Search results for: aluminum 2124 metal matrix composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6394

Search results for: aluminum 2124 metal matrix composite

3814 Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete

Authors: I. Miličević, M. Hadzima Nyarko, R. Bušić, J. Simonović Radosavljević, M. Prokopijević, K. Vojisavljević

Abstract:

This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete.

Keywords: compressive strength, modulus of elasticity, NaOH treatment, rubber aggregate, self-compacting rubberized concrete, scanning electron microscope analysis

Procedia PDF Downloads 108
3813 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement

Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha

Abstract:

Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.

Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement

Procedia PDF Downloads 131
3812 Fiction and Reality in Animation: Taking Final Flight of the Osiris as an Example

Authors: Syong-Yang Chung, Xin-An Chen

Abstract:

This study aims to explore the less well-known animation “Final Flight of the Osiris”, consisting of an initial exploration of the film color, storyline, and the simulacrum meanings of the roles, which leads to a further exploration of the light-shadow contrast and the psychological images presented by the screen colors and the characters. The research is based on literature review, and all data was compiled for the analysis of the visual vocabulary evolution of the characters. In terms of the structure, the relational study of the animation and the historical background of that time came first, including The Wachowskis’ and Andy Jones’ impact towards the cinematographic version and the animation version of “The Matrix”. Through literature review, the film color, the meaning and the relevant points were clarified. It was found in this research that “Final Flight of the Osiris” separates the realistic and virtual spaces by the changing the color tones; the "self" of the audience gradually dissolves into the "virtual" in the simulacra world, and the "Animatrix" has become a virtual field for the audience to understand itself about "existence" and "self".

Keywords: the matrix, the final flight of Osiris, Wachowski brothers, simulacres

Procedia PDF Downloads 229
3811 The Application of Cellulose-Based Halloysite-Carbon Adsorbent to Remove Chloroxylenol from Water

Authors: Laura Frydel

Abstract:

Chloroxylenol is a common ingredient in disinfectants. Due to the use of this compound in large amounts, it is more and more often detected in rivers, sewage, and also in human body fluids. In recent years, there have been concerns about the potentially harmful effects of chloroxylenol on human health and the environment. This paper presents the synthesis, a brief characterization and the use of a halloysite-carbon adsorbent for the removal of chloroxylenol from water. The template in the halloysite-carbon adsorbent was acid treated bleached halloysite, and the carbon precursor was cellulose dissolved in zinc (II) chloride, which was dissolved in 37% hydrochloric acid. The FTIR spectra before and after the adsorption process allowed to determine the presence of functional groups, bonds in the halloysite-carbon composite, and the binding mechanism of the adsorbent and adsorbate. The morphology of the bleached halloysite sample and the sample of the halloysite-carbon adsorbent were characterized by scanning electron microscopy (SEM) with surface analysis by X-ray dispersion spectrometry (EDS). The specific surface area, total pore volume and mesopore and micropore volume were determined using the ASAP 2020 volumetric adsorption analyzer. Total carbon and total organic carbon were determined for the halloysite-carbon adsorbent. The halloysite-carbon adsorbent was used to remove chloroxylenol from water. The degree of removal of chloroxylenol from water using the halloysite-carbon adsorbent was about 90%. Adsorption studies show that the halloysite-carbon composite can be used as an effective adsorbent for removing chloroxylenol from water.

Keywords: adsorption, cellulose, chloroxylenol, halloysite

Procedia PDF Downloads 190
3810 Response of Pavement under Temperature and Vehicle Coupled Loading

Authors: Yang Zhong, Mei-Jie Xu

Abstract:

To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in the single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is an obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. Therefore, the dynamic change of parameter in asphalt mixture should be taken into consideration when the theoretical analysis is taken out.

Keywords: asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress

Procedia PDF Downloads 502
3809 Progressive Loading Effect of Co Over SiO2/Al2O3 Catalyst for Cox Free Hydrogen and Carbon Nanotubes Production via Catalytic Decomposition of Methane

Authors: Sushil Kumar Saraswat, K. K. Pant

Abstract:

Co metal supported on SiO2 and Al2O3 catalysts with a metal loading varied from 30 of 70 wt.% were evaluated for decomposition of methane to CO/CO2 free hydrogen and carbon nano materials. The catalytic runs were carried out from 550-800 oC under atmospheric pressure using fixed bed vertical flow reactor. The fresh and spent catalysts were characterized by BET surface area analyzer, TPR, XRD, SEM, TEM, and TG analysis. The data showed that 50% Co/Al2O3 catalyst exhibited remarkable higher activity and stability up to 10 h time-on-stream at 750 oC with respect to H2 production compared to rest of the catalysts. However, the catalytic activity and durability was greatly declined at a higher temperature. The main reason for the catalytic inhibition of Co containing SiO2 catalysts is the higher reduction temperature of Co2SiO4. TEM images illustrate that the carbon materials with various morphologies, carbon nanofibers (CNFs), helical-shaped CNFs, and branched CNFs depending on the catalyst composition and reaction temperature, were obtained. The TG data showed that a higher yield of MWCNTs was achieved over 50% Co/Al2O3 catalyst compared to other catalysts.

Keywords: carbon nanotubes, cobalt, hydrogen production, methane decomposition

Procedia PDF Downloads 323
3808 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes

Authors: Muammer Kaya

Abstract:

The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.

Keywords: e-waste, WEEE, recycling, metal recovery, hydrometallurgy, pirometallurgy, biometallurgy

Procedia PDF Downloads 356
3807 Enhanced Biosorption of Copper Ions by Luffa Cylindrica: Biosorbent Characterization and Batch Experiments

Authors: Nouacer Imane, Benalia Mokhtar, Djedid Mabrouk

Abstract:

The adsorption ability of a powdered activated carbons (PAC) derived from Luffa cylindrica investigated in an attempt to produce more economic and effective sorbents for the control of Cu(II) ion from industrial liquid streams. Carbonaceous sorbents derived from local luffa cylindrica, were prepared by chemical activation methods using ZnCl2 as activating reagents. Adsorption of Cu (II) from aqueous solutions was investigated. The effects of pH, initial adsorbent concentration, the effect of particle size, initial metal ion concentration and temperature were studied in batch experiments. The maximum adsorption capacity of copper onto grafted Luffa cylindrica fiber was found to be 14.23 mg/g with best fit for Langmuir adsorption isotherm. The values of thermodynamic parameters such as enthalpy change, ∆H (-0.823 kJ/mol), entropy change, ∆S (-9.35 J/molK) and free energy change, ∆G (−1.56 kJ/mol) were also calculated. Adsorption process was found spontaneous and exothermic in nature. Finally, the luffa cylindrica has been evaluated by FTIR, MO and x-ray diffraction in order to determine if the biosorption process modifies its chemical structure and morphology, respectively. Luffa cylindrica has been proven to be an efficient biomaterial useful for heavy metal separation purposes that is not altered by the process.

Keywords: adsorption, cadmium, isotherms, thermodynamic, luffa sponge

Procedia PDF Downloads 249
3806 Antioxidant Potential and Inhibition of Key Enzymes Linked to Alzheimer's Diseases and Diabetes Mellitus by Monoterpene-Rich Essential Oil from Sideritis Galatica Bornm. Endemic to Turkey

Authors: Gokhan Zengin, Cengiz Sarikurkcu, Abdurrahman Aktumsek, Ramazan Ceylan

Abstract:

The present study was designated to characterize the essential oil from S. galatica (SGEOs) and evaluate its antioxidant and enzyme inhibitory activities. Antioxidant capacity were tested different methods including free radical scavenging (DPPH, ABTS and NO), reducing power (FRAP and CUPRAC), metal chelating and phosphomolybdenum. Inhibitory activities were analyzed on acetylcholiesterase, butrylcholinesterase, α-amylase and α-glucosidase. SGEOs were chemically analyzed and identified by gas chromatography (GC) and gas chromatography/mass spectrophotometry (GC/MS). 23 components, representing 98.1% of SGEOs were identified. Monoterpene hydrocarbons (74.1%), especially α- (23.0%) and β-pinene (32.2%), were the main constituents in SGEOs. The main sesquiterpene hydrocarbons were β-caryophyllene (16.9%), Germacrene-D (1.2%) and Caryophyllene oxide (1.2%), respectively. Generally, SGEOs has shown moderate free radical, reducing power, metal chelating and enzyme inhibitory activities. These activities related to chemical profile in SGEOs. Our findings supported that the possible utility of SGEOs is a source of natural agents for food, cosmetics or pharmaceutical industries.

Keywords: sideritis galatica, antioxidant, monoterpenes, cholinesterase, anti-diabetic

Procedia PDF Downloads 439
3805 The Preparation and Characterization of Conductive Poly(O-Toluidine)/Smectite Clay Nanocomposite

Authors: E. Erdem, M. Şahin, M. Saçak

Abstract:

Smectite is a layered silicate and modified with alkyl ammonium salts to make both the hydrophilic silicate surfaces organophilic, and to expand the clay layers. Thus, a nanocomposite structure can be formed enabling to enter various types of polymers between the layers. In this study, Na-smectite crystals were prepared by purification of bentonite. Benzyltributylammonium bromide (BTBAB) was used as a swelling agent. The mixing time and additive concentration were changed during the swelling process. It was determined that the 4 h of mixing time and 0.2 g of BTBAB were sufficient and the usage of higher amounts of salt did not increase the interlayer space between the clay layers. Then, the conductive poly(o-toluidine) (POT)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POT content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-toluidine/APS mol ratio. The POT content and conductivity of nanocomposite increased with increasing monomer/oxidant mol ratio up to 1 and did not change at higher ratios. The maximum polymer yield and the highest conductivity value of the composite were 26.0% and 4.0×10-5 S/cm, respectively. The structural and morphological analyses of the POT/smectite nanocomposite were carried out by XRD, FTIR and SEM techniques, respectively.

Keywords: clay, composite, conducting polymer, poly(o-anisidine)

Procedia PDF Downloads 288
3804 The Influence of Fiber Volume Fraction on Thermal Conductivity of Pultruded Profile

Authors: V. Lukášová, P. Peukert, V. Votrubec

Abstract:

Thermal conductivity in the x, y and z-directions was measured on a pultruded profile that was manufactured by the technology of pulling from glass fibers and a polyester matrix. The results of measurements of thermal conductivity showed considerable variability in different directions. The caused variability in thermal conductivity was expected due fraction variations. The cross-section of the pultruded profile was scanned. An image analysis illustrated an uneven distribution of the fibers and the matrix in the cross-section. The distribution of these inequalities was processed into a Voronoi diagram in the observed area of the pultruded profile cross-section. In order to verify whether the variation of the fiber volume fraction in the pultruded profile can affect its thermal conductivity, the numerical simulations in the ANSYS Fluent were performed. The simulation was based on the geometry reconstructed from image analysis. The aim is to quantify thermal conductivity numerically. Above all, images with different volume fractions were chosen. The results of the measured thermal conductivity were compared with the calculated thermal conductivity. The evaluated data proved a strong correlation between volume fraction and thermal conductivity of the pultruded profile. Based on presented results, a modification of production technology may be proposed.

Keywords: pultrusion profile, volume fraction, thermal conductivity, numerical simulation

Procedia PDF Downloads 346
3803 Electrospun Nanofibrous Scaffolds Modified with Collagen-I and Fibronectin with LX-2 Cells to Study Liver Fibrosis in vitro

Authors: Prativa Das, Lay Poh Tan

Abstract:

Three-dimensional microenvironment is a need to study the event cascades of liver fibrosis in vitro. Electrospun nanofibers modified with essential extracellular matrix proteins can closely mimic the random fibrous structure of native liver extracellular matrix (ECM). In this study, we fabricate a series of 3D electrospun scaffolds by wet electrospinning process modified with different ratios of collagen-I to fibronectin to achieve optimized distribution of these two ECM proteins on the fiber surface. A ratio of 3:1 of collagen-I to fibronectin was found to be optimum for surface modification of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers by chemisorption process. In 3:1 collagen-I to fibronectin modified scaffolds the total protein content increased by ~2 fold compared to collagen-I modified and ~1.5 fold compared to 1:1/9:1 collagen-I to fibronectin modified scaffolds. We have cultured LX-2 cells on this scaffold over 14 days and found that LX-2 cells acquired more quiescent phenotype throughout the culture period and shown significantly lower expression of alpha smooth muscle actin and collagen-I. Thus, this system can be used as a model to study liver fibrosis by using different fibrogenic mediators in vitro.

Keywords: electrospinning, collagen-I and fibronectin, surface modification of fiber, LX-2 cells, liver fibrosis

Procedia PDF Downloads 127
3802 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method

Authors: A. Selmi

Abstract:

Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.

Keywords: differential transformation method, functionally graded material, mode shape, natural frequency

Procedia PDF Downloads 309
3801 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages

Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova

Abstract:

Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.

Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages

Procedia PDF Downloads 167
3800 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements

Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang

Abstract:

Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.

Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation

Procedia PDF Downloads 144
3799 The Environmental Effects of Amalgam Tooth Fillings

Authors: Abdulsalam I. Rafida, Abdulhmid M. Alkout, Abdultif M. Alroba

Abstract:

This study investigates the heavy metal content in the saliva of persons with amalgam tooth fillings. For this purpose, samples of saliva have been collected based on two factors i.e. the number of amalgam fillings in the mouth (one, two or three fillings), and the time factor i.e. the time since the fillings have been in place (less than a year and more than a year). Samples of saliva have also been collected from persons with no amalgam tooth fillings for control. The samples that have been collected so far, have been examined for the basic heavy metal content featuring amalgam, which include mercury (Hg) and silver (Ag). However, all the above mentioned elements have been detected in the samples of saliva of the persons with amalgam tooth fillings, though with varying amounts depending on the number of fillings. Thus, for persons with only one filling the average quantities were found to be 0.00061 ppm and 0.033 ppm for Hg and Ag respectively. On the other hand for persons with two fillings the average quantities were found to be 0.0012 ppm and 0.029 ppm for each of the two elements respectively. However, in order to understand the chemical reactions associated with amalgam tooth fillings in the mouth, the material have been treated outside the mouth using some nutrient media. Those media included drinking water, fizzy drinks and hot tea. All three media have been found to contain the three elements after amalgam treatment. Yet, the fizzy drink medium was found to contain the highest levels of those elements.

Keywords: amalgam, mercury, silver, fizzy drinks, media

Procedia PDF Downloads 198
3798 Determinants of Quality of Life in Patients with Atypical Prarkinsonian Syndromes: 1-Year Follow-Up Study

Authors: Tatjana Pekmezovic, Milica Jecmenica-Lukic, Igor Petrovic, Vladimir Kostic

Abstract:

Background: A group of atypical parkinsonian syndromes (APS) includes a variety of rare neurodegenerative disorders characterized by reduced life expectancy, increasing disability, and considerable impact on health-related quality of life (HRQoL). Aim: In this study we wanted to answer two questions: a) which demographic and clinical factors are main contributors of HRQoL in our cohort of patients with APS, and b) how does quality of life of these patients change over 1-year follow-up period. Patients and Methods: We conducted a prospective cohort study in hospital settings. The initial study comprised all consecutive patients who were referred to the Department of Movement Disorders, Clinic of Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade (Serbia), from January 31, 2000 to July 31, 2013, with the initial diagnoses of ‘Parkinson’s disease’, ‘parkinsonism’, ‘atypical parkinsonism’ and ‘parkinsonism plus’ during the first 8 months from the appearance of first symptom(s). The patients were afterwards regularly followed in 4-6 month intervals and eventually the diagnoses were established for 46 patients fulfilling the criteria for clinically probable progressive supranuclear palsy (PSP) and 36 patients for probable multiple system atrophy (MSA). The health-related quality of life was assessed by using the SF-36 questionnaire (Serbian translation). Hierarchical multiple regression analysis was conducted to identify predictors of composite scores of SF-36. The importance of changes in quality of life scores of patients with APS between baseline and follow-up time-point were quantified using Wilcoxon Signed Ranks Test. The magnitude of any differences for the quality of life changes was calculated as an effect size (ES). Results: The final models of hierarchical regression analysis showed that apathy measured by the Apathy evaluation scale (AES) score accounted for 59% of the variance in the Physical Health Composite Score of SF-36 and 14% of the variance in the Mental Health Composite Score of SF-36 (p<0.01). The changes in HRQoL were assessed in 52 patients with APS who completed 1-year follow-up period. The analysis of magnitude for changes in HRQoL during one-year follow-up period have shown sustained medium ES (0.50-0.79) for both Physical and Mental health composite scores, total quality of life as well as for the Physical Health, Vitality, Role Emotional and Social Functioning. Conclusion: This study provides insight into new potential predictors of HRQoL and its changes over time in patients with APS. Additionally, identification of both prognostic markers of a poor HRQoL and magnitude of its changes should be considered when developing comprehensive treatment-related strategies and health care programs aimed at improving HRQoL and well-being in patients with APS.

Keywords: atypical parkinsonian syndromes, follow-up study, quality of life, APS

Procedia PDF Downloads 305
3797 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: bearing, centrifugal casting, cylinder liners, robot

Procedia PDF Downloads 414
3796 Investigation of Alfa Fibers Reinforced Epoxy-Amine Composites Properties

Authors: Amar Boukerrou, Ouerdia Belhadj, Dalila Hammiche, Jean Francois Gerard, Jannick Rumeau

Abstract:

The main goal of this study is the investigation of alfa fiber content, treated with alkali treatment, on the thermal and mechanical properties of epoxy-amine matrix-based composites. The fibers were treated with 5% of sodium hydroxide solution and varied between 10% to 30% weight fractions. The tensile, flexural, and hardness tests are carried out to investigate the mechanical properties of composites. The results show those composites’ mechanical properties are higher than the neat epoxy-amine. It was noticed that the alkali treatment is more effective in the case of the tensile and flexural modulus than the tensile and flexural strength. The decline of both the tensile and flexural behavior of all composites with the increasing of the filler content was due probably to the random dispersion of the fibers in the epoxy resin The Fourier transform infrared (FTIR) was employed to analyze the chemical structure of epoxy resin before and after curing with amine hardener. FTIR and DSC analysis confirmed that epoxy resin was completely cured with amine hardener at room temperature. SEM analysis has highlighted the microstructure of epoxy matrix and its composites.

Keywords: alfa fiber, epoxy resin, alkali treatment, mechanical properties

Procedia PDF Downloads 109
3795 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation

Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane

Abstract:

This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.

Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover

Procedia PDF Downloads 142
3794 Obtaining High Purity Hydroxyapatite from Bovine Bone: Effect of Chemical and Thermal Treatments

Authors: Hernandez Pardo Diego F., Guiza Arguello Viviana R., Coy Echeverria Ana, Viejo Abrante Fernando

Abstract:

The biological hydroxyapatite obtained from bovine bone arouses great interest in its application as a material for bone regeneration due to its better bioactive behavior in comparison with synthetic hydroxyapatite. For this reason, the objective of the present investigation was to determine the effect of chemical and thermal treatments in obtaining biological bovine hydroxyapatite of high purity and crystallinity. Two different chemical reagents were evaluated (NaOH and HCl) with the aim to remove the organic matrix of the bovine cortical bone. On the other hand, for analyzing the effect of thermal treatment temperature was ranged between 500 and 1000°C for a holding time of 4 hours. To accomplish the above, the materials before and after the chemical and thermal treatments were characterized by elemental compositional analysis (CHN), infrared spectroscopy by Fourier transform (FTIR), RAMAN spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and energy dispersion X-ray spectroscopy (EDS). The results allowed to establish that NaOH is more effective in the removal of the organic matrix of the bone when compared to HCl, whereas a thermal treatment at 700ºC for 4 hours was enough to obtain biological hydroxyapatite of high purity and crystallinity.

Keywords: bovine bone, hydroxyapatite, biomaterials, thermal treatment

Procedia PDF Downloads 116
3793 Macroscopic Support Structure Design for the Tool-Free Support Removal of Laser Powder Bed Fusion-Manufactured Parts Made of AlSi10Mg

Authors: Tobias Schmithuesen, Johannes Henrich Schleifenbaum

Abstract:

The additive manufacturing process laser powder bed fusion offers many advantages over conventional manufacturing processes. For example, almost any complex part can be produced, such as topologically optimized lightweight parts, which would be inconceivable with conventional manufacturing processes. A major challenge posed by the LPBF process, however, is, in most cases, the need to use and remove support structures on critically inclined part surfaces (α < 45 ° regarding substrate plate). These are mainly used for dimensionally accurate mapping of part contours and to reduce distortion by absorbing process-related internal stresses. Furthermore, they serve to transfer the process heat to the substrate plate and are, therefore, indispensable for the LPBF process. A major challenge for the economical use of the LPBF process in industrial process chains is currently still the high manual effort involved in removing support structures. According to the state of the art (SoA), the parts are usually treated by simple hand tools (e.g., pliers, chisels) or by machining (e.g., milling, turning). New automatable approaches are the removal of support structures by means of wet chemical ablation and thermal deburring. According to the state of the art, the support structures are essentially adapted to the LPBF process and not to potential post-processing steps. The aim of this study is the determination of support structure designs that are adapted to the mentioned post-processing approaches. In the first step, the essential boundary conditions for complete removal by means of the respective approaches are identified. Afterward, a representative demonstrator part with various macroscopic support structure designs will be LPBF-manufactured and tested with regard to a complete powder and support removability. Finally, based on the results, potentially suitable support structure designs for the respective approaches will be derived. The investigations are carried out on the example of the aluminum alloy AlSi10Mg.

Keywords: additive manufacturing, laser powder bed fusion, laser beam melting, selective laser melting, post processing, tool-free, wet chemical ablation, thermal deburring, aluminum alloy, AlSi10Mg

Procedia PDF Downloads 91
3792 Cadmium and Lead Extraction from Environmental Samples with Complexes Matrix by Nanomagnetite Solid-Phase and Determine Their Trace Amounts

Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad

Abstract:

In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) with sodium dodecyl sulfate- 1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been successfully synthesized and applied for preconcentration and separation of Cd and Pb in environmental samples. Compared with conventional SPE methods, the advantages of this new magnetic Mixed Hemimicelles Solid-Phase Extraction Procedure (MMHSPE) still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of Cd and Pb compounds from large volume water samples. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS-PAN, satisfactory concentration factor and extraction recoveries can be produced with only 0.05 g Fe3O4/Al2O3 NPs. The metals were eluted with 3mL HNO3 2 mol L-1 directly and detected with the detection system Flame Atomic Absorption Spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as the amount of PAN, pH value, sample volume, standing time, desorption solvent and maximal extraction volume, amount of sorbent and concentration of eluent, were studied. The detection limits of this method for Cd and Pb were 0.3 and 0.7 ng mL−1 and the R.S.D.s were 3.4 and 2.8% (C = 28.00 ng mL-1, n = 6), respectively. The preconcentration factor of the modified nanoparticles was 166.6. The proposed method has been applied to the determination of these metal ions at trace levels in soil, river, tap, mineral, spring and wastewater samples with satisfactory results.

Keywords: Alumina-coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Cd and Pb, soil sample

Procedia PDF Downloads 316
3791 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium

Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing

Abstract:

Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.

Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture

Procedia PDF Downloads 240
3790 Design for Metal Additive Manufacturing: An Investigation of Key Design Application on Electron Beam Melting

Authors: Wadea Ameen, Abdulrahman Al-Ahmari, Osama Abdulhameed

Abstract:

Electron beam melting (EBM) is one of the modern additive manufacturing (AM) technologies. In EBM, the electron beam melts metal powder into a fully solid part layer by layer. Since EBM is a new technology, most designers are unaware of the capabilities and the limitations of EBM technology. Also, many engineers are facing many challenges to utilize the technology because of a lack of design rules for the technology. The aim of this study is to identify the capabilities and the limitations of EBM technology in fabrication of small features and overhang structures and develop a design rules that need to be considered by designers and engineers. In order to achieve this objective, a series of experiments are conducted. Several features having varying sizes were designed, fabricated, and evaluated to determine their manufacturability limits. In general, the results showed the capabilities and limitations of the EBM technology in fabrication of the small size features and the overhang structures. In the end, the results of these investigation experiments are used to develop design rules. Also, the results showed the importance of developing design rules for AM technologies in increasing the utilization of these technologies.

Keywords: additive manufacturing, design for additive manufacturing, electron beam melting, self-supporting overhang

Procedia PDF Downloads 147
3789 Early Stage Hydration of Wollastonite: Kinetic Aspects of the Metal-Proton Exchange Reaction

Authors: Nicolas Giraudo, Peter Thissen

Abstract:

In this paper we bring up new aspects of the metal proton exchange reaction (MPER, also called early stage hydration): (1) its dependence of the number of protons consumed by the preferential exchanged cations on the pH value applied at the water/wollastonite interface and (2) strong anisotropic characteristics detected in atomic force microscopy (AFM) and low energy ion scattering spectroscopy measurements (LEIS). First we apply density functional theory (DFT) calculations to compare the kinetics of the reaction on different wollastonite surfaces, and combine it with ab initio thermodynamics to set up a model describing (1) the release of Ca in exchange with H coming from the water/wollastonite interface, (2) the dependence of the MPER on the chemical potential of protons. In the second part of the paper we carried out in-situ AFM and inductive coupled plasma atomic emission spectroscopy (ICP-OES) measurements in order to evaluate the predicted values. While a good agreement is found in the basic and neutral regime (pH values from 14-4), an increasing mismatch appears in the acidic regime (pH value lower 4). This is finally explained by non-equilibrium etching, dominating over the MPER in the very acidic regime.

Keywords: anisotropy, calcium silicate, cement, density functional theory, hydration

Procedia PDF Downloads 280
3788 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain

Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper

Abstract:

Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.

Keywords: additive manufacturing, lean production, reproducibility, work safety

Procedia PDF Downloads 184
3787 Improving the Method for Characterizing Structural Fabrics for Shear Resistance and Formability

Authors: Dimitrios Karanatsis

Abstract:

Non-crimp fabrics (NCFs) allow for high mechanical performance of a manufacture composite component by maintaining the fibre reinforcements parallel to each other. The handling of NCFs is enabled by the stitching of the tows. Although the stitching material has negligible influence to the performance of the manufactured part, it can affect the ability of the structural fabric to shear and drape over the part’s geometry. High resistance to shearing is attributed to the high tensile strain of the stitching yarn and can cause defects in the fabric. In the current study, a correlation based on the stitch tension and shear behaviour is examined. The purpose of the research is to investigate the upper and lower limits of non-crimp fabrics manufacture and how these affect the shear behaviour of the fabrics. Experimental observations show that shear behaviour of the fabrics is significantly affected by the stitch tension, and there is a linear effect to the degree of shear they experience. It was found that the lowest possible stitch tension on the manufacturing line settings produces an NCF that exhibits very low tensile strain on it’s yarns and that has shear properties similar to a woven fabric. Moreover, the highest allowable stitch tension results in reduced formability of the fabric, as the stitch thread rearranges the fibre filaments where these become packed in a tight formation with constricted movement.

Keywords: carbon fibres, composite manufacture, shear testing, textiles

Procedia PDF Downloads 145
3786 Understanding the Information in Principal Component Analysis of Raman Spectroscopic Data during Healing of Subcritical Calvarial Defects

Authors: Rafay Ahmed, Condon Lau

Abstract:

Bone healing is a complex and sequential process involving changes at the molecular level. Raman spectroscopy is a promising technique to study bone mineral and matrix environments simultaneously. In this study, subcritical calvarial defects are used to study bone composition during healing without discomposing the fracture. The model allowed to monitor the natural healing of bone avoiding mechanical harm to the callus. Calvarial defects were created using 1mm burr drill in the parietal bones of Sprague-Dawley rats (n=8) that served in vivo defects. After 7 days, their skulls were harvested after euthanizing. One additional defect per sample was created on the opposite parietal bone using same calvarial defect procedure to serve as control defect. Raman spectroscopy (785 nm) was established to investigate bone parameters of three different skull surfaces; in vivo defects, control defects and normal surface. Principal component analysis (PCA) was utilized for the data analysis and interpretation of Raman spectra and helped in the classification of groups. PCA was able to distinguish in vivo defects from normal surface and control defects. PC1 shows that the major variation at 958 cm⁻¹, which corresponds to ʋ1 phosphate mineral band. PC2 shows the major variation at 1448 cm⁻¹ which is the characteristic band of CH2 deformation and corresponds to collagens. Raman parameters, namely, mineral to matrix ratio and crystallinity was found significantly decreased in the in vivo defects compared to surface and controls. Scanning electron microscope and optical microscope images show the formation of newly generated matrix by means of bony bridges of collagens. Optical profiler shows that surface roughness increased by 30% from controls to in vivo defects after 7 days. These results agree with Raman assessment parameters and confirm the new collagen formation during healing.

Keywords: Raman spectroscopy, principal component analysis, calvarial defects, tissue characterization

Procedia PDF Downloads 223
3785 Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts

Authors: Šárka Hradilová, Aleš Panáček, Radek Zbořil

Abstract:

Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells.

Keywords: cytotoxicity, gold nanoparticles, mechanism of cytotoxicity, silver nanoparticles

Procedia PDF Downloads 254