, liquid-liquid extraction

Procedia PDF Downloads 468
920 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete

Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen

Abstract:

The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.

Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance

Procedia PDF Downloads 294
919 Fabrication and Characterization Analysis of La-Sr-Co-Fe-O Perovskite Hollow Fiber Catalyst for Oxygen Removal in Landfill Gas

Authors: Seong Woon Lee, Soo Min Lim, Sung Sik Jeong, Jung Hoon Park

Abstract:

The atmospheric concentration of greenhouse gas (GHG, Green House Gas) is increasing continuously as a result of the combustion of fossil fuels and industrial development. In response to this trend, many researches have been conducted on the reduction of GHG. Landfill gas (LFG, Land Fill Gas) is one of largest sources of GHG emissions containing the methane (CH₄) as a major constituent and can be considered renewable energy sources as well. In order to use LFG by connecting to the city pipe network, it required a process for removing impurities. In particular, oxygen must be removed because it can cause corrosion of pipes and engines. In this study, methane oxidation was used to eliminate oxygen from LFG and perovskite-type ceramic catalysts of La-Sr-Co-Fe-O composition was selected as a catalyst. Hollow fiber catalysts (HFC, Hollow Fiber Catalysts) have attracted attention as a new concept alternative because they have high specific surface area and mechanical strength compared to other types of catalysts. HFC was prepared by a phase-inversion/sintering technique using commercial La-Sr-Co-Fe-O powder. In order to measure the catalysts' activity, simulated LFG was used for feed gas and complete oxidation reaction of methane was confirmed. Pore structure of the HFC was confirmed by SEM image and perovskite structure of single phase was analyzed by XRD. In addition, TPR analysis was performed to verify the oxygen adsorption mechanism of the HFC. Acknowledgement—The project is supported by the ‘Global Top Environment R&D Program’ in the ‘R&D Center for reduction of Non-CO₂ Greenhouse gases’ (Development and demonstration of oxygen removal technology of landfill gas) funded by Korea Ministry of Environment (ME).

Keywords: complete oxidation, greenhouse gas, hollow fiber catalyst, land fill gas, oxygen removal, perovskite catalyst

Procedia PDF Downloads 109
918 The Applications of Toyota Production System to Reduce Wastes in Agricultural Products Packing Process: A Study of Onion Packing Plant

Authors: P. Larpsomboonchai

Abstract:

Agro-industry is one of major industries that has strong impacts on national economic incomes, growth, stability, and sustainable development. Moreover, this industry also has strong influences on social, cultural and political issues. Furthermore, this industry, as producing primary and secondary products, is facing challenges from such diverse factors such as demand inconsistency, intense international competition, technological advancements and new competitors. In order to maintain and to improve industry’s competitiveness in both domestics and international markets, science and technology are key factors. Besides hard sciences and technologies, modern industrial engineering concepts such as Just in Time (JIT) Total Quality Management (TQM), Quick Response (QR), Supply Chain Management (SCM) and Lean can be very effective to supportant to increase efficiency and effectiveness of these agricultural products on world stage. Onion is one of Thailand’s major export products which brings back national incomes. But, it also facing challenges in many ways. This paper focused its interests in onion packing process and its related activities such as storage and shipment from one of major packing plant and storage in Mae Wang District, Chiang Mai, Thailand, by applying Toyota Production System (TPS) or Lean concepts, to improve process capability throughout the entire packing and distribution process which will be profitable for the whole onion supply chain. And it will be beneficial to other related agricultural products in Thailand and other ASEAN countries.

Keywords: packing process, Toyota Production System (TPS), lean concepts, waste reduction, lean in agro-industries activities

Procedia PDF Downloads 263
917 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds

Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal

Abstract:

EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.

Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds

Procedia PDF Downloads 311
916 Crystallinity, Antimicrobial Activity and Dyeing Properties of Chitosan-G-Poly(N-Acryloyl Morpholine) Copolymer

Authors: Fakhreia A. Al Sagheer, Enas I. Ibrahim, Khaled D. Khalil

Abstract:

N-Acryloyl morpholine, NAM, was grafted onto chitosan utilizing homogeneous conditions with 1% acetic acid as the solvent, and potassium persulfate and sodium sulfite as the redox initiator. The effects of various reaction parameters, such as time, temperature, and monomer and initiator concentrations, on the percentage of grafting (G%) and the grafting efficiency (E%) were determined. The graft copolymer showed a remarkably improved crystallinity, as compared to the unmodified chitosan, based on the FESEM, XRD, and DSC results. Chitosan-g-poly(N-acryloyl morpholine) (Cs-PNAM), the copolymer obtained by using this procedure, was characterized by utilizing FTIR, FESEM, TGA, and XRD analysis. As expected, the results of an evaluation of antibacterial and antifungal activities show that the grafted chitosan copolymers exhibit stronger inhibitory effects against both types of microbes than does chitosan. Moreover, the size of the inhibition zone created by the graft copolymer was observed to be proportional to its G% corresponding to its morpholine content. Fortunately, the graft copolymer showed a marked growth inhibition against candidiasis (C.Albicans and C.Kefyr). We conclude that the graft copolymer may be highly effective in the prevention and treatment of candidiasis. In addition, the extent and pH dependence of uptake of different types of dyes (acidic: EBT, and MV; and basic: MB) by grafted chitosan in pH 6.5 aqueous solutions was determined. The results show that, the grafted copolymer exhibited a greater affinity to absorb the acid dyes more than the basic ones especially at relatively low temperature. Thus the modified chitosan can be used, in wastewater treatment, as efficient economic absorbent especially for anionic dyes from the industrial processing effluents.

Keywords: chitosan, N-Acryloyl morpholine, homogeneous grafting, antimicrobial activity, dye uptake

Procedia PDF Downloads 359
915 The Selective Reduction of a Morita-baylis-hillman Adduct-derived Ketones Using Various Ketoreductase Enzyme Preparations

Authors: Nompumelelo P. Mathebula, Roger A. Sheldon, Daniel P. Pienaar, Moira L. Bode

Abstract:

The preparation of enantiopure Morita-Baylis-Hillman (MBH) adducts remains a challenge in organic chemistry. MBH adducts are highly functionalised compounds which act as key intermediates in the preparation of compounds of medicinal importance. MBH adducts are prepared in racemic form by reacting various aldehydes and activated alkenes in the presence of DABCO. Enantiopure MBH adducts can be obtained by employing Enzymatic kinetic resolution (EKR). This technique has been successfully demonstrated in our group, amongst others, using lipases in either hydrolysis or transesterification reactions. As these methods only allow 50% of each enantiomer to be obtained, our interest grew in exploring other enzymatic methods for the synthesis of enantiopure MBH adducts where, theoretically, 100% of the desired enantiomer could be obtained.Dehydrogenase enzymes can be employed on prochiral substrates to obtain optically pure compounds by reducing carbon-carbon double bonds or carbonyl groups of ketones. Ketoreductases have been used historically to obtain enantiopure secondary alcohols on an industrial scale. Ketoreductases are NAD(P)H-dependent enzymes and thus require nicotinamide as a cofactor. This project focuses on employing ketoreductase enzymes to selectively reduce ketones derived from Morita-Baylis-Hillman (MBH) adducts in order to obtain these adducts in enantiopure form.Results obtained from this study will be reported. Good enantioselectivity was observed using a range of different ketoreductases, however, reactions were complicated by the formation of an unexpected by-product, which was characterised employing single crystal x-ray crystallography techniques. Methods to minimise by-product formation are currently being investigated.

