Search results for: application specific noc
12494 Accuracy/Precision Evaluation of Excalibur I: A Neurosurgery-Specific Haptic Hand Controller
Authors: Hamidreza Hoshyarmanesh, Benjamin Durante, Alex Irwin, Sanju Lama, Kourosh Zareinia, Garnette R. Sutherland
Abstract:
This study reports on a proposed method to evaluate the accuracy and precision of Excalibur I, a neurosurgery-specific haptic hand controller, designed and developed at Project neuroArm. Having an efficient and successful robot-assisted telesurgery is considerably contingent on how accurate and precise a haptic hand controller (master/local robot) would be able to interpret the kinematic indices of motion, i.e., position and orientation, from the surgeon’s upper limp to the slave/remote robot. A proposed test rig is designed and manufactured according to standard ASTM F2554-10 to determine the accuracy and precision range of Excalibur I at four different locations within its workspace: central workspace, extreme forward, far left and far right. The test rig is metrologically characterized by a coordinate measuring machine (accuracy and repeatability < ± 5 µm). Only the serial linkage of the haptic device is examined due to the use of the Structural Length Index (SLI). The results indicate that accuracy decreases by moving from the workspace central area towards the borders of the workspace. In a comparative study, Excalibur I performs on par with the PHANToM PremiumTM 3.0 and more accurate/precise than the PHANToM PremiumTM 1.5. The error in Cartesian coordinate system shows a dominant component in one direction (δx, δy or δz) for the movements on horizontal, vertical and inclined surfaces. The average error magnitude of three attempts is recorded, considering all three error components. This research is the first promising step to quantify the kinematic performance of Excalibur I.Keywords: accuracy, advanced metrology, hand controller, precision, robot-assisted surgery, tele-operation, workspace
Procedia PDF Downloads 34012493 Saponins vs Anthraquinones: Different Chemicals, Similar Ecological Roles in Marine Symbioses
Authors: Guillaume Caulier, Lola Brasseur, Patrick Flammang, Pascal Gerbaux, Igor Eeckhaut
Abstract:
Saponins and quinones are two major groups of secondary metabolites widely distributed in the biosphere. More specifically, triterpenoid saponins and anthraquinones are mainly found in a wide variety of plants, bacteria and fungi. In the animal kingdom, these natural organic compounds are rare and only found in small quantities in arthropods, marine sponges and echinoderms. In this last group, triterpenoid saponins are specific to holothuroids (sea cucumbers) while anthraquinones are the chemical signature of crinoids (feather stars). Depending on the species, they present different molecular cocktails. Despite presenting different chemical properties, these molecules share numerous similarities. This study compares the biological distribution, the pharmacological effects and the ecological roles of holothuroid saponins and crinoid anthraquinones. Both of them have been defined as allomones repelling predators and parasites (i.e. chemical defense) and have interesting pharmacological properties (e.g. anti-bacterial, anti-fungal, anti-cancer). Our study investigates the chemical ecology of two symbiotic associations models; between the snapping shrimp Synalpheus stimpsonii associated with crinoids and the Harlequin crab Lissocarcinus orbicularis associated with holothuroids. Using behavioral experiments in olfactometers, chemical extractions and mass spectrometry analyses, we discovered that saponins and anthraquinones present a second ecological role: the attraction of obligatory symbionts towards their hosts. They can, therefore, be defined as kairomones. This highlights a new paradigm in marine chemical ecology: Chemical repellents are attractants to obligatory symbionts because they constitute host specific chemical signatures.Keywords: anthraquinones, kairomones, marine symbiosis, saponins, attractant
Procedia PDF Downloads 20112492 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model
Authors: Yew Mun Yip, Dawei Zhang
Abstract:
Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.Keywords: hydrogen bond, polarization effect, protein folding, PSBC
Procedia PDF Downloads 27112491 Industrial Waste to Energy Technology: Engineering Biowaste as High Potential Anode Electrode for Application in Lithium-Ion Batteries
Authors: Pejman Salimi, Sebastiano Tieuli, Somayeh Taghavi, Michela Signoretto, Remo Proietti Zaccaria
Abstract:
Increasing the growth of industrial waste due to the large quantities of production leads to numerous environmental and economic challenges, such as climate change, soil and water contamination, human disease, etc. Energy recovery of waste can be applied to produce heat or electricity. This strategy allows for the reduction of energy produced using coal or other fuels and directly reduces greenhouse gas emissions. Among different factories, leather manufacturing plays a very important role in the whole world from the socio-economic point of view. The leather industry plays a very important role in our society from a socio-economic point of view. Even though the leather industry uses a by-product from the meat industry as raw material, it is considered as an activity demanding integrated prevention and control of pollution. Along the entire process from raw skins/hides to finished leather, a huge amount of solid and water waste is generated. Solid wastes include fleshings, raw trimmings, shavings, buffing dust, etc. One of the most abundant solid wastes generated throughout leather tanning is shaving waste. Leather shaving is a mechanical process that aims at reducing the tanned skin to a specific thickness before tanning and finishing. This product consists mainly of collagen and tanning agent. At present, most of the world's leather processing is chrome-tanned based. Consequently, large amounts of chromium-containing shaving wastes need to be treated. The major concern about the management of this kind of solid waste is ascribed to chrome content, which makes the conventional disposal methods, such as landfilling and incineration, not practicable. Therefore, many efforts have been developed in recent decades to promote eco-friendly/alternative leather production and more effective waste management. Herein, shaving waste resulting from metal-free tanning technology is proposed as low-cost precursors for the preparation of carbon material as anodes for lithium-ion batteries (LIBs). In line with the philosophy of a reduced environmental impact, for