Search results for: radiation induces lung damages
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2572

Search results for: radiation induces lung damages

2572 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages

Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova

Abstract:

Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.

Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages

Procedia PDF Downloads 131
2571 Calculation of Lungs Physiological Lung Motion in External Lung Irradiation

Authors: Yousif Mohamed Y. Abdallah, Khalid H. Eltom

Abstract:

This is an experimental study deals with measurement of the periodic physiological organ motion during lung external irradiation in order to reduce the exposure of healthy tissue during radiation treatments. The results showed for left lung displacement reading (4.52+1.99 mm) and right lung is (8.21+3.77 mm) which the radiotherapy physician should take suitable countermeasures in case of significant errors. The motion ranged between 2.13 mm and 12.2 mm (low and high). In conclusion, the calculation of tumour mobility can improve the accuracy of target areas definition in patients undergo Sterostatic RT for stage I, II and III lung cancer (NSCLC). Definition of the target volume based on a high resolution CT scan with a margin of 3-5 mm is appropriate.

Keywords: physiological motion, lung, external irradiation, radiation medicine

Procedia PDF Downloads 382
2570 Estimation of Lungs Physiological Motion for Patient Undergoing External Lung Irradiation

Authors: Yousif Mohamed Y. Abdallah

Abstract:

This is an experimental study deals with detection, measurement and analysis of the periodic physiological organ motion during external beam radiotherapy; to improve the accuracy of the radiation field placement, and to reduce the exposure of healthy tissue during radiation treatments. The importance of this study is to detect the maximum path of the mobile structures during radiotherapy delivery, to define the planning target volume (PTV) and irradiated volume during both inspiration and expiration period and to verify the target volume. In addition to its role to highlight the importance of the application of Intense Guided Radiotherapy (IGRT) methods in the field of radiotherapy. The results showed (body contour was equally (3.17 + 0.23 mm), for left lung displacement reading (2.56 + 0.99 mm) and right lung is (2.42 + 0.77 mm) which the radiation oncologist to take suitable countermeasures in case of significant errors. In addition, the use of the image registration technique for automatic position control is predicted potential motion. The motion ranged between 2.13 mm and 12.2 mm (low and high). In conclusion, individualized assessment of tumor mobility can improve the accuracy of target areas definition in patients undergo Sterostatic RT for stage I, II and III lung cancer (NSCLC). Definition of the target volume based on a single CT scan with a margin of 10 mm is clearly inappropriate.

Keywords: respiratory motion, external beam radiotherapy, image processing, lung

Procedia PDF Downloads 505
2569 Gene Expressions in Left Ventricle Heart Tissue of Rat after 150 Mev Proton Irradiation

Authors: R. Fardid, R. Coppes

Abstract:

Introduction: In mediastinal radiotherapy and to a lesser extend also in total-body irradiation (TBI) radiation exposure may lead to development of cardiac diseases. Radiation-induced heart disease is dose-dependent and it is characterized by a loss of cardiac function, associated with progressive heart cells degeneration. We aimed to determine the in-vivo radiation effects on fibronectin, ColaA1, ColaA2, galectin and TGFb1 gene expression levels in left ventricle heart tissues of rats after irradiation. Material and method: Four non-treatment adult Wistar rats as control group (group A) were selected. In group B, 4 adult Wistar rats irradiated to 20 Gy single dose of 150 Mev proton beam locally in heart only. In heart plus lung irradiate group (group C) 4 adult rats was irradiated by 50% of lung laterally plus heart radiation that mentioned in before group. At 8 weeks after radiation animals sacrificed and left ventricle heart dropped in liquid nitrogen for RNA extraction by Absolutely RNA® Miniprep Kit (Stratagen, Cat no. 400800). cDNA was synthesized using M-MLV reverse transcriptase (Life Technologies, Cat no. 28025-013). We used Bio-Rad machine (Bio Rad iQ5 Real Time PCR) for QPCR testing by relative standard curve method. Results: We found that gene expression of fibronectin in group C significantly increased compared to control group, but it was not showed significant change in group B compared to group A. The levels of gene expressions of Cola1 and Cola2 in mRNA did not show any significant changes between normal and radiation groups. Changes of expression of galectin target significantly increased only in group C compared to group A. TGFb1 expressions in group C more than group B showed significant enhancement compared to group A. Conclusion: In summary we can say that 20 Gy of proton exposure of heart tissue may lead to detectable damages in heart cells and may distribute function of them as a component of heart tissue structure in molecular level.

Keywords: gene expression, heart damage, proton irradiation, radiotherapy

Procedia PDF Downloads 456
2568 Treatment of Histopathological Symptoms in N-Nitrosopyrrolidine Induced Changes in Lung Tissue by Isolated Flavonoid from Indigofera tinctoria

Authors: Aastha Agarwal, Veena Sharma

Abstract:

N-nitrosopyrollidine or NPYR is a tobacco-specific nitrosamine which upon intoxicated causes abnormal production of Reactive Oxygen Species disrupt the endogenous antioxidant system. The study was designed to evaluate the histological changes in lung tissue of Mus musculus in NPYR administered lungs and effect of isolated flavonoid 3,6-dihydroxy-(3’,4’,7’-trimethoxyphenyl)-chromen-4-one-7-glucoside (ITC) from experimental plant Indigofera tinctorial. Post treatment with isolated compound significantly restored the abnormal symptoms and changes in pulmonary tissue. Transverse section of mouse lung in control animals appeared as a thin lace. Histologically, most of the lung was arranged as alveoli which were thin walled structures made up of single layered squamous epithelial cells. In the transverse section of lung at 100 X will clearly show the component of alveoli, surround by a thin layer of connective tissue and blood vessels. Smaller bronchioles were lined by cuboidal epithelial cells while larger bronchioles were lined by ciliated columnar epithelium layer while in NPYR intoxicated lungs signs of vast pulmonary damages and carcinogenesis as alveolar damage, necrosis, DADs or defused alveolar damages hyperplasia, metaplasia, dysplasia and next stage of carcinogenesis were revealed. Treatment with ITC showed the significant positive changes in the lung tissue due to the side hydroxyl and methoxy groups in its structure which help in combating oxidative injuries and give protection from the free radicals generated during the metabolism of NPYR in body. Thus, histopathological analysis confirms the development of the cancerous conditions in the lung tissue in mice model and the protective effects of ITC.

Keywords: flavonoid, histopathology, Indigofera tinctoria, lung

Procedia PDF Downloads 271
2567 Optimization of Radiation Therapy with a Nanotechnology Based Enzymatic Therapy

Authors: R. D. Esposito, V. M. Barberá, P. García Morales, P. Dorado Rodríguez, J. Sanz, M. Fuentes, D. Planes Meseguer, M. Saceda, L. Fernández Fornos, M. P. Ventero

Abstract:

Results obtained by our group on glioblastoma multiforme (GBM) primary cultures , show a dramatic potentiation of radiation effects when 2 units/ml of D-amino acid oxidase (DAO) enzyme are added, free or immobilized in magnetic nanoparticles, to irradiated samples just after the irradiation. Cell cultures were exposed to radiation doses of 7Gy and 15Gy of 6 MV photons from a clinical linear accelerator. At both doses, we observed a clear enhancing effect of radiation-induced damages due to the addition of DAO.

Keywords: D-amino Acid Oxidase (DAO) enzyme, magnetic particles, nanotechnology, radiation therapy enhancement

Procedia PDF Downloads 490
2566 Nursing Experience for a Lung Cancer Patient Undergoing First Time Concurrent Chemotherapy and Radiation Therapy

Authors: Hui Ling Chen

Abstract:

This article describes the experience of caring for a 68-year-old lung cancer patient undergoing the initial stage of concurrent chemotherapy and radiation therapy during the period of October 21 to November 16. In this study, the author collected data through observation, interviews, medical examination, and the use of Roy’s adaptation model as a guide for data collection and assessment. This study confirmed that chemotherapy induced nausea and vomiting, and radiation therapy impaired skin integrity. At the same time, the patient experienced an anxious reaction to the initial cancer diagnosis and the insertion of subcutaneous infusion ports at the start of medical treatment. Similarly, the patient’s wife shares his anxiety, not to mention the feeling of inadequacy from the lack of training in cancer care. In response, the nursing intervention strategy has included keeping the patient and his family informed of his treatment progress, transfer of cancer care knowledge, and providing them with spiritual support. For example, the nursing staff has helped them draw up a mutually agreeable dietary plan that best suits the wife’s cooking skills, provided them with knowledge in pre- and post-radiation skin care, as well as means to cope with nausea and vomiting reactions. The nursing staff has also worked on building rapport with the patient and his spouse, providing them with encouragement, caring attention and companionship. After the patient was discharged from the hospital, the nursing staff followed up with caring phone calls to help the patient and his family make life-style adjustments to normalcy. The author hopes that his distinctive nursing experience can be useful as a reference for the clinical care of lung cancer patients undergoing the initial stage of concurrent chemotherapy and radiation therapy treatment.

Keywords: lung cancer, initiate diagnosis, concurrent chemotherapy and radiation therapy, nursing care

Procedia PDF Downloads 116
2565 Amifostine Analogue, Drde-30, Attenuates Radiation-Induced Lung Injury in Mice

Authors: Aastha Arora, Vikas Bhuria, Saurabh Singh, Uma Pathak, Shweta Mathur, Puja P. Hazari, Rajat Sandhir, Ravi Soni, Anant N. Bhatt, Bilikere S. Dwarakanath

Abstract:

Radiotherapy is an effective curative and palliative option for patients with thoracic malignancies. However, lung injury, comprising of pneumonitis and fibrosis, remains a significant clin¬ical complication of thoracic radiation, thus making it a dose-limiting factor. Also, injury to the lung is often reported as part of multi-organ failure in victims of accidental radiation exposures. Radiation induced inflammatory response in the lung, characterized by leukocyte infiltration and vascular changes, is an important contributing factor for the injury. Therefore, countermeasure agents to attenuate radiation induced inflammatory response are considered as an important approach to prevent chronic lung damage. Although Amifostine, the widely used, FDA approved radio-protector, has been found to reduce the radiation induced pneumonitis during radiation therapy of non-small cell lung carcinoma, its application during mass and field exposure is limited due to associated toxicity and ineffectiveness with the oral administration. The amifostine analogue (DRDE-30) overcomes this limitation as it is orally effective in reducing the mortality of whole body irradiated mice. The current study was undertaken to investigate the potential of DRDE-30 to ameliorate radiation induced lung damage. DRDE-30 was administered intra-peritoneally, 30 minutes prior to 13.5 Gy thoracic (60Co-gamma) radiation in C57BL/6 mice. Broncheo- alveolar lavage fluid (BALF) and lung tissues were harvested at 12 and 24 weeks post irradiation for studying inflammatory and fibrotic markers. Lactate dehydrogenase (LDH) leakage, leukocyte count and protein content in BALF were used as parameters to evaluate lung vascular permeability. Inflammatory cell signaling (p38 phosphorylation) and anti-oxidant status (MnSOD and Catalase level) was assessed by Western blot, while X-ray CT scan, H & E staining and trichrome staining were done to study the lung architecture and collagen deposition. Irradiation of the lung increased the total protein content, LDH leakage and total leukocyte count in the BALF, reflecting endothelial barrier dysfunction. These disruptive effects were significantly abolished by DRDE-30, which appear to be linked to the DRDE-30 mediated abrogation of activation of the redox-sensitive pro- inflammatory signaling cascade, the MAPK pathway. Concurrent administration of DRDE-30 with radiation inhibited radiation-induced oxidative stress by strengthening the anti-oxidant defense system and abrogated p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and macrophage recruitment to the lungs. Histopathological examination (by H & E staining) of the lung showed radiation-induced inflammation of the lungs, characterized by cellular infiltration, interstitial oedema, alveolar wall thickening, perivascular fibrosis and obstruction of alveolar spaces, which were all reduced by pre-administration of DRDE-30. Structural analysis with X-ray CT indicated lung architecture (linked to the degree of opacity) comparable to un-irradiated mice that correlated well with the lung morphology and reduced collagen deposition. Reduction in the radiation-induced inflammation and fibrosis brought about by DRDE-30 resulted in a profound increase in animal survival (72 % in the combination vs 24% with radiation) observed at the end of 24 weeks following irradiation. These findings establish the potential of the Amifostine analogue, DRDE-30, in reducing radiation induced pulmonary injury by attenuating the inflammatory and fibrotic responses.

Keywords: amifostine, fibrosis, inflammation, lung injury radiation

Procedia PDF Downloads 480
2564 Overview and Pathophysiology of Radiation-Induced Breast Changes as a Consequence of Radiotherapy Toxicity

Authors: Monika Rezacova

Abstract:

Radiation-induced breast changes are a consequence of radiotherapy toxicity over the breast tissues either related to targeted breast cancer treatment or other thoracic malignancies (eg. lung cancer). This study has created an overview of different changes and their pathophysiology. The main conditions included were skin thickening, interstitial oedema, fat necrosis, dystrophic calcifications, skin retractions, glandular atrophy, breast fibrosis and radiation induced breast cancer. This study has performed focused literature search through multiple databases including pubmed, medline and embase. The study has reviewed English as well as non English publications. As a result of the literature the study provides comprehensive overview of radiation-induced breast changes and their pathophysiology with small focus on new development and prevention.

Keywords: radiotherapy toxicity, breast tissue changes, breast cancer treatment, radiation-induced breast changes

Procedia PDF Downloads 122
2563 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India

Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma

Abstract:

Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.

Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation

Procedia PDF Downloads 113
2562 Spatio- Temporal Gender Based Patterns of Lung Cancer in the Punjab Province of Pakistan, 2008-2012

Authors: Rubab Z. Kahlon, Ibtisam Butt, Isma Younis, Aamer G. Mufti

Abstract:

Worldwide lung cancer 1.61 million cases were seen in both genders. Lung carcinoma is the major cause of both morbidity and mortality in the world. Purpose of the present study was to describe the spatio- temporal trends of lung cancer in both genders. A retrospective study was conducted. Total 1498 patients of lung carcinoma were examined. Only lung cancer patients from all over the Punjab were included in the present study. MS Excel 2010 was used for data tabulation and calculation while the Arc GIS version 9.3 was used for geographical representation of the data. 1498 cases of Lung cancer were found from 2008-2012. The number of male patients was 1236 and female was 262. Majority of the patients were from Lahore districts with 807 patients. Lung cancer was more prevalent in male as compared to female in our region. Increase in the prevalence of lung cancer was prominently seen in the most populated and industrial areas of the Punjab province. Time trend of five years showed fluctuation in the lung cancer incidence during the study period.

Keywords: districts, gender, lung cancer trends, Punjab province of Pakistan

Procedia PDF Downloads 492
2561 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response

Authors: Sharmi Mukherjee, Anindita Chakraborty

Abstract:

Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.

Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma

Procedia PDF Downloads 155
2560 Automatic Segmentation of Lung Pleura Based On Curvature Analysis

Authors: Sasidhar B., Bhaskar Rao N., Ramesh Babu D. R., Ravi Shankar M.

Abstract:

Segmentation of lung pleura is a preprocessing step in Computer-Aided Diagnosis (CAD) which helps in reducing false positives in detection of lung cancer. The existing methods fail in extraction of lung regions with the nodules at the pleura of the lungs. In this paper, a new method is proposed which segments lung regions with nodules at the pleura of the lungs based on curvature analysis and morphological operators. The proposed algorithm is tested on 06 patient’s dataset which consists of 60 images of Lung Image Database Consortium (LIDC) and the results are found to be satisfactory with 98.3% average overlap measure (AΩ).

Keywords: curvature analysis, image segmentation, morphological operators, thresholding

Procedia PDF Downloads 566
2559 Cellular Mechanisms Involved in the Radiosensitization of Breast- and Lung Cancer Cells by Agents Targeting Microtubule Dynamics

Authors: Elsie M. Nolte, Annie M. Joubert, Roy Lakier, Maryke Etsebeth, Jolene M. Helena, Marcel Verwey, Laurence Lafanechere, Anne E. Theron

Abstract:

Treatment regimens for breast- and lung cancers may include both radiation- and chemotherapy. Ideally, a pharmaceutical agent which selectively sensitizes cancer cells to gamma (γ)-radiation would allow administration of lower doses of each modality, yielding synergistic anti-cancer benefits and lower metastasis occurrence, in addition to decreasing the side-effect profiles. A range of 2-methoxyestradiol (2-ME) analogues, namely 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10) 15-tetraene-3-ol-17one (ESE-15-one), 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) were in silico-designed by our laboratory, with the aim of improving the parent compound’s bioavailability in vivo. The main effect of these compounds is the disruption of microtubule dynamics with a resultant mitotic accumulation and induction of programmed cell death in various cancer cell lines. This in vitro study aimed to determine the cellular responses involved in the radiation sensitization effects of these analogues at low doses in breast- and lung cancer cell lines. The oestrogen receptor positive MCF-7-, oestrogen receptor negative MDA-MB-231- and triple negative BT-20 breast cancer cell lines as well as the A549 lung cancer cell line were used. The minimal compound- and radiation doses able to induce apoptosis were determined using annexin-V and cell cycle progression markers. These doses (cell line dependent) were used to pre-sensitize the cancer cells 24 hours prior to 6 gray (Gy) radiation. Experiments were conducted on samples exposed to the individual- as well as the combination treatment conditions in order to determine whether the combination treatment yielded an additive cell death response. Morphological studies included light-, fluorescence- and transmission electron microscopy. Apoptosis induction was determined by flow cytometry employing annexin V, cell cycle analysis, B-cell lymphoma 2 (Bcl-2) signalling, as well as reactive oxygen species (ROS) production. Clonogenic studies were performed by allowing colony formation for 10 days post radiation. Deoxyribonucleic acid (DNA) damage was quantified via γ-H2AX foci and micronuclei quantification. Amplification of the p53 signalling pathway was determined by western blot. Results indicated that exposing breast- and lung cancer cells to nanomolar concentrations of these analogues 24 hours prior to γ-radiation induced more cell death than the compound- and radiation treatments alone. Hypercondensed chromatin, decreased cell density, a damaged cytoskeleton and an increase in apoptotic body formation were observed in cells exposed to the combination treatment condition. An increased number of cells present in the sub-G1 phase as well as increased annexin-V staining, elevation of ROS formation and decreased Bcl-2 signalling confirmed the additive effect of the combination treatment. In addition, colony formation decreased significantly. p53 signalling pathways were significantly amplified in cells exposed to the analogues 24 hours prior to radiation, as was the amount of DNA damage. In conclusion, our results indicated that pre-treatment of breast- and lung cancer cells with low doses of 2-ME analogues sensitized breast- and lung cancer cells to γ-radiation and induced apoptosis more so than the individual treatments alone. Future studies will focus on the effect of the combination treatment on non-malignant cellular counterparts.

Keywords: cancer, microtubule dynamics, radiation therapy, radiosensitization

Procedia PDF Downloads 175
2558 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites

Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria

Abstract:

Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.

Keywords: gamma irradiation, graphene oxide, nanocomposites, PVDF

Procedia PDF Downloads 245
2557 Evaluation of Promoter Hypermethylation in Tissue and Blood of Non-Small Cell Lung Cancer Patients and Association with Survival

Authors: Ashraf Ali, Kriti Upadhyay, Puja Sohal, Anant Mohan, Randeep Guleria

Abstract:

Background: Gene silencing by aberrant promoter hypermethylation is common in lung cancer and is an initiating event in its development. Aim: To evaluate the gene promoter hypermethylation frequency in serum and tissue of lung cancer patients. Method: 95 newly diagnosed untreated advance stage lung cancer patients and 50 cancer free matched controls were studied. Bisulfite modification of tissue and serum DNA was done; modified DNA was used as a template for methylation-specific PCR analysis. Survival was assessed for one year. Results: Of 95 patients, 82% were non-small cell lung cancer (34% squamous cell carcinoma, 34% non-small cell lung cancer and 14% adenocarcinoma) and 18% were small cell lung cancer. Biopsy revealed that tissue of 89% and 75% of lung cancer patients and 85% and 52% of controls had promoter hypermethylated for MGMT (p=0.35) and p16(p<0.001) gene, respectively. In serum, 33% and 49% of lung cancer patients and 28% and 43% controls were positive for MGMT and p16 gene. No significant correlation was found between survival and clinico-pathological parameters. Conclusion: High gene promoter methylation frequency of p16 gene in tissue biopsy may be linked with early stages of carcinogenesis. Appropriate follow-up is required for confirmation of this finding.

Keywords: lung cancer, MS- PCR, methylation, molecular biology

Procedia PDF Downloads 159
2556 The Relation Between Oxidative Stress, Inflammation, and Neopterin in the Paraquat-Induced Lung Toxicity

Authors: M. Toygar, I. Aydin, M. Agilli, F. N. Aydin, M. Oztosun, H. Gul, E. Macit, Y. Karslioglu, T. Topal, B. Uysal, M. Honca

Abstract:

Paraquat (PQ) is a well-known quaternary nitrogen herbicide. The major target organ in PQ poisoning is the lung. Reactive oxygen species (ROS) and inflammation play a crucial role in the development of PQ-induced pulmonary injury. Neopterin is synthesized in macrophage by interferon g and other cytokines. We aimed to evaluate the utility of neopterin as a diagnostic marker in PQ-induced lung toxicity. Sprague Dawley rats were randomly divided into two groups (sham and PQ), administered intraperitoneally 1 mL saline and PQ (15 mg/kg/mL) respectively. Blood samples and lungs were collected for analyses. Lung injury and fibrosis were seen in the PQ group. Serum total antioxidant capacity, lactate dehydrogenase (LDH), and lung transforming growth factor-1 (TGF-1) levels were significantly higher than the sham group (in all, p< 0.001). In addition, in the PQ group, serum neopterin and lung malondialdehyde (MDA) levels were also significantly higher than the sham group (in all, p 1/4 0.001). Serum neopterin levels were correlated with LDH activities, lung MDA, lung TGF-1 levels, and the degree of lung injury. These findings demonstrated that oxidative stress, reduction of antioxidant capacity, and inflammation play a crucial role in the PQ-induced lung injury. Elevated serum neopterin levels may be a prognostic parameter to determine extends of PQ-induced lung toxicity. Further studies may be performed to clarify the role of neopterin by different doses of PQ.

Keywords: paraquat, inflammation, oxidative stress, neopterin, lung toxicity

Procedia PDF Downloads 354
2555 Astaxanthin Induces Cytotoxicity through Down-Regulating Rad51 Expression in Human Lung Cancer Cells

Authors: Jyh-Cheng Chen, Tai-Jing Wang, Yun-Wei Lin

Abstract:

Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Treatment with astaxanthin decreased Rad51 expression and phospho-AKT protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector significantly rescued the decreased Rad51 protein and mRNA levels in astaxanthin-treated NSCLC cells. Combined treatment with PI3K inhibitors (LY294002 or wortmannin) and astaxanthin further decreased the Rad51 expression in NSCLC cells. Knockdown of Rad51 enhanced astaxanthin-induced cytotoxicity and growth inhibition in NSCLC cells. These findings may have implications for the rational design of future drug regimens incorporating astaxanthin for the treatment of NSCLC.

Keywords: astaxanthin, cytotoxicity, AKT, non-small cell lung cancer, PI3K

Procedia PDF Downloads 269
2554 Status of Radiation Protection at Radiation Oncology, BPKM Cancer Hospital, Nepal

Authors: Surendra B. Chand, P. P. Chaurasia, M. P. Adhikari, R. N. Yadav

Abstract:

Objective: The objective of this work was to evaluate all the safety procedures toward the radiation protection for workers in the radiation oncology department. Materials and Methods: The annual thermoluminescent dosimeters (TLDs) reports for five years of the staffs were evaluated, radiation surveys were done in the control consoles, radiotherapy machines room and waiting areas of all machines using Aloka survey meter. Results: The five years TLD reports shows that the whole body dose of the individual staffs is found within the annual dose limit except the accidental exposures. Radiation exposures in the working areas are also safe limits. Conclusion: The radiation safety practices for radiation protection are satisfactory and the radiation workers of the departments are found working within the safe limit.

Keywords: radiation protection, safety, ICRP, dose limits, TLD, radiation devices

Procedia PDF Downloads 540
2553 Effect of Total Body Irradiation for Metastatic Lymph Node and Lung Metastasis in Early Stage

Authors: Shouta Sora, Shizuki Kuriu, Radhika Mishra, Ariunbuyan Sukhbaatar, Maya Sakamoto, Shiro Mori, Tetsuya Kodama

Abstract:

Lymph node (LN) metastasis accounts for 20 - 30 % of all deaths in patients with head and neck cancer. Therefore, the control of metastatic lymph nodes (MLNs) is necessary to improve the life prognosis of patients with cancer. In a classical metastatic theory, tumor cells are thought to metastasize hematogenously through a bead-like network of lymph nodes. Recently, a lymph node-mediated hematogenous metastasis theory has been proposed, in which sentinel LNs are regarded as a source of distant metastasis. Therefore, the treatment of MLNs at the early stage is essential to prevent distant metastasis. Radiation therapy is one of the primary therapeutic modalities in cancer treatment. In addition, total body irradiation (TBI) has been reported to act as activation of natural killer cells and increase of infiltration of CD4+ T-cells to tumor tissues. However, the treatment effect of TBI for MLNs remains unclear. This study evaluated the possibilities of low-dose total body irradiation (L-TBI) and middle-dose total body irradiation (M-TBI) for the treatment of MLNs. Mouse breast cancer FM3A-Luc cells were injected into subiliac lymph node (SiLN) of MXH10/Mo/LPR mice to induce the metastasis to the proper axillary lymph node (PALN) and lung. Mice were irradiated for the whole body on 4 days after tumor injection. The L-TBI and M-TBI were defined as irradiations to the whole body at 0.2 Gy and 1.0 Gy, respectively. Tumor growth was evaluated by in vivo bioluminescence imaging system. In the non-irradiated group, tumor activities on SiLN and PALN significantly increased over time, and the metastasis to the lung from LNs was confirmed 28 days after tumor injection. The L-TBI led to a tumor growth delay in PALN but did not control tumor growth in SiLN and metastasis to the lung. In contrast, it was found that the M-TBI significantly delayed the tumor growth of both SiLN and PALN and controlled the distant metastasis to the lung compared with non-irradiated and L-TBI groups. These results suggest that the M-TBI is an effective treatment method for MLNs in the early stage and distant metastasis from lymph nodes via blood vessels connected with LNs.

Keywords: metastatic lymph node, lung metastasis, radiation therapy, total body irradiation, lymphatic system

Procedia PDF Downloads 150
2552 PathoPy2.0: Application of Fractal Geometry for Early Detection and Histopathological Analysis of Lung Cancer

Authors: Rhea Kapoor

Abstract:

Fractal dimension provides a way to characterize non-geometric shapes like those found in nature. The purpose of this research is to estimate Minkowski fractal dimension of human lung images for early detection of lung cancer. Lung cancer is the leading cause of death among all types of cancer and an early histopathological analysis will help reduce deaths primarily due to late diagnosis. A Python application program, PathoPy2.0, was developed for analyzing medical images in pixelated format and estimating Minkowski fractal dimension using a new box-counting algorithm that allows windowing of images for more accurate calculation in the suspected areas of cancerous growth. Benchmark geometric fractals were used to validate the accuracy of the program and changes in fractal dimension of lung images to indicate the presence of issues in the lung. The accuracy of the program for the benchmark examples was between 93-99% of known values of the fractal dimensions. Fractal dimension values were then calculated for lung images, from National Cancer Institute, taken over time to correctly detect the presence of cancerous growth. For example, as the fractal dimension for a given lung increased from 1.19 to 1.27 due to cancerous growth, it represents a significant change in fractal dimension which lies between 1 and 2 for 2-D images. Based on the results obtained on many lung test cases, it was concluded that fractal dimension of human lungs can be used to diagnose lung cancer early. The ideas behind PathoPy2.0 can also be applied to study patterns in the electrical activity of the human brain and DNA matching.

Keywords: fractals, histopathological analysis, image processing, lung cancer, Minkowski dimension

Procedia PDF Downloads 137
2551 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury

Authors: Jianming Cai

Abstract:

Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.

Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation

Procedia PDF Downloads 453
2550 Recurrence of Papillary Thyroid Cancer with an Interval of 40 Years. Report of an Autopsy Case

Authors: Satoshi Furukawa, Satomu Morita, Katsuji Nishi, Masahito Hitosugi

Abstract:

A 75-year-old woman took thyroidectomy forty years previously. Enlarged masses were seen at autopsy just above and below the left clavicle. We proved the diagnosis of papillary thyroid cancer (PTC) and lung metastasis by histological examinations. The prognosis of PTC is excellent; the 10-year survival rate ranges between 85 and 99%. Lung metastases may be found in 10% of the patients with PTC. We report an unusual case of recurrence of PTC with metastasis to the lung.

Keywords: papillary thyroid cancer, lung metastasis, autopsy, histopathological findings

Procedia PDF Downloads 297
2549 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 38
2548 The Effects of Terrein: A Secondary Metabolite from Aspergillus terreus as Anticancer and Antimetastatic Agent on Lung Cancer Cells

Authors: Paiwan Buachan, Maneekarn Namsa-Aid, Suchada Jongrungruangchok, Foengchat Jarintanan, Wanlaya Uthaisang-Tanechpongtamb

Abstract:

Lung cancer or pulmonary carcinoma is the uncontrolled growth of abnormal cells in one or both of the lungs. These abnormal cells can spread to other organs of the body through lymphatic system or bloodstream which is called metastatic stage that leading cause of cancer death. Terrein (C₈H₁₀O₃; MW= 154.06 kDa) is a secondary bioactive fungal metabolite, which was isolated from the Aspergillus terreus. In this study, we investigated the effects of terrein on the inhibition of human lung cancer cell proliferation and metastasis. The A549 human non-small cell lung cancer cell line was used as a model. Terrein significantly inhibited lung cancer cell proliferation measuring by a colorimetric MTT assay (IC₅₀ 0.32 mM) and significantly inhibited metastatic processes including migration, invasion, and adhesion that determined by wound healing assay, transwell assay, and adhesion assay, respectively. These findings indicate that terrein could be a potential therapeutic agent for lung cancer.

Keywords: terrein, lung cancer, anticancer, antimetastatic

Procedia PDF Downloads 135
2547 The Analysis of Solar Radiation Exergy in Hakkari

Authors: Hasan Yildizhan

Abstract:

According to the Solar Energy Potential Atlas (GEPA) prepared by Turkish Ministry of Energy, Hakkari is ranked first in terms of sunshine duration and it is ranked eighth in terms of solar radiation energy. Accordingly, Hakkari has a rich potential of investment with regard to solar radiation energy. The part of the solar radiation energy arriving on the surface of the earth which is transposable to useful work is determined by means of exergy analysis. In this study, the radiation exergy values for Hakkari have been calculated and evaluated by making use of the monthly average solar radiation energy and temperature values measured by General Directorate of State Meteorology.

Keywords: solar radiation exergy, Hakkari, solar energy potential, Turkey

Procedia PDF Downloads 674
2546 Reduction of Physician's Radiation Dose during Cardiac Catheterization Procedures Using Lead-Free Sterile Radiation Shields

Authors: Mohammad O. Diab, Sahera A. Saleh, Mustapha M. Dichari, Nijez Aloulou, Omar Hamoui, Feras Chehade

Abstract:

This study sought to evaluate the efficiency of lead-free sterile radiation shield (Radionex) in the reduction of physician's exposure dose during interventional cardiology procedures. Cardiac catheterization procedures are often associated with high radiation doses and high levels of secondary radiation emitted by the patient's body. This study compares physician exposure dose rate during cardiac catheterization procedures done through the femoral artery with sterile radiation shielding to same procedures made without the shielding. The mean operator radiation dose rate without using the shield was found to be 18.4µSv/min compared to a mean dose rate of 5.1 µSv/min when using the shield, rendering a reduction of 72.5% of radiation received by the physician. Sterile radiation shielding is consequently an effective addition to a cardiac catheterization lab radiation protection system.

Keywords: cardiac catheterization, physician exposure dose, sterile radiation shielding, lead-free sterile radiation shields

Procedia PDF Downloads 484
2545 Green Tea Extract: Its Potential Protective Effect on Bleomycin Induced Lung Injuries in Rats

Authors: Azza EL-Medany, Jamila EL-Medany

Abstract:

Lung fibrosis is a common side effect of the chemotherapeutic agent, bleomycin. Current evidence suggests that reactive oxygen species may play a key role in the development of lung fibrosis. The present work studied the effect of green tea extract on bleomycin–induced lung fibrosis in rats. Animals were divided into three groups: (1) Saline control group; (2) bleomycin group in which rats were injected with bleomycin (15mg/kg,i.p.) three times a week for four weeks; (3) bleomycin and green tea group in which green tea extract was given to rats (100mg/kg/day, p.o) a week prior to bleomycin and daily during bleomycin injections for 4 weeks until the end of the experiment. Bleomycin–induced pulmonary injury and lung fibrosis that was indicated by increased lung hydroxyproline content, elevated nitric oxide synthase, myeoloperoxidase (MPO), platelet activating factor (PAF), tumor necrosis factor α (TNF_α), transforming growth factor 1β (TGF1β) and angiotensin converting enzyme (ACE) activity in lung tissues. On the other hand, bleomycin induced a reduction in reduced glutathione concentration (GSH). Moreover, bleomycin resulted in a severe histological changes in lung tissues revealed as lymphocytes and neutrophils infiltration, increased collagen deposition and fibrosis. Co-administration of bleomycin and green tea extract reduced bleomycin–induced lung injury as evaluated by the significant reduction in hydroxyproline content, nitric oxide synthase activity, levels of MPO, PAF, TNF-α, and ACE in lung tissues. Furthermore, green tea extract ameliorated bleomycin– induced reduction in GSH concentration. Finally, histological evidence supported the ability of green tea extract to attenuate bleomycin–induced lung fibrosis and consolidation. Thus, the finding of the present study provides that green tea may serve as a novel target for potential therapeutic treatment of lung fibrosis.

Keywords: bleomycin, lung fibrosis, green tea, oxygen species

Procedia PDF Downloads 416
2544 Surgical Outcomes of Lung Cancer Surgery in Tasmania

Authors: Ayeshmanthe Rathnayake, Ashutosh Hardikar

Abstract:

Introduction: Lung cancer is the most common cause of cancer death in Australia, with more than 13000 cases per year. Until now, there has been a major deficiency of national comprehensive thoracic surgery data. The thoracic workload for surgeons as well as caseload per unit, is highly variable, with some centres performing less than 15 cases per annum, thus raising concerns about optimal care at low-volume sites. This is an attempt to review the outcomes of lung cancer surgery in Tasmania. Method: The objective of this study is to determine the surgical outcomes of lung cancer surgery at Royal Hobart Hospital (RHH) with the primary outcome of surgical mortality. Four hundred fifty-one cases were analysed retrospectively from 2010 to May 2022. Results: A total of 451 patients underwent thoracic surgery with a primary diagnosis of lung cancer. The primary outcome of 30-day mortality was <0.5%. The mean age was 65.3 years, with male predominance and a 4.2% prevalence of Indigenous Australians. The mean LOS was 7.5 days. The surgical approach was either VATS (50.3%) or Thoracotomy (49.7%), with a trend towards the former in recent years with an increase in the proportion of VATS from 18.2% to 51% (p<0.05) in complex resections since 2019. A corresponding reduction in conversion rate to open was observed (18% vs. 5.5%), and there were no deaths within this subgroup. Lung resections were divided into lobectomy (55.4%), wedge resection (36.8%), segmentectomy (2.9%) and pneumonectomy (4.9%). The RHH demonstrates good surgical outcomes for lung cancer and provides a sustainable service for Tasmania. Conclusion: This retrospective study reports the surgical outcomes of lung cancer surgery at the Royal Hobart Hospital, thereby providing insight into the surgical management of lung cancer in the state thus far. The state has been slow to catch up on the minimally invasive program, but the overall results have been comparable to most peers.

Keywords: lung cancer, thoracic surgery, lung resection, surgical outcomes

Procedia PDF Downloads 56
2543 Hsa-miR-329 Functions as a Tumor Suppressor through Targeting MET in Non-Small Cell Lung Cancer

Authors: Cheng-Cao Sun, Shu-Jun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, De-Jia Li

Abstract:

MicroRNAs (miRNAs) act as key regulators of multiple cancers. Hsa-miR-329 (miR-329) functions as a tumor suppressor in some malignancies. However, its role on lung cancer remains poorly understood. In this study, we investigated the role of miR-329 on the development of lung cancer. The results indicated that miR-329 was decreased in primary lung cancer tissues compared with matched adjacent normal lung tissues and very low levels were found in a non-small cell lung cancer (NSCLC) cell lines. Ectopic expression of miR-329 in lung cancer cell lines substantially repressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibiting cyclin D1, cyclin D2, and up-regulatiing p57(Kip2) and p21(WAF1/CIP1). In addition, miR-329 promoted NSCLC cell apoptosis, as indicated by up-regulation of key apoptosis gene cleaved caspase-3, and down-regulation of anti-apoptosis gene Bcl2. Moreover, miR-329 inhibited cellular migration and invasiveness through inhibiting matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene MET was revealed to be a putative target of miR-329, which was inversely correlated with miR-329 expression. Furthermore, down-regulation of MET by siRNA performed similar effects to over-expression of miR-329. Collectively, our results demonstrated that miR-329 played a pivotal role in lung cancer through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic MET.

Keywords: hsa-miRNA-329(miR-329), MET, non-small cell lung cancer (NSCLC), proliferation, apoptosis

Procedia PDF Downloads 372