Keywords: ketoreductase, morita-baylis-hillman, selective reduction, x-ray crystallography

Procedia PDF Downloads 56
914 Microalgae Bacteria Granules, an Alternative Technology to the Conventional Wastewater Treatment: Structural and Metabolic Characterization

Authors: M. Nita-Lazar, E. Manea, C. Bumbac, A. Banciu, C. Stoica

Abstract:

The population and economic growth have generated a significant new number of pollutant compounds which have to be degraded before reaching the environment. The wastewater treatment plants (WWTPs) have been the last barrier between the domestic and/or industrial wastewaters and the environment. At present, the conventional WWTPs have very high operational costs, most of them linked to the aeration process (60-65% from total energy costs related to wastewater treatment). In addition, they have had a low efficiency in pollutants removal such as pharmaceutical and other resilient anthropogenic compounds. In our study, we have been focused on new wastewater treatment strategies to enhance the efficiency of pollutants removal and decrease the wastewater treatment operational costs. The usage of mixed microalgae-bacteria granules technology generated high efficiency and low costs by a better harvesting and less expensive aeration. The intertrophic relationships between microalgae and bacteria have been characterized by the structure of the population community to their metabolic relationships. The results, obtained by microscopic studies, showed well-organized and stratified microalgae-bacteria granules where bacteria have been enveloped in the microalgal structures. Moreover, their population community structure has been modulated as well as their nitrification, denitrification processes (analysis based on qPCR genes expression) by the type of the pollutant compounds and amounts. In conclusion, the understanding and modulation of intertrophic relationships between microalgae and bacteria could be an economical and technological viable alternative to the conventional wastewater treatment. Acknowledgements: This research was supported by grant PN-III-P4-ID-PCE-2016-0865 from the Romanian National Authority for Scientific Research and Innovation CNCS/CCCDI-UEFISCDI.

Keywords: activated sludge, bacteria, granules, microalgae

Procedia PDF Downloads 106
913 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting

Procedia PDF Downloads 322
912 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii

Authors: Dake Xiong, Ben Hankamer, Ian Ross

Abstract:

The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.

Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase

Procedia PDF Downloads 247
911 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forword, membrane, solar, water treatment

Procedia PDF Downloads 74
910 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry

Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour

Abstract:

Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.

Keywords: antimicrobial properties, polyethylene, silver nanoparticles, strawberry

Procedia PDF Downloads 146
909 Potential of Castor Bean (Ricinus Communis L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina Angelova, Mariana Perifanova-Nemska, Krasimir Ivanov

Abstract:

The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) to remediate metal-polluted sites. This study was performed in industrially polluted soils containing high concentrations of Zn, Pb and Cd, situated at different distances (0.3, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness, the castor oil plants were gathered and the contents of heavy metals in their different parts – roots, stems, leaves and seeds, were determined after dry ashing. Physico-chemical characterization, total, DTPA extractable and water-soluble metals in rhizospheric soil samples were carried. Translocation factors (TFs) were also determined. The quantitative measurements were carried out with ICP. A soxhlet extraction was used for the extraction of the oil, using hexane as solvent. The oil was recovered by simple distillation of the solvent. The residual oil obtained was investigated for physicochemical parameters and fatty acid composition. Bioaccumulation factor and translocation factor values (BAF and TF > 1) were greater than one suggesting efficient accumulation in the shoot. The castor oil plant may be preferred as a good candidate for phytoremediation (phytoextraction). These results indicate that R. communis has good potential for removing Pb from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for Pb. The concentrations of heavy metals in the oil were low as seed coats accumulated the highest concentrations of Cd and Pb. In addition, the result of the fatty acid composition analysis confirms the oil to be of good quality and can be used for industrial purposes such as cosmetics, soaps and paint.

Keywords: castor bean, heavy metals, phytoremediation, polluted soils

Procedia PDF Downloads 227
908 Assessment of Heavy Metal Bioaccumulation by Tissues of Ipomoea Batatas and Manihot Esculenta Irrigated with Water from Muhammad Ayuba Dam, Kazaure, Jigawa State, Nigeria

Authors: Sa’idu A. Abdullah, Jafar Lawan, A. U. Adamu, Fowotade, S. A., Hamisu Abdu

Abstract:

Scarcity of quality water in many communities compels inhabitants to use any available water resources for domestic, recreational, industrial and agricultural purposes. Global concern on the potential health hazards of anthropogenic inputs into our ecosystems imposes the need for constant monitoring of levels of pollutants in order to ensure compliance with internationally acceptable criteria. In this research, assessment of bioaccumulation of Cd, Co, Cu, Pb and Zn was carried out using tissues of Ipomoea batatas (sweet potato) and Manihot esculenta (cassava) irrigated with water from Muhammad Ayuba Dam in Kazaure, Jigawa State. The metal concentrations were determined using Flame Atomic Absorption Spectrophotometer (FAAS). The result of the analysis revealed the presence of the metals in varying concentrations. Cd and Co showed higher concentrations in the tubers of Manihot esculenta but all the other investigated metals were more concentrated in the leaves of the plant. Cd and Cu on the other hand showed higher concentration in the root of Ipomoea batatas while the remaining investigated metals were concentrated more in the leaves of the plant. The result of analysis of water samples from five sampling stations in the Dam showed the presence of the metals as follows: Cd, (0.063±0.02 mg/L), Co (0.086±0.03 mg/L), Cu (0.167±0.08 mg/L), Pb (0.22±0.01 mg/L) and Zn (0.047±0.01 mg/L) respectively. The results of bioaccumulation studies using the Bioaccumulation Factors (BAF) index indicated Ipomoea batatas to have higher bioaccumulation potential for Cd, Co and Cu while Pb and Zn were more accumulated in Manihot esculenta. The levels of the metals in both the water samples and plant tissues were all below the WHO permissible limit. This is indicative that the inhabitants of the community under investigation are not at any health risk.

Keywords: agriculture, bioaccumulation, heavy metal, plant tissues

Procedia PDF Downloads 366
907 Carbon Blacks: A Broad Type of Carbon Materials with Different Electrocatalytic Activity to Produce H₂O₂

Authors: Alvaro Ramírez, Martín Muñoz-Morales, Ester López- Fernández, Javier Llanos, C. Ania

Abstract:

Carbon blacks are value-added materials typically produced through the incomplete combustion or thermal decomposition of hydrocarbons. Traditionally, they have been used as catalysts in many different applications, but in the last decade, their potential in green chemistry has gained significant attention. Among them, the electrochemical production of H₂O₂ has attracted interest because of their properties as high oxidant capacity or their industrial interest as a bleaching agent. Carbon blacks are commonly used in this application in a catalytic ink that is drop-casted on supporting electrodes and acts as catalysts for the electrochemical production of H₂O₂ through oxygen reduction reaction (ORR). However, the different structural and electrochemical behaviors of each type of carbon black influence their applications. In this line, the term ‘carbon black’, has to be considered as a generic name that does not guarantee any physicochemical properties if any further description is mentioned. In fact, different specific surface area (SSA), surface functional groups, porous structure, and electro catalysts effect seem very important for electrochemical applications, and considerable differences were found during the analysis of four types of carbon blacks. Thus, the aim of this work is to evaluate the influence of SSA, porous structure, oxygen functional groups, and structural defects to differentiate among these carbon blacks (e.g. Vulcan XC72, Superior Graphite Co, Printex XE2, and Prolabo) for H₂O₂ production via ORR, using carbon paper as electrode support with improved selectivity and efficiency. Results indicate that the number and size of pores, along with surface functional groups, are key parameters that significantly affect the overall process efficiency.

Keywords: carbon blacks, oxygen reduction reaction, hydrogen peroxide, porosity, surface functional groups

Procedia PDF Downloads 32
906 Phytoremediation of Lead Polluted Soils with Native Weeds in Nigeria

Authors: Comfort Adeoye, Anthony Eneji

Abstract:

Lead pollution by mining, industrial dumping, and other anthropogenic uses are corroding the environment. Efforts being made to control it include physical, chemical and biological methods. The failure of the aforementioned methods are largely due to the fact that they are cumbersome, expensive, and not eco-friendly. Some plant species can be used for remediation of these pollutants. The objective of this work is to investigate the abilities of two native weed species to remediate two lead-polluted soils: a) Battery dumpsite and, (b) Naturally occurring lead mine. Soil samples were taken from the two sites: a) Kumapayi in Ibadan, a battery dumpsite, (b) Zamfara, a natural lead mine. Screen house experiment in Complete Randomized Design (CRD) replicated three times was carried out at I.I.T.A. Unpolluted soils were collected and polluted with various rates of lead concentrations of 0, 0.1, 0.2, and 0.5%. These were planted with weed species. Plant growth parameters were monitored for twelve weeks, after which the plants were harvested. Dry weight and plant uptake of the lead were taken. Analysis of data was carried out using, Genstat, Excel and descriptive statistics. Relative concentration of lead (Pb) in the above and below ground parts of Gomphrena celusoides revealed that a higher amount of Pb is taken up in the root compared with the shoots at different levels of Pb pollution. However, lead uptake at 0.5% > 0.2% > 0.1% > Control. In essence, phytoremediation of Gomphrena is highest at soil pollution of 0.5% and its retention is greater in the root than the shoot.In S. pyramidalis, soil retention ranges from 0.1% > 0.5% > 0.2% > control. Uptake is highest at 0.5% > 0.1% > 0.2 in stem. Uptake in leaves is highest at 0.2%, but none in the 0.5% pollution. Therefore, different plant species exhibited different accumulative mode probably due to their physiological and rooting systems. Gomphrena spp. rooting system is tap root,while that of S.pyramidalis is fibrous.

Keywords: grass, lead, phytoremediation, pollution

Procedia PDF Downloads 313
905 Effects of the Air Supply Outlets Geometry on Human Comfort inside Living Rooms: CFD vs. ADPI

Authors: Taher M. Abou-deif, Esmail M. El-Bialy, Essam E. Khalil

Abstract:

The paper is devoted to numerically investigating the influence of the air supply outlets geometry on human comfort inside living looms. A computational fluid dynamics model is developed to examine the air flow characteristics of a room with different supply air diffusers. The work focuses on air flow patterns, thermal behavior in the room with few number of occupants. As an input to the full-scale 3-D room model, a 2-D air supply diffuser model that supplies direction and magnitude of air flow into the room is developed. Air distribution effect on thermal comfort parameters was investigated depending on changing the air supply diffusers type, angles and velocity. Air supply diffusers locations and numbers were also investigated. The pre-processor Gambit is used to create the geometric model with parametric features. Commercially available simulation software “Fluent 6.3” is incorporated to solve the differential equations governing the conservation of mass, three momentum and energy in the processing of air flow distribution. Turbulence effects of the flow are represented by the well-developed two equation turbulence model. In this work, the so-called standard k-ε turbulence model, one of the most widespread turbulence models for industrial applications, was utilized. Basic parameters included in this work are air dry bulb temperature, air velocity, relative humidity and turbulence parameters are used for numerical predictions of indoor air distribution and thermal comfort. The thermal comfort predictions through this work were based on ADPI (Air Diffusion Performance Index),the PMV (Predicted Mean Vote) model and the PPD (Percentage People Dissatisfied) model, the PMV and PPD were estimated using Fanger’s model.

Keywords: thermal comfort, Fanger's model, ADPI, energy effeciency

Procedia PDF Downloads 402
904 Evaluating Aquaculture Farmers Responses to Climate Change and Sustainable Practices in Kenya

Authors: Olalekan Adekola, Margaret Gatonye, Paul Orina

Abstract:

The growing demand for farmed fish by underdeveloped and developing countries as a means of contributing positively towards eradication of hunger, food insecurity, and malnutrition for their fast growing populations has implications to the environment. Likewise, climate change poses both an immediate and future threat to local fish production with capture fisheries already experiencing a global decline. This not only raises fundamental questions concerning how aquaculture practices affect the environment, but also how ready are aquaculture farmers to adapt to climate related hazards. This paper assesses existing aquaculture practices and approaches to adapting to climate hazards in Kenya, where aquaculture has grown rapidly since the year 2009. The growth has seen rise in aquaculture set ups mainly along rivers and streams, importation of seed and feed and intensification with possible environmental implications. The aquaculture value chain in the context of climate change and their implication for practice is further investigated, and the strategies necessary for an improved implementation of resilient aquaculture system in Kenya is examined. Data for the study are collected from interviews, questionnaires, two workshops and document analysis. Despite acclaimed nutritional benefit of fish consumption in Kenya, poor management of effluents enriched with nitrogen, phosphorus, organic matter, and suspended solids has implications not just on the ecosystem, goods, and services, but is also potential source of resource-use conflicts especially in downstream communities and operators in the livestock, horticulture, and industrial sectors. The study concluded that aquaculture focuses on future orientation, climate resilient infrastructure, appropriate site selection and invest on biosafety as the key sustainable strategies against climate hazards.

Keywords: aquaculture, resilience, environment, strategies, Kenya

Procedia PDF Downloads 154
903 Isolation and Identification of Microorganisms from Marine-Associated Samples under Laboratory Conditions

Authors: Sameen Tariq, Saira Bano, Sayyada Ghufrana Nadeem

Abstract:

The Ocean, which covers over 70% of the world's surface, is wealthy in biodiversity as well as a rich wellspring of microorganisms with huge potential. The oceanic climate is home to an expansive scope of plants, creatures, and microorganisms. Marine microbial networks, which incorporate microscopic organisms, infections, and different microorganisms, enjoy different benefits in biotechnological processes. Samples were collected from marine environments, including soil and water samples, to cultivate the uncultured marine organisms by using Zobell’s medium, Sabouraud’s dextrose agar, and casein media for this purpose. Following isolation, we conduct microscopy and biochemical tests, including gelatin, starch, glucose, casein, catalase, and carbohydrate hydrolysis for further identification. The results show that more gram-positive and gram-negative bacteria. The isolation process of marine organisms is essential for understanding their ecological roles, unraveling their biological secrets, and harnessing their potential for various applications. Marine organisms exhibit remarkable adaptations to thrive in the diverse and challenging marine environment, offering vast potential for scientific, medical, and industrial applications. The isolation process plays a crucial role in unlocking the secrets of marine organisms, understanding their biological functions, and harnessing their valuable properties. They offer a rich source of bioactive compounds with pharmaceutical potential, including antibiotics, anticancer agents, and novel therapeutics. This study is an attempt to explore the diversity and dynamics related to marine microflora and their role in biofilm formation.

Keywords: marine microorganisms, ecosystem, fungi, biofilm, gram-positive, gram-negative

Procedia PDF Downloads 26
902 Crab Shell Waste Chitosan-Based Thin Film for Acoustic Sensor Applications

Authors: Maydariana Ayuningtyas, Bambang Riyanto, Akhiruddin Maddu

Abstract:

Industrial waste of crustacean shells, such as shrimp and crab, has been considered as one of the major issues contributing to environmental pollution. The waste processing mechanisms to form new, practical substances with added value have been developed. Chitosan, a derived matter from chitin, which is obtained from crab and shrimp shells, performs prodigiously in broad range applications. A chitosan composite-based diaphragm is a new inspiration in fiber optic acoustic sensor advancement. Elastic modulus, dynamic response, and sensitivity to acoustic wave of chitosan-based composite film contribute great potentials of organic-based sound-detecting material. The objective of this research was to develop chitosan diaphragm application in fiber optic microphone system. The formulation was conducted by blending 5% polyvinyl alcohol (PVA) solution with dissolved chitosan at 0%, 1% and 2% in 1:1 ratio, respectively. Composite diaphragms were characterized for the morphological and mechanical properties to predict the desired acoustic sensor sensitivity. The composite with 2% chitosan indicated optimum performance with 242.55 µm thickness, 67.9% relative humidity, and 29-76% light transmittance. The Young’s modulus of 2%-chitosan composite material was 4.89×104 N/m2, which generated the voltage amplitude of 0.013V and performed sensitivity of 3.28 mV/Pa at 1 kHz. Based on the results above, chitosan from crustacean shell waste can be considered as a viable alternative material for fiber optic acoustic sensor sensing pad development. Further, the research in chitosan utilisation is proposed as novel optical microphone development in anthropogenic noise controlling effort for environmental and biodiversity conservation.

Keywords: acoustic sensor, chitosan, composite, crab shell, diaphragm, waste utilisation

Procedia PDF Downloads 246