preparing fully sustainable and environmentally friendly LIBs anodes, deionized water and carboxymethyl cellulose (CMC) have been used as alternatives to toxic/teratogen N-methyl-2- pyrrolidone (NMP) and to biologically hazardous Polyvinylidene fluoride (PVdF), respectively. Furthermore, going towards the reduced cost, we employed water solvent and fluoride-free bio-derived CMC binder (as an alternative to NMP and PVdF, respectively) together with LiFePO₄ (LFP) when a full cell was considered. These actions make closer to the 2030 goal of having green LIBs at 100 $ kW h⁻¹. Besides, the preparation of the water-based electrodes does not need a controlled environment and due to the higher vapour pressure of water in comparison with NMP, the water-based electrode drying is much faster. This aspect determines an important consequence, namely a reduced energy consumption for the electrode preparation. The electrode derived from leather waste demonstrated a discharge capacity of 735 mAh g⁻¹ after 1000 charge and discharge cycles at 0.5 A g⁻¹. This promising performance is ascribed to the synergistic effect of defects, interlayer spacing, heteroatoms-doped (N, O, and S), high specific surface area, and hierarchical micro/mesopore structure of the biochar. Interestingly, these features of activated biochars derived from the leather industry open the way for possible applications in other EESDs as well.Keywords: biowaste, lithium-ion batteries, physical activation, waste management, leather industry
Procedia PDF Downloads 17512490 On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition
Authors: Yasser Mahmoudi, Nader Karimi
Abstract:
The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar.Keywords: porous media, local thermal non-equilibrium, forced convection heat transfer, thermal radiation, Discrete Ordinate Method (DOM)
Procedia PDF Downloads 32712489 Separate Production of Hydrogen and Methane from Ethanol Wastewater Using Two-Stage UASB: Micronutrient Transportation
Authors: S. Jaikeaw, S. Chavadej
Abstract:
The objective of this study was to determine the effects of COD loading rate on hydrogen and methane production and micronutrient transportation using a two-stage upflow anaerobic sludge blanket (UASB) system under mesophilic temperature (37°C) with a constant recycle ratio of 1:1 (final effluent flow rate: feed flow rate). The first (hydrogen) UASB unit having 4 L liquid holding volume was controlled at pH 5.5 but the second (methane) UASB unit having 24 L liquid holding volume had no pH control. The two-stage UASB system operated at different COD loading rates from 8 to 20 kg/m³d based on total UASB working volume. The results showed that, at the optimum COD loading rate of 13 kg/m³d, the produced gas from the hydrogen UASB unit contained 1.5% H₂, 16.5% CH₄, and 82% CO₂ with H₂S of 252 ppm and also provided a hydrogen yield of 1.66 mL/g COD removed (or 0.56 mL/g COD applied) and a specific hydrogen production rate of 156.85 ml H₂/LRd (or 5.12 ml H₂/g MLVSS d). Under the optimum COD loading rate, the produced gas from the methane UASB unit mainly contained methane and carbon dioxide without hydrogen of 74 and 26%, respectively with hydrogen sulfide of 287 ppm and the system also provided a maximum methane yield of 407.00 mL/g COD removed (or 263.23 mL/g COD applied) and a specific methane production rate of 2081.44 ml CH₄/LRd (or 99.75 ml CH₄/g MLVSS d). Under the optimum COD loading rate, all micronutrients markedly dropped by the sulfide precipitation reactions. The reduction of micronutrients mostly appeared in the methane UASB unit. Under the studied conditions, both Co and Ni were found to be greatly precipitated out, causing the deficiency to microbial activity. It is hypothesized that an addition of both Co and Ni can improve the methanogenic activity.Keywords: hydrogen and methane production, ethanol wastewater, a two-stage upflow anaerobic blanket (UASB) system, mesophillic temperature, microbial concentration (MLVSS), micronutrients
Procedia PDF Downloads 29112488 Approach for Updating a Digital Factory Model by Photogrammetry
Authors: R. Hellmuth, F. Wehner
Abstract:
Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Short-term rescheduling can no longer be handled by on-site inspections and manual measurements. The tight time schedules require up-to-date planning models. Due to the high adaptation rate of factories described above, a methodology for rescheduling factories on the basis of a modern digital factory twin is conceived and designed for practical application in factory restructuring projects. The focus is on rebuild processes. The aim is to keep the planning basis (digital factory model) for conversions within a factory up to date. This requires the application of a methodology that reduces the deficits of existing approaches. The aim is to show how a digital factory model can be kept up to date during ongoing factory operation. A method based on photogrammetry technology is presented. The focus is on developing a simple and cost-effective solution to track the many changes that occur in a factory building during operation. The method is preceded by a hardware and software comparison to identify the most economical and fastest variant.Keywords: digital factory model, photogrammetry, factory planning, restructuring
Procedia PDF Downloads 12012487 Chance One’s Arm: Critical Evaluation on Laws of Sports Gambling in India
Authors: Archen Sara Vincent
Abstract:
Gambling is the practice or act of betting or wagering on uncertain events with the hope of winning money or any other valuable assets. Nowadays, the practice of gambling can be seen in almost all grounds of events, especially in sports. In sports, this is commonly known among people as sports betting. The history of gambling can be traced about 2,000 years back. It originated from Greeks, from Greeks to the Romans, then to England, where betting on horse races was much popular among the elites. The evolution of gambling in sports has made a greater impact in the modern era. In India, the legality of gambling in sports is regulated by The Public Gambling Act 1867, which prohibits gambling activities in public places. The major draw of this statute is that it does not have specific laws regarding online sports gambling. Section 30 of The Indian Contract Act 1872 considers wagering agreements void. However, there are certain exceptions for this section, that is, (1) state-owned lotteries and (2) wagering on horse races with a sum of Rupees 500 or upward. As per the Indian Constitution, the rules regarding sports gambling are within the powers of the state legislatures. Some of the states have enacted their own laws which explicitly permit or prohibit gambling within their jurisdiction. Recently in Tamilnadu, The Tamilnadu Gaming Act was amended in 2021 to completely ban online gambling and betting. Moreover, the Central Government has introduced the Online Gaming and Prevention of Fraud Bill, 2018, to legalize and regulate sports betting in India. However, this bill has not yet been passed as law. Now as the Indian legal system does not have a specific rule regarding online sports gambling, sports betting companies use this major drawback and attract people to use the gambling and betting apps by advertising with well-known sports players and other celebrities. This paper aims to critically evaluate gambling in sports and the laws relating to it in India.Keywords: history of gambling, The Public Gambling Act 1862, state legislations, gambling in India
Procedia PDF Downloads 8412486 Parental Involvement and Students' Outcomes: A Study in a Special Education School in Singapore
Authors: E. Er, Y. S. Cheng
Abstract:
The role of parents and caregivers in their children’s education is pivotal. Parental involvement (PI) is often associated with a range of student outcomes. This includes academic achievements, socioemotional development, adaptive skills, physical fitness and school attendance. This study is the first in Singapore to (1) explore the relationship between parental involvement and student outcomes; (2) determine the effects of family structure and socioeconomic status (SES) on parental involvement and (3) investigate factors that inform involvement in parents of children with specific developmental disabilities. Approval for the study was obtained from Nanyang Technological University’s Institutional Review Board in Singapore. The revised version of a comprehensive theoretical model on parental involvement was used as the theoretical framework in this study. Parents were recruited from a SPED school in Singapore which caters to school-aged children (7 to 21 years old). Pearson’s product moment correlation, analysis of variance and multiple regression analyses were used as statistical techniques in this study. Results indicate that there are significant associations between parental involvement and educational outcomes in students with developmental disabilities. Next, SES has a significant impact on levels of parental involvement. In addition, parents in the current study reported being more involved at home, in school activities and the community, when teachers specifically requested their involvement. Home-based involvement was also predicted by parents’ perceptions of their time and energy, efficacy and beliefs in supporting their child’s education, as well as their children’s invitations to be more involved. An interesting and counterintuitive inverse relationship was found between general school invitations and parental involvement at home. Research findings are further discussed, and suggestions are put forth to increase involvement for this specific group of parents.Keywords: autism, developmental disabilities, intellectual disabilities, parental involvement, Singapore
Procedia PDF Downloads 20912485 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate (V) at constant temperature gradient G (7.73 K/mm). The microstructures (flake spacings, λ), microhardness (HV), ultimate tensile strength, electrical resistivity and thermal properties enthalpy of fusion and specific heat and melting temperature) of the samples were measured. Influence of the growth rate and flake spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were experimentally obtained by using regression analysis. According to results, λ values decrease with increasing V, but microhardness, ultimate tensile strength, electrical resistivity values increase with increasing V. Variations of electrical resistivity for cast samples with the temperature in the range of 300-1200 K were also measured by using a standard dc four-point probe technique. The enthalpy of fusion and specific heat for the same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results obtained in this work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: electrical resistivity, enthalpy, microhardness, solidification, tensile stress
Procedia PDF Downloads 38112484 Investigation of FOXM1 Gene Expression in Breast Cancer and Its Relationship with Mir-216B-5P Expression Level
Authors: Ramin Mehdiabadi, Neda Menbari, Mohammad Nazir Menbari
Abstract:
As a pressing public health concern, breast cancer stands as the predominant oncological diagnosis and principal cause of cancer-related mortality among women globally, accounting for 11.7% of new cancer incidences and 6.9% of cancer-related deaths. The annual figures indicate that approximately 230,480 women are diagnosed with breast cancer in the United States alone, with 39,520 succumbing to the disease. While developed economies have reported a deceleration in both incidence and mortality rates across various forms of cancer, including breast cancer, emerging and low-income economies manifest a contrary escalation, largely attributable to lifestyle-mediated risk factors such as tobacco usage, physical inactivity, and high caloric intake. Breast cancer is distinctly characterized by molecular heterogeneity, manifesting in specific subtypes delineated by biomarkers—Estrogen Receptors (ER), Progesterone Receptors (PR), and Human Epidermal Growth Factor Receptor 2 (HER2). These subtypes, comprising Luminal A, Luminal B, HER2-enriched, triple-negative/basal-like, and normal-like, necessitate nuanced, subtype-specific therapeutic regimens, thereby challenging the applicability of generalized treatment protocols. Within this molecular complexity, the transcription factor Forkhead Box M1 (FoxM1) has garnered attention as a significant driver of cellular proliferation, tumorigenesis, metastatic progression, and treatment resistance in a spectrum of human malignancies, including breast cancer. Concurrently, microRNAs (miRs), specifically miR-216b-5p, have been identified as post-transcriptional gene expression regulators and potential tumor suppressors. The overarching objective of this academic investigation is to explicate the multifaceted interrelationship between FoxM1 and miR-216b-5p across the disparate molecular subtypes of breast cancer. Employing a methodologically rigorous, interdisciplinary research design that incorporates cutting-edge molecular biology techniques, sophisticated bioinformatics analytics, and exhaustive meta-analyses of extant clinical data, this scholarly endeavor aims to unveil novel biomarker-specific therapeutic pathways. By doing so, this research is positioned to make a seminal contribution to the advancement of personalized, efficacious, and minimally toxic treatment paradigms, thus profoundly impacting the global efforts to ameliorate the burden of breast cancer.Keywords: breast cancer, fox m1, microRNAs, mir-216b-5p, gene expression
Procedia PDF Downloads 8312483 Investigation of the IL23R Psoriasis/PsA Susceptibility Locus
Authors: Shraddha Rane, Richard Warren, Stephen Eyre
Abstract:
L-23 is a pro-inflammatory molecule that signals T cells to release cytokines such as IL-17A and IL-22. Psoriasis is driven by a dysregulated immune response, within which IL-23 is now thought to play a key role. Genome-wide association studies (GWAS) have identified a number of genetic risk loci that support the involvement of IL-23 signalling in psoriasis; in particular a robust susceptibility locus at a gene encoding a subunit of the IL-23 receptor (IL23R) (Stuart et al., 2015; Tsoi et al., 2012). The lead psoriasis-associated SNP rs9988642 is located approximately 500 bp downstream of IL23R but is in tight linkage disequilibrium (LD) with a missense SNP rs11209026 (R381Q) within IL23R (r2 = 0.85). The minor (G) allele of rs11209026 is present in approximately 7% of the population and is protective for psoriasis and several other autoimmune diseases including IBD, ankylosing spondylitis, RA and asthma. The psoriasis-associated missense SNP R381Q causes an arginine to glutamine substitution in a region of the IL23R protein between the transmembrane domain and the putative JAK2 binding site in the cytoplasmic portion. This substitution is expected to affect the receptor’s surface localisation or signalling ability, rather than IL23R expression. Recent studies have also identified a psoriatic arthritis (PsA)-specific signal at IL23R; thought to be independent from the psoriasis association (Bowes et al., 2015; Budu-Aggrey et al., 2016). The lead PsA-associated SNP rs12044149 is intronic to IL23R and is in LD with likely causal SNPs intersecting promoter and enhancer marks in memory CD8+ T cells (Budu-Aggrey et al., 2016). It is therefore likely that the PsA-specific SNPs affect IL23R function via a different mechanism compared with the psoriasis-specific SNPs. It could be hypothesised that the risk allele for PsA located within the IL23R promoter causes an increase IL23R expression, relative to the protective allele. An increased expression of IL23R might then lead to an exaggerated immune response. The independent genetic signals identified for psoriasis and PsA in this locus indicate that different mechanisms underlie these two conditions; although likely both affecting the function of IL23R. It is very important to further characterise these mechanisms in order to better understand how the IL-23 receptor and its downstream signalling is affected in both diseases. This will help to determine how psoriasis and PsA patients might differentially respond to therapies, particularly IL-23 biologics. To investigate this further we have developed an in vitro model using CD4 T cells which express either wild type IL23R and IL12Rβ1 or mutant IL23R (R381Q) and IL12Rβ1. Model expressing different isotypes of IL23R is also underway to investigate the effects on IL23R expression. We propose to further investigate the variants for Ps and PsA and characterise key intracellular processes related to the variants.Keywords: IL23R, psoriasis, psoriatic arthritis, SNP
Procedia PDF Downloads 17212482 Experimental Study for Examination of Nature of Diffusion Process during Wine Microoxygenation
Authors: Ilirjan Malollari, Redi Buzo, Lorina Lici
Abstract:
This study was done for the characterization of polyphenols changes of anthocyanins, flavonoids, the color intensity and total polyphenols index, maturity and oxidation index during the process of micro-oxygenation of wine that comes from a specific geographic area in the southeastern region of the country. Also, through mathematical modeling of the oxygen distribution within solution of wort for wine fermentation, was shown the strong impact of carbon dioxide present in the liquor. Analytical results show periodic increases of color intensity and tonality, reduction level of free anthocyanins and flavonoids free because of polycondensation reactions between tannins and anthocyanins, increased total polyphenols index and decrease the ratio between the flavonoids and anthocyanins offering a red stabilize wine proved by sensory degustation tasting for color intensity, tonality, body, tannic perception, taste and remained back taste which comes by specific area associated with environmental indications. Micro-oxygenation of wine is a wine-making technique, which consists in the addition of small and controlled amounts of oxygen in the different stages of wine production but more efficiently after end of alcoholic fermentation. The objectives of the process include improved mouth feel (body and texture), color enhanced stability, increased oxidative stability, and decreased vegetative aroma during polyphenols changes process. A very important factor is polyphenolics organic grape composition strongly associated with the environment geographical specifics area in which it is grown the grape.Keywords: micro oxygenation, polyphenols, environment, wine stability, diffusion modeling
Procedia PDF Downloads 21312481 Caregiver Experiences of Attachment-Based Interventions
Authors: Mikaela E. Flood, Elaine Greidanus
Abstract:
This study will examine how caregivers construct and interpret their experience in applying attachment-based interventions, guided by the research question: How do caregivers construct and interpret their experiences when attempting to apply attachment-based interventions in their relationships? Using a constructivist paradigm, this qualitative study aims to explore caregivers' experiences of attachment-based interventions through semi-structured interviews with five individuals. The research aims to uncover how caregivers perceive, implement, and reflect upon attachment-based interventions, focusing on challenges and successes encountered. Thematic analysis of interview data seeks to reveal recurring patterns and themes, offering insights into the practical implications of attachment theory and interventions within caregiver contexts. The findings may impact the field by integrating theoretical insights with practical applications. They may also inform therapeutic approaches and support services, as well as how attachment-based interventions are implemented, thereby enhancing caregivers' capacity to foster secure attachments. Moreover, this research may inform existing bodies of knowledge by providing empirical support and a deeper understanding of attachment theory's application in real-world caregiving scenarios. In terms of future research, this study may identify potential avenues for further exploration of the application and implementation of attachment-based interventions. Ultimately, this research aims to advance both theoretical understanding and practical applications of attachment-based interventions for enhancing relationship dynamics and emotional well-being in caregiving settings.Keywords: children, attachment, intervention, caregiver
Procedia PDF Downloads 1812480 Potassium Fertilization Improves Rice Yield in Aerobic Production System by Decreasing Panicle Sterility
Authors: Abdul Wakeel, Hafeez Ur Rehman, Muhammad Umair Mubarak
Abstract:
Rice is the second most important staple food in Pakistan after wheat. It is not only a healthy food for the people of all age groups but also a source of foreign exchange for Pakistan. Instead of bright history for Basmati rice production, we are suffering from multiple problems reducing yield and quality as well. Rice lodging and water shortage for an-aerobic rice production system is among major glitches of it. Due to water shortage an-aerobic rice production system has to be supplemented or replaced by aerobic rice system. Aerobic rice system has been adopted for production of non-basmati rice in many parts of the world. Also for basmati rice, significant efforts have been made for aerobic rice production, however still has to be improved for effective recommendations. Among two major issues for aerobic rice, weed elimination has been solved to great extent by introducing suitable herbicides, however, low yield production due weak grains and panicle sterility is still elusive. It has been reported that potassium (K) has significant role to decrease panicle sterility in cereals. Potassium deficiency is obvious for rice under aerobic rice production system due to lack of K gradient coming with irrigation water and lowered indigenous K release from soils. Therefore it was hypothesized that K application under aerobic rice production system may improve the rice yield by decreasing panicle sterility. Results from pot and field experiments confirm that application of K fertilizer significantly increased the rice grain yield due to decreased panicle sterility and improving grain health. The quality of rice was also improved by K fertilization.Keywords: DSR, Basmati rice, aerobic, potassium
Procedia PDF Downloads 39512479 Steps toward the Support Model of Decision-Making in Hungary: The Impact of the Article 12 of the UN Convention on the Rights of Persons with Disabilities on the Hungarian National Legislation
Authors: Szilvia Halmos
Abstract:
Hungary was one of the first countries to sign and ratify the UN Convention on the Rights of Persons with Disabilities (hereinafter: CRPD). Consequently, Hungary assumed an obligation under international law to review the national law in the light of the Article 12 of the CRPD requiring the States parties to guarantee the equality of persons with disabilities in terms of legal capacity, and to replace the regimes of substitute decision-making by the instruments of supported decision-making. This article is often characterized as one of the key norms of the CRPD, since the legal autonomy of the persons with disabilities is an essential precondition of their participation in the social life on an equal basis with others, envisaged by the social paradigm of disability. This paper examines the impact of the CRPD on the relevant Hungarian national legal norms, with special focus on the relevant rules of the recently codified Civil Code. The employed research methodologies include (1) the specification of the implementation requirements imposed by the Article 12 of the CRPD, (2) the determination of the indicators of the appropriate implementation, (3) the critical analysis of compliance of the relevant Hungarian legal regulation with the indicators, (4) with respect to the relevant case law of the Hungarian Constitutional Court and ordinary courts, the European Court of Human Rights and the Committee of Rights of Persons with Disabilities and (5) to the available empirical figures on the functioning of substitute and supported decision-making regimes. It will be established that the new Civil Code has made large steps toward the equality of persons with disabilities in terms of legal capacity and the support model of decision-making by the introduction of some specific instruments of supported decision-making and the restriction of the application of guardianship. Nevertheless, the regulation currently in effect fails to represent some crucial principles of the Article 12 of the CRPD, such as the non-discrimination of persons with psycho-social disabilities, the support of the articulation of the will and preferences of the individual instead of his/her best interest in the course of decision-making. The changes in the practice of the substitute and the support model brought about by the new legal norms can also be assessed as significant, however, so far unsatisfactory. The number of registered supporters is rather low, and the preconditions of the effective functioning of the support (e.g. the proper training of the supporters) are not ensured.Keywords: Article 12 of the UN CRPD, Hungarian law on legal capacity, persons with intellectual and psycho-social disabilities, supported decision-making
Procedia PDF Downloads 29312478 The Role of Creative Entrepreneurship in the Development of Croatian Economy
Authors: Marko Kolakovic
Abstract:
Creative industries are an important sector of growth and development of knowledge economies. They have a positive impact on employment, economic growth, export and the quality of life in the areas where they are developed. Creative sectors include architecture, design, advertising, publishing, music, film, television and radio, video games, visual and performing arts and heritage. Following the positive trends of development of creative industries on the global and European level, this paper analyzes creative industries in general and specific characteristics of creative entrepreneurship. Special focus in this paper is put on the influence of the information communication technology on the development of new creative business models and protection of the intellectual property rights. One part of the paper is oriented on the analysis of the status of creative industries and creative entrepreneurship in Croatia. The main objective of the paper is by using the statistical analysis of creative industries in Croatia and information gained during the interviews with entrepreneurs, to make conclusions about potentials and development of creative industries in Croatia. Creative industries in Croatia are at the beginning of their development and growth strategy still does not exist at the national level. Statistical analysis pointed out that in 2015 creative enterprises made 9% of all enterprises in Croatia, employed 5,5% of employed people and their share in GDP was 4,01%. Croatian creative entrepreneurs are building competitive advantage using their creative resources and creating specific business models. The main obstacles they meet are lack of business experience and impossibility of focusing on the creative activities only. In their business, they use digital technologies and are focused on export. The conclusion is that creative industries in Croatia have development potential, but it is necessary to take adequate measures to use this potential in a right way.Keywords: creative entrepreneurship, knowledge economy, business models, intellectual property
Procedia PDF Downloads 21412477 Ultra-Sensitive Point-Of-Care Detection of PSA Using an Enzyme- and Equipment-Free Microfluidic Platform
Authors: Ying Li, Rui Hu, Shizhen Chen, Xin Zhou, Yunhuang Yang
Abstract:
Prostate cancer is one of the leading causes of cancer-related death among men. Prostate-specific antigen (PSA), a specific product of prostatic epithelial cells, is an important indicator of prostate cancer. Though PSA is not a specific serum biomarker for the screening of prostate cancer, it is recognized as an indicator for prostate cancer recurrence and response to therapy for patient’s post-prostatectomy. Since radical prostatectomy eliminates the source of PSA production, serum PSA levels fall below 50 pg/mL, and may be below the detection limit of clinical immunoassays (current clinical immunoassay lower limit of detection is around 10 pg/mL). Many clinical studies have shown that intervention at low PSA levels was able to improve patient outcomes significantly. Therefore, ultra-sensitive and precise assays that can accurately quantify extremely low levels of PSA (below 1-10 pg/mL) will facilitate the assessment of patients for the possibility of early adjuvant or salvage treatment. Currently, the commercially available ultra-sensitive ELISA kit (not used clinically) can only reach a detection limit of 3-10 pg/mL. Other platforms developed by different research groups could achieve a detection limit as low as 0.33 pg/mL, but they relied on sophisticated instruments to get the final readout. Herein we report a microfluidic platform for point-of-care (POC) detection of PSA with a detection limit of 0.5 pg/mL and without the assistance of any equipment. This platform is based on a previously reported volumetric-bar-chart chip (V-Chip), which applies platinum nanoparticles (PtNPs) as the ELISA probe to convert the biomarker concentration to the volume of oxygen gas that further pushes the red ink to form a visualized bar-chart. The length of each bar is used to quantify the biomarker concentration of each sample. We devised a long reading channel V-Chip (LV-Chip) in this work to achieve a wide detection window. In addition, LV-Chip employed a unique enzyme-free ELISA probe that enriched PtNPs significantly and owned 500-fold enhanced catalytic ability over that of previous V-Chip, resulting in a significantly improved detection limit. LV-Chip is able to complete a PSA assay for five samples in 20 min. The device was applied to detect PSA in 50 patient serum samples, and the on-chip results demonstrated good correlation with conventional immunoassay. In addition, the PSA levels in finger-prick whole blood samples from healthy volunteers were successfully measured on the device. This completely stand-alone LV-Chip platform enables convenient POC testing for patient follow-up in the physician’s office and is also useful in resource-constrained settings.Keywords: point-of-care detection, microfluidics, PSA, ultra-sensitive
Procedia PDF Downloads 11512476 A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India
Authors: Preethi Grace Theva Neethi Dhas
Abstract:
A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study.Keywords: fecal sludge management, nutrient cycle, soil health, composting
Procedia PDF Downloads 8612475 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model
Authors: Carlos Caro, Ernest Blade, Nestor Rojas
Abstract:
This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model
Procedia PDF Downloads 52512474 Catalyst Assisted Microwave Plasma for NOx Formation
Authors: Babak Sadeghi, Rony Snyders, Marie-Paule.Delplancke-Ogletree
Abstract:
Nitrogen fixation (NF) is one of the crucial industrial processes. Many attempts have been made in order to artificially fix nitrogen, and among them, the Haber-Bosch’s (H-B) process is widely used. However, it presents two major drawbacks: huge fossil feedstock consumption and noticeable greenhouse gases emission. It is, therefore, necessary to develop alternatives. Plasma technology, as an inherent “green” technology, is considered to have a great potential for reducing the environmental impacts and improving the energy efficiency of the NF process. In this work, we have studied the catalyst assisted microwave plasma for NF application. Heterogeneous catalysts of MoO₃, with various loads 0, 5, 10, 20, and 30 wt%, supported on γ-alumina were prepared by conventional wet impregnation. Crystallinity, surface area, pore size, and microstructure were obtained by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherm, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The XRD patterns of calcined alumina confirm the γ- phase. Characteristic picks of MoO₃ could not be observed for low loads (< 20 wt%), likely indicating a high dispersion of metal oxide over the support. The specific surface area along with pores size are decreasing with increasing calcination temperature and MoO₃ loading. The MoO₃ loading does not modify the microstructure. TEM and SEM results for loading inferior to 20 wt% are coherent with a monolayer of MoO₃ on the support as proposed elsewhere. For loading of 20 wt% and more, TEM and Electron diffraction (ED) show nanocrystalline ₃-D MoO₃ particles. The catalytic performances of these catalysts were investigated in the post-discharge of a microwave plasma for NOx formation from N₂/O₂ mixtures. The plasma is sustained by a surface wave launched in a quartz tube via a surfaguide supplied by a 2.45 GHz microwave generator in pulse mode. In-situ identification and quantification of the products were carried out by Fourier-transform infrared spectroscopy (FTIR) in the post-discharge region. FTIR analysis of the exhausted gas reveal NO and NO₂ bands in presence of catalyst while only NO band were assigned without catalyst. On the other hand, in presence of catalyst, a 10% increase of NOₓ formation and of 20% increase in energy efficiency are observed.Keywords: γ-Al2O₃-MoO₃, µ-waveplasma, N2 fixation, Plasma-catalysis, Plasma diagnostic
Procedia PDF Downloads 18112473 Comparing Field Displacement History with Numerical Results to Estimate Geotechnical Parameters: Case Study of Arash-Esfandiar-Niayesh under Passing Tunnel, 2.5 Traffic Lane Tunnel, Tehran, Iran
Authors: A. Golshani, M. Gharizade Varnusefaderani, S. Majidian
Abstract:
Underground structures are of those structures that have uncertainty in design procedures. That is due to the complexity of soil condition around. Under passing tunnels are also such affected structures. Despite geotechnical site investigations, lots of uncertainties exist in soil properties due to unknown events. As results, it possibly causes conflicting settlements in numerical analysis with recorded values in the project. This paper aims to report a case study on a specific under passing tunnel constructed by New Austrian Tunnelling Method in Iran. The intended tunnel has an overburden of about 11.3m, the height of 12.2m and, the width of 14.4m with 2.5 traffic lane. The numerical modeling was developed by a 2D finite element program (PLAXIS Version 8). Comparing displacement histories at the ground surface during the entire installation of initial lining, the estimated surface settlement was about four times the field recorded one, which indicates that some local unknown events affect that value. Also, the displacement ratios were in a big difference between the numerical and field data. Consequently, running several numerical back analyses using laboratory and field tests data, the geotechnical parameters were accurately revised to match with the obtained monitoring data. Finally, it was found that usually the values of soil parameters are conservatively low-estimated up to 40 percent by typical engineering judgment. Additionally, it could be attributed to inappropriate constitutive models applied for the specific soil condition.Keywords: NATM, surface displacement history, numerical back-analysis, geotechnical parameters
Procedia PDF Downloads 19812472 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair
Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar
Abstract:
Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol
Procedia PDF Downloads 20712471 Research on Construction of Subject Knowledge Base Based on Literature Knowledge Extraction
Authors: Yumeng Ma, Fang Wang, Jinxia Huang
Abstract:
Researchers put forward higher requirements for efficient acquisition and utilization of domain knowledge in the big data era. As literature is an effective way for researchers to quickly and accurately understand the research situation in their field, the knowledge discovery based on literature has become a new research method. As a tool to organize and manage knowledge in a specific domain, the subject knowledge base can be used to mine and present the knowledge behind the literature to meet the users' personalized needs. This study designs the construction route of the subject knowledge base for specific research problems. Information extraction method based on knowledge engineering is adopted. Firstly, the subject knowledge model is built through the abstraction of the research elements. Then under the guidance of the knowledge model, extraction rules of knowledge points are compiled to analyze, extract and correlate entities, relations, and attributes in literature. Finally, a database platform based on this structured knowledge is developed that can provide a variety of services such as knowledge retrieval, knowledge browsing, knowledge q&a, and visualization correlation. Taking the construction practices in the field of activating blood circulation and removing stasis as an example, this study analyzes how to construct subject knowledge base based on literature knowledge extraction. As the system functional test shows, this subject knowledge base can realize the expected service scenarios such as a quick query of knowledge, related discovery of knowledge and literature, knowledge organization. As this study enables subject knowledge base to help researchers locate and acquire deep domain knowledge quickly and accurately, it provides a transformation mode of knowledge resource construction and personalized precision knowledge services in the data-intensive research environment.Keywords: knowledge model, literature knowledge extraction, precision knowledge services, subject knowledge base
Procedia PDF Downloads 16712470 Development of Site-Specific Colonic Drug Delivery System (Nanoparticles) of Chitosan Coated with pH Sensitive Polymer for the Management of Colonic Inflammation
Authors: Pooja Mongia Raj, Rakesh Raj, Alpana Ram
Abstract:
Background: The use of multiparticulate drug delivery systems in preference to single unit dosage forms for colon targeting purposes dates back to 1985 when Hardy and co-workers showed that multiparticulate systems enabled the drug to reach the colon quickly and were retained in the ascending colon for a relatively long period of time. Methods: Site-specific colonic drug delivery system (nanoparticles) of 5-ASA were prepared and coated with pH sensitive polymer. Chitosan nanoparticles (CTNP) bearing 5-Amino salicylic acid (5-ASA) were prepared, by ionotropic gelation method. Nanoparticulate dosage form consisting of a hydrophobic core enteric coated with pH-dependent polymer Eudragit S-100 by solvent evaporation method, for the effective delivery of drug to the colon for treatment of ulcerative colitis. Results: The mean diameter of CTNP and ECTNP formulations were 159 and 661 nm, respectively. Also optimum value of polydispersity index was found to be 0.249 [count rate (kcps) was 251.2] and 0.170 [count rate (kcps) was 173.9] was obtained for both the formulations respectively. Conclusion: CTNP and Eudragit chitosan nanoparticles (ECTNP) was characterized for shape and surface morphology by scanning electron microscopy (SEM) appeared to be spherical in shape. The in vitro drug release was investigated using USP dissolution test apparatus in different simulated GIT fluids showed promising release. In vivo experiments are in further proceeding for fruitful results.Keywords: colon targeting, nanoparticles, polymer, 5-amino salicylic acid, edragit
Procedia PDF Downloads 49712469 Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. K. Singh, A. E. Benyamina, P. Boulet
Abstract:
Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature.Keywords: multiprocessor system on chip, MPSoC, network on chip, NoC, heterogeneous architectures, run-time mapping heuristics, routing algorithm
Procedia PDF Downloads 49012468 Microwave Dielectric Properties and Microstructures of Nd(Ti₀.₅W₀.₅)O₄ Ceramics for Application in Wireless Gas Sensors
Authors: Yih-Chien Chen, Yue-Xuan Du, Min-Zhe Weng
Abstract:
Carbon monoxide is a substance produced by the incomplete combustion. It is toxic even at concentrations of less than 100ppm. Since it is colorless and odorless, it is difficult to detect. CO sensors have been developed using a variety of physical mechanisms, including semiconductor oxides, solid electrolytes, and organic semiconductors. Many works have focused on using semiconducting sensors composed of sensitive layers such as ZnO, TiO₂, and NiO with high sensitivity for gases. However, these sensors working at high temperatures increased their power consumption. On the other hand, the dielectric resonator (DR) is attractive for gas detection due to its large surface area and sensitivity for external environments. Materials that are to be employed in sensing devices must have a high-quality factor. Numerous researches into the fergusonite-type structure and related ceramic systems have explored. Extensive research into RENbO₄ ceramics has explored their potential application in resonators, filters, and antennas in modern communication systems, which are operated at microwave frequencies. Nd(Ti₀.₅W₀.₅)O₄ ceramics were synthesized herein using the conventional mixed-oxide method. The Nd(Ti₀.₅W₀.₅)O₄ ceramics were prepared using the conventional solid-state method. Dielectric constants (εᵣ) of 15.4-19.4 and quality factor (Q×f) of 3,600-11,100 GHz were obtained at sintering temperatures in the range 1425-1525°C for 4 h. The dielectric properties of the Nd(Ti₀.₅W₀.₅)O₄ ceramics at microwave frequencies were found to vary with the sintering temperature. For a further understanding of these microwave dielectric properties, they were analyzed by densification, X-ray diffraction (XRD), and by making microstructural observations.Keywords: dielectric constant, dielectric resonators, sensors, quality factor
Procedia PDF Downloads 26312467 Genome-Wide Identification and Characterization of MLO Family Genes in Pumpkin (Cucurbita maxima Duch.)
Authors: Khin Thanda Win, Chunying Zhang, Sanghyeob Lee
Abstract:
Mildew resistance locus o (Mlo), a plant-specific gene family with seven-transmembrane (TM), plays an important role in plant resistance to powdery mildew (PM). PM caused by Podosphaera xanthii is a widespread plant disease and probably represents the major fungal threat for many Cucurbits. The recent Cucurbita maxima genome sequence data provides an opportunity to identify and characterize the MLO gene family in this species. Total twenty genes (designated CmaMLO1 through CmaMLO20) have been identified by using an in silico cloning method with the MLO gene sequences of Cucumis sativus, Cucumis melo, Citrullus lanatus and Cucurbita pepo as probes. These CmaMLOs were evenly distributed on 15 chromosomes of 20 C. maxima chromosomes without any obvious clustering. Multiple sequence alignment showed that the common structural features of MLO gene family, such as TM domains, a calmodulin-binding domain and 30 important amino acid residues for MLO function, were well conserved. Phylogenetic analysis of the CmaMLO genes and other plant species reveals seven different clades (I through VII) and only clade IV is specific to monocots (rice, barley, and wheat). Phylogenetic and structural analyses provided preliminary evidence that five genes belonged to clade V could be the susceptibility genes which may play the importance role in PM resistance. This study is the first comprehensive report on MLO genes in C. maxima to our knowledge. These findings will facilitate the functional analysis of the MLOs related to PM susceptibility and are valuable resources for the development of disease resistance in pumpkin.Keywords: Mildew resistance locus o (Mlo), powdery mildew, phylogenetic relationship, susceptibility genes
Procedia PDF Downloads 19012466 Comparing Business Excellence Models Using Quantitative Methods: A First Step
Authors: Mohammed Alanazi, Dimitrios Tsagdis
Abstract:
Established Business Excellence Models (BEMs), like the Malcolm Baldrige National Quality Award (MBNQA) model and the European Foundation for Quality Management (EFQM) model, have been adopted by firms all over the world. They exist alongside more recent country-specific BEMs; e.g. the Australian, Canadian, China, New Zealand, Singapore, and Taiwan quality awards that although not as widespread as MBNQA and EFQM have nonetheless strong national followings. Regardless of any differences in their following or prestige, the emergence and development of all BEMs have been shaped both by their local context (e.g. underlying socio-economic dynamics) as well as by global best practices. Besides such similarities, that render them into objects (i.e. models) of the same class (i.e. BEMs), BEMs exhibit non-trivial differences in their criteria, relations, and emphasis. Given the evolution of BEMs (e.g. the MBNQA underwent seven evolutions since its inception in 1987 while the EFQM five since 1993), it is unsurprising that comparative studies of their validity are few and far in between. This poses challenges for practitioners and policy makers alike; as it is not always clear which BEM is to be preferred or better fitting to a particular context. Especially, in contexts that differ substantially from the original context of BEM development. This paper aims to fill this gap by presenting a research design and measurement model for comparing BEMs using quantitative methods (e.g. structural equations). Three BEMs will be focused upon in particular for illustration purposes; the MBNQA, the EFQM, and the King Abdul Aziz Quality Award (KAQA) model. They have been selected so to reflect the two established and widely spread traditions as well as a more recent context-specific arrival promising a better fit.Keywords: Baldrige, business excellence, European Foundation for Quality Management, Structural Equation Model, total quality management
Procedia PDF Downloads 24212465 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)
Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi
Abstract:
The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco
Procedia PDF Downloads 139