Search results for: storage costs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4204

Search results for: storage costs

1654 Windstorm Risk Assessment for Offshore Wind Farms in the North Sea

Authors: Paul Buchana, Patrick E. Mc Sharry

Abstract:

In 2017 there will be about 38 wind farms in the North Sea belonging to 5 different countries. The North Sea is ideal for offshore wind power generation and is thus attractive to offshore wind energy developers and investors. With concerns about the potential for offshore wind turbines to sustain substantial damage as a result of extreme weather conditions, particularly windstorms, this poses a unique challenge to insurers and reinsurers as to adequately quantify the risk and offer appropriate insurance cover for these assets. The need to manage this risk also concerns regulators, who provide the oversight needed to ensure that if a windstorm or a series of storms occur in this area over a one-year time frame, the insurers of these assets in the EU remain solvent even after meeting consequent damage costs. In this paper, using available European windstorm data for the past 33 years and actual wind farm locations together with information pertaining to each of the wind farms (number of turbines, total capacity and financial value), we present a Monte Carlo simulation approach to assess the number of turbines that would be buckled in each of the wind farms using maximum wind speeds reaching each of them. These wind speeds are drawn from historical windstorm data. From the number of turbines buckled, associated financial loss and output capacity can be deduced. The results presented in this paper are targeted towards offshore wind energy developers, insurance and reinsurance companies and regulators.

Keywords: catastrophe modeling, North Sea wind farms, offshore wind power, risk analysis

Procedia PDF Downloads 299
1653 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection

Authors: Reza Moslemi, Sebastien Perrier

Abstract:

Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.

Keywords: condition assessment, pipe degradation, sampling, water main

Procedia PDF Downloads 152
1652 Investigation of Cost Effective Double Layered Slab for γ-Ray Shielding

Authors: Kulwinder Singh Mann, Manmohan Singh Heer, Asha Rani

Abstract:

The safe storage of radioactive materials has become an important issue. Nuclear engineering necessitates the safe handling of radioactive materials emitting high energy gamma-rays. Hazards involved in handling radioactive materials insist suitable shielded enclosures. With overgrowing use of nuclear energy for meeting the increasing demand of power, there is a need to investigate the shielding behavior of cost effective shielded enclosure (CESE) made from clay-bricks (CB) and fire-bricks (FB). In comparison to the lead-bricks (conventional-shielding), the CESE are the preferred choice in nuclear waste management. The objective behind the present investigation is to evaluate the double layered transmission exposure buildup factors (DLEBF) for gamma-rays for CESE in energy range 0.5-3MeV. For necessary computations of shielding parameters, using existing huge data regarding gamma-rays interaction parameters of all periodic table elements, two computer programs (GRIC-toolkit and BUF-toolkit) have been designed. It has been found that two-layered slabs show effective shielding for gamma-rays in orientation CB followed by FB than the reverse. It has been concluded that the arrangement, FB followed by CB reduces the leakage of scattered gamma-rays from the radioactive source.

Keywords: buildup factor, clay bricks, fire bricks, nuclear wastage management, radiation protective double layered slabs

Procedia PDF Downloads 408
1651 Phosphate Sludge Ceramics: Effects of Firing Cycle Parameters on Technological Properties and Ceramic Suitability

Authors: Mohamed Loutou, Mohamed Hajjaji, Mohamed Ait Babram, Mohammed Mansori, Rachid Hakkou, Claude Favotto

Abstract:

More than 26,4 million tons of phosphates are produced by the phosphates industries in Morocco (2010), generating huge amounts of sludge by flocculation during the ore beneficiation. They way are stored at the end of the process in open air ponds. Its accumulation and storage may have an impact on several scales such as ground water and human being. For this purpose, an efficient way to use it the field of the ceramic is proposed. The as received sludge and a clay-rich sediment have been studied in terms of chemical, mineralogical and micro-structural side using various analytical methods. Several formulations have been performed by mixing the sludge with the binder shaped in the form of granules. After being dried at 105 °C, the samples were heated in the range of 900-1200 °C. As well as the ceramic properties (firing shrinkage, water absorption, total porosity and compressive strength) the micro structure has been investigated using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The relations between properties and the operating factors were formulated using the design of experiments (DOE). Gehlenite was the only phase neo-formed in the sintering samples. SEM micrographs revealed the presence of nano metric stains. Based on RSM results, all factors had positive effects on Firing shrinkage, compressive strength and total porosity. However, they manifested opposite effects on density and water absorption.

Keywords: phosphate sludge, clay, ceramic properties, granule

Procedia PDF Downloads 505
1650 Distributed Real-Time Range Query Approximation in a Streaming Environment

Authors: Simon Keller, Rainer Mueller

Abstract:

Continuous range queries are a common means to handle mobile clients in high-density areas. Most existing approaches focus on settings in which the range queries for location-based services are more or less static, whereas the mobile clients in the ranges move. We focus on a category called dynamic real-time range queries (DRRQ), assuming that both, clients requested by the query and the inquirers, are mobile. In consequence, the query parameters and the query results continuously change. This leads to two requirements: the ability to deal with an arbitrarily high number of mobile nodes (scalability) and the real-time delivery of range query results. In this paper, we present the highly decentralized solution adaptive quad streaming (AQS) for the requirements of DRRQs. AQS approximates the query results in favor of a controlled real-time delivery and guaranteed scalability. While prior works commonly optimize data structures on the involved servers, we use AQS to focus on a highly distributed cell structure without data structures automatically adapting to changing client distributions. Instead of the commonly used request-response approach, we apply a lightweight streaming method in which no bidirectional communication and no storage or maintenance of queries are required at all.

Keywords: approximation of client distributions, continuous spatial range queries, mobile objects, streaming-based decentralization in spatial mobile environments

Procedia PDF Downloads 147
1649 Applying Theory of Inventive Problem Solving to Develop Innovative Solutions: A Case Study

Authors: Y. H. Wang, C. C. Hsieh

Abstract:

Good service design can increase organization revenue and consumer satisfaction while reducing labor and time costs. The problems facing consumers in the original serve model for eyewear and optical industry includes the following issues: 1. Insufficient information on eyewear products 2. Passively dependent on recommendations, insufficient selection 3. Incomplete records on progression of vision conditions 4. Lack of complete customer records. This study investigates the case of Kobayashi Optical, applying the Theory of Inventive Problem Solving (TRIZ) to develop innovative solutions for eyewear and optical industry. Analysis results raise the following conclusions and management implications: In order to provide customers with improved professional information and recommendations, Kobayashi Optical is suggested to establish customer purchasing records. Overall service efficiency can be enhanced by applying data mining techniques to analyze past consumer preferences and purchase histories. Furthermore, Kobayashi Optical should continue to develop a 3D virtual trial service which can allow customers for easy browsing of different frame styles and colors. This 3D virtual trial service will save customer waiting times in during peak service times at stores.

Keywords: theory of inventive problem solving (TRIZ), service design, augmented reality (AR), eyewear and optical industry

Procedia PDF Downloads 280
1648 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Authors: Teerapon Pirom, Ura Pancharoen

Abstract:

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Keywords: aliquat336, amoxicillin, HFSLM, kinetic

Procedia PDF Downloads 276
1647 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains

Authors: Alina P. Colling, Robert G. Hekkenberg

Abstract:

Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.

Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning

Procedia PDF Downloads 225
1646 Production of Biotechnological Chondroitin from Recombinant E, Coli K4 Strains on Renewable Substrates

Authors: Donatella Cimini, Sergio D’ambrosio, Saba Sadiq, Chiara Schiraldi

Abstract:

Chondroitin sulfate (CS), as well as modified CS, and unsulfated chondroitin, are largely applied in research today. CS is a linear glycosaminoglycan normally present in cartilage-rich tissues and bones in the form of proteoglycans decorated with sulfate groups in different positions. CS is used as an effective non-pharmacological alternative for the treatment of osteoarthritis, and other potential applications in the biomedical field are being investigated. Some bacteria, such as E. coli K4, produce a polysaccharide that is a precursor of CS (unsulfated chondroitin). This work focused on the construction of integrative E. coli K4 recombinant strains overexpressing genes (kfoA, kfoF, pgm and galU in different combinations) involved in the biosynthesis of the nucleotide sugars necessary for polysaccharide synthesis. Strain growth and polymer production were evaluated using renewable waste materials as substrates in shake flasks and small-scale batch fermentation processes. Results demonstrated the potential to replace pure sugars with cheaper medium components to establish environmentally sustainable and cost-effective production routes for potential industrial development. In fact, although excellent fermentation results have been described so far by employing strains that naturally produce chondroitin-like polysaccharides on semi-defined media, there is still the need to reduce manufacturing costs by providing a cost-effective biotechnological alternative to currently used animal-based extraction procedures.

Keywords: E. coli K4, chondroitin, microbial cell factories, glycosaminoglycans, renewable resources

Procedia PDF Downloads 81
1645 A Multi-Omic Assessment of Biomass and Pigment Accumulation in Nitrogen Deplete Conditions in Scenedesmus 46B-D3

Authors: Galen Dennis, Lukas Dahlin, Michael Guarnieri, Stefanie Van Wychen, Shawn Starkenburg, Matthew Posewitz, Colin Kruse

Abstract:

Scenedesmus 46B-D3 was identified in 2021 by screening a culture collection produced by the Posewitz lab at the Colorado School of Mines. The strain was found to continue accumulating biomass in a nitrogen-depleted state, which is a rare and technologically promising trait in microalgae. As the culture grows, a shift from nitrogen-replete to depleted conditions is indicated by arrested cell division and the accumulation of lipids, polysaccharides and photoprotective pigments. The latter trait gives stationary phase cultures a deep red color due to the presence of the high-value beta-ketocarotenoids, canthaxanthin and astaxanthin. The combination of continued photosynthesis post-nitrogen depletion and the accumulation of valuable pigments makes S. 46B-D3 of interest from a fundamental and industrial perspective, respectively. This project reports the results of a multi-omic study examining changes in the proteome and transcriptome in nitrogen-replete and deplete conditions. In addition, it characterizes the pigment composition of S. 46B-D3 across its growth curve and the method of cell division within the strain. These results indicate that upon sensing nitrogen scarcity, S. 46B-D3 efficiently recycles and repurposes nitrogen away from cell division and towards energy storage through the accumulation of lipids and polysaccharides. The accumulation of photoprotective pigments also prevents damage to and serves as an additional carbon sink for the cell’s light system.

Keywords: pigments, photosynthesis, proteomics, transcriptomics

Procedia PDF Downloads 13
1644 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW

Authors: A. Nait Salah, M. Kaddami

Abstract:

This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.

Keywords: ASME, base metal, micro-hardness test, submerged arc welding

Procedia PDF Downloads 154
1643 Augmented Reality: New Relations with the Architectural Heritage Education

Authors: Carla Maria Furuno Rimkus

Abstract:

The technologies related to virtual reality and augmented reality in combination with mobile technologies, are being more consolidated and used each day. The increasing technological availability along with the decrease of their acquisition and maintenance costs, have favored the expansion of its use in the field of historic heritage. In this context it is focused, in this article, on the potential of mobile applications in the dissemination of the architectural heritage, using the technology of Augmented Reality. From this perspective approach, it is discussed about the process of producing an application for mobile devices on the Android platform, which combines the technologies of geometric modeling with augmented reality (AR) and access to interactive multimedia contents with cultural, social and historic information of the historic building that we take as the object of study: a block with a set of buildings built in the XVIII century, known as "Quarteirão dos Trapiches", which was modeled in 3D, coated with the original texture of its facades and displayed on AR. From this perspective approach, this paper discusses about methodological aspects of the development of this application regarding to the process and the project development tools, and presents our considerations on methodological aspects of developing an application for the Android system, focused on the dissemination of the architectural heritage, in order to encourage the tourist potential of the city in a sustainable way and to contribute to develop the digital documentation of the heritage of the city, meeting a demand of tourists visiting the city and the professionals who work in the preservation and restoration of it, consisting of architects, historians, archaeologists, museum specialists, among others.

Keywords: augmented reality, architectural heritage, geometric modeling, mobile applications

Procedia PDF Downloads 480
1642 Using Risk Management Indicators in Decision Tree Analysis

Authors: Adel Ali Elshaibani

Abstract:

Risk management indicators augment the reporting infrastructure, particularly for the board and senior management, to identify, monitor, and manage risks. This enhancement facilitates improved decision-making throughout the banking organization. Decision tree analysis is a tool that visually outlines potential outcomes, costs, and consequences of complex decisions. It is particularly beneficial for analyzing quantitative data and making decisions based on numerical values. By calculating the expected value of each outcome, decision tree analysis can help assess the best course of action. In the context of banking, decision tree analysis can assist lenders in evaluating a customer’s creditworthiness, thereby preventing losses. However, applying these tools in developing countries may face several limitations, such as data availability, lack of technological infrastructure and resources, lack of skilled professionals, cultural factors, and cost. Moreover, decision trees can create overly complex models that do not generalize well to new data, known as overfitting. They can also be sensitive to small changes in the data, which can result in different tree structures and can become computationally expensive when dealing with large datasets. In conclusion, while risk management indicators and decision tree analysis are beneficial for decision-making in banks, their effectiveness is contingent upon how they are implemented and utilized by the board of directors, especially in the context of developing countries. It’s important to consider these limitations when planning to implement these tools in developing countries.

Keywords: risk management indicators, decision tree analysis, developing countries, board of directors, bank performance, risk management strategy, banking institutions

Procedia PDF Downloads 62
1641 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications

Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin

Abstract:

This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.

Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack

Procedia PDF Downloads 84
1640 Assessment of Korea's Natural Gas Portfolio Considering Panama Canal Expansion

Authors: Juhan Kim, Jinsoo Kim

Abstract:

South Korea cannot import natural gas in any form other than LNG because of the division of South and North Korea. Further, the high proportion of natural gas in the national energy mix makes this resource crucial for energy security in Korea. Expansion of Panama Canal will allow for reducing the cost of shipping between the Far East and U.S East. Panama Canal expansion can have significant impacts on South Korea. Due to this situation, we review the natural gas optimal portfolio by considering the uniqueness of the Korean Natural gas market and expansion of Panama Canal. In order to assess Korea’s natural gas optimal portfolio, we developed natural gas portfolio model. The model comprises two steps. First, to obtain the optimal long-term spot contract ratio, the study examines the price level and the correlation between spot and long-term contracts by using the Markowitz, portfolio model. The optimal long-term spot contract ratio follows the efficient frontier of the cost/risk level related to this price level and degree of correlation. Second, by applying the obtained long-term contract purchase ratio as the constraint in the linear programming portfolio model, we determined the natural gas optimal import portfolio that minimizes total intangible and tangible costs. Using this model, we derived the optimal natural gas portfolio considering the expansion of Panama Canal. Based on these results, we assess the portfolio for natural gas import to Korea from the perspective of energy security and present some relevant policy proposals.

Keywords: natural gas, Panama Canal, portfolio analysis, South Korea

Procedia PDF Downloads 292
1639 Clinical Impact of Ultra-Deep Versus Sanger Sequencing Detection of Minority Mutations on the HIV-1 Drug Resistance Genotype Interpretations after Virological Failure

Authors: S. Mohamed, D. Gonzalez, C. Sayada, P. Halfon

Abstract:

Drug resistance mutations are routinely detected using standard Sanger sequencing, which does not detect minor variants with a frequency below 20%. The impact of detecting minor variants generated by ultra-deep sequencing (UDS) on HIV drug-resistance (DR) interpretations has not yet been studied. Fifty HIV-1 patients who experienced virological failure were included in this retrospective study. The HIV-1 UDS protocol allowed the detection and quantification of HIV-1 protease and reverse transcriptase variants related to genotypes A, B, C, E, F, and G. DeepChek®-HIV simplified DR interpretation software was used to compare Sanger sequencing and UDS. The total time required for the UDS protocol was found to be approximately three times longer than Sanger sequencing with equivalent reagent costs. UDS detected all of the mutations found by population sequencing and identified additional resistance variants in all patients. An analysis of DR revealed a total of 643 and 224 clinically relevant mutations by UDS and Sanger sequencing, respectively. Three resistance mutations with > 20% prevalence were detected solely by UDS: A98S (23%), E138A (21%) and V179I (25%). A significant difference in the DR interpretations for 19 antiretroviral drugs was observed between the UDS and Sanger sequencing methods. Y181C and T215Y were the most frequent mutations associated with interpretation differences. A combination of UDS and DeepChek® software for the interpretation of DR results would help clinicians provide suitable treatments. A cut-off of 1% allowed a better characterisation of the viral population by identifying additional resistance mutations and improving the DR interpretation.

Keywords: HIV-1, ultra-deep sequencing, Sanger sequencing, drug resistance

Procedia PDF Downloads 337
1638 Effect of Mobile Drip and Linear Irrigation System on Sugar Beet Yield

Authors: Ismail Tas, Yusuf Ersoy Yildirim, Yavuz Fatih Fidantemiz, Aysegul Boyacioglu, Demet Uygan, Ozgur Ates, Erdinc Savasli, Oguz Onder, Murat Tugrul

Abstract:

The biggest input of agricultural production is irrigation, water and energy. Although it varies according to the conditions in drip and sprinkler irrigation systems compared to surface irrigation systems, there is a significant amount of energy expenditure. However, this expense not only increases the user's control over the irrigation water but also provides an increase in water savings and water application efficiency. Thus, while irrigation water is used more effectively, it also contributes to reducing production costs. The Mobile Drip Irrigation System (MDIS) is a system in which new technologies are used, and it is one of the systems that are thought to play an important role in increasing the irrigation water utilization rate of plants and reducing water losses, as well as using irrigation water effectively. MDIS is currently considered the most effective method for irrigation, with the development of both linear and central motion systems. MDIS is potentially more advantageous than sprinkler irrigation systems in terms of reducing wind-induced water losses and reducing evaporation losses on the soil and plant surface. Another feature of MDIS is that the sprinkler heads on the systems (such as the liner and center pivot) can remain operational even when the drip irrigation system is installed. This allows the user to use both irrigation methods. In this study, the effect of MDIS and linear sprinkler irrigation method on sugar beet yield at different irrigation water levels will be revealed.

Keywords: MDIS, linear sprinkler, sugar beet, irrigation efficiency

Procedia PDF Downloads 99
1637 Investigating the Socio-ecological Impacts of Sea Level Rise on Coastal Rural Communities in Ghana

Authors: Benjamin Ankomah-Asare, Richard Adade

Abstract:

Sea level rise (SLR) poses a significant threat to coastal communities globally. Ghana has over the years implemented protective measures such as the construction of groynes and revetment to serve as barriers to sea waves in major cities and towns to prevent sea erosion and flooding. For vulnerable rural coastal communities, the planned retreat is often proposed; however, relocation costs are often underestimated as losses of future social and cultural value are not always adequately taken into account. Through a mixed-methods approach combining qualitative interviews, surveys, and spatial analysis, the study examined the experiences of coastal rural communities in Ghana and assess the effectiveness of relocation strategies in addressing the socio-economic and environmental challenges posed by sea level rise. The study revealed the devastating consequences of sea level rise on these communities, including increased flooding, erosion, and saltwater intrusion into freshwater sources. Moreover, it highlights the adaptive capacities within these communities and how factors such as infrastructure, economic activities, cultural heritage, and governance structures shape their resilience in the face of environmental change. While relocation can be an effective strategy in reducing the risks associated with sea level rise, the study recommends that proper implementation of this adaptation strategy can be achieved when coupled with community-led planning, participatory decision-making, and targeted support for vulnerable groups.

Keywords: sea level rise, relocation, socio-ecological impacts, rural communities

Procedia PDF Downloads 54
1636 Mitigation Measures for the Acid Mine Drainage Emanating from the Sabie Goldfield: Case Study of the Nestor Mine

Authors: Rudzani Lusunzi, Frans Waanders, Elvis Fosso-Kankeu, Robert Khashane Netshitungulwana

Abstract:

The Sabie Goldfield has a history of gold mining dating back more than a century. Acid mine drainage (AMD) from the Nestor mine tailings storage facility (MTSF) poses a serious threat to the nearby ecosystem, specifically the Sabie River system. This study aims at developing mitigation measures for the AMD emanating from the Nestor MTSF using materials from the Glynns Lydenburg MTSF. The Nestor MTSF (NM) and the Glynns Lydenburg MTSF (GM) each provided about 20 kg of bulk composite samples. Using samples from the Nestor MTSF and the Glynns Lydenburg MTSF, two mixtures were created. MIX-A is a mixture that contains 25% weight percent (GM) and 75% weight percent (NM). MIX-B is the name given to the second mixture, which contains 50% AN and 50% AG. The same static test, i.e., acid–base accounting (ABA), net acid generation (NAG), and acid buffering characteristics curve (ABCC) was used to estimate the acid-generating probabilities of samples NM and GM for MIX-A and MIX-B. Furthermore, the mineralogy of the Nestor MTSF samples consists of the primary acid-producing mineral pyrite as well as the secondary minerals ferricopiapite and jarosite, which are common in acidic conditions. The Glynns Lydenburg MTSF samples, on the other hand, contain primary acid-neutralizing minerals calcite and dolomite. Based on the assessment conducted, materials from the Glynns Lydenburg are capable of neutralizing AMD from Nestor MTSF. Therefore, the alkaline tailings materials from the Glynns Lydenburg MTSF can be used to rehabilitate the acidic Nestor MTSF.

Keywords: Nestor Mine, acid mine drainage, mitigation, Sabie River system

Procedia PDF Downloads 87
1635 Over Cracking in Furnace and Corrective Action by Computational Fluid Dynamics (CFD) Analysis

Authors: Mokhtari Karchegani Amir, Maboudi Samad, Azadi Reza, Dastanian Raoof

Abstract:

Marun's petrochemical cracking furnaces have a very comprehensive operating control system for combustion and related equipment, utilizing advanced instrument circuits. However, after several years of operation, numerous problems arose in the pyrolysis furnaces. A team of experts conducted an audit, revealing that the furnaces were over-designed, leading to excessive consumption of air and fuel. This issue was related to the burners' shutter settings, which had not been configured properly. The operations department had responded by increasing the induced draft fan speed and forcing the instrument switches to counteract the wind effect in the combustion chamber. Using Fluent and Gambit software, the furnaces were analyzed. The findings indicated that this situation elevated the convection part's temperature, causing uneven heat distribution inside the furnace. Consequently, this led to overheating in the convection section and excessive cracking within the coils in the radiation section. The increased convection temperature damaged convection parts and resulted in equipment blockages downstream of the furnaces due to the production of more coke and tar in the process. To address these issues, corrective actions were implemented. The excess air for burners and combustion chambers was properly set, resulting in improved efficiency, reduced emissions of environmentally harmful gases, prevention of creep in coils, decreased fuel consumption, and lower maintenance costs.

Keywords: furnace, coke, CFD analysis, over cracking

Procedia PDF Downloads 78
1634 The impact of Climate Change and Land use/land Cover Change (LUCC) on Carbon Storage in Arid and Semi-Arid Regions of China

Authors: Xia Fang

Abstract:

Arid and semiarid areas of China (ASAC) have experienced significant land-use/cover changes (LUCC), along with intensified climate change. However, LUCC and climate changes and their individual and interactive effects on carbon stocks have not yet been fully understood in the ASAC. This study analyses the carbon stocks in the ASAC during 1980 - 2020 using the specific arid ecosystem model (AEM), and investigates the effects of LUCC and climate change on carbon stock trends. The results indicate that in the past 41 years, the ASAC carbon pool experienced an overall growth trend, with an increase of 182.03 g C/m2. Climatic factors (+291.99 g C/m2), especially the increase in precipitation, were the main drivers of the carbon pool increase. LUCC decreased the carbon pool (-112.27 g C/m2), mainly due to the decrease in grassland area (-2.77%). The climate-induced carbon sinks were distributed in northern Xinjiang, on the Ordos Plateau, and in Northeast China, while the LUCC-induced carbon sinks mainly occurred on the Ordos Plateau and the North China Plain, resulting in a net decrease in carbon sequestration in these regions according to carbon pool measurements. The study revealed that the combination of climate variability, LUCC, and increasing atmospheric CO2 concentration resulted in an increase of approximately 182.03 g C/m2, which was mainly distributed in eastern Inner Mongolia and the western Qinghai-Tibet Plateau. Our findings are essential for improving theoretical guidance to protect the ecological environment, rationally plan land use, and understand the sustainable development of arid and semiarid zones.

Keywords: AEM, climate change, LUCC, carbon stocks

Procedia PDF Downloads 84
1633 Development of a Symbiotic Milk Chocolate Using Inulin and Bifidobacterium Lactis

Authors: Guity Karim, Valiollah Ayareh

Abstract:

Probiotic dairy products are those that contain biologically active components that may affect beneficially one or more target functions in the body, beyond their adequate nutritional effects. As far as chocolate milk is a popular dairy product in the country especially among children and youth, production of a symbiotic (probiotic + peribiotic) new product using chocolate milk, Bifidobacterium lactis (DSM, Netherland) and inulin (Bene, Belgium) would help to promote the nutritional and functional properties of this product. Bifidobacterium Lactis is used as a probiotic in a variety of foods, particularly dairy products like yogurt and as a probiotic bacterium has benefit effects on the human health. Inulin as a peribiotic agent is considered as functional food ingredient. Experimental studies have shown its use as bifidogenic agent. Chocolate milk with different percent of fat (1 and 2 percent), 6 % of sugar and 0.9 % cacao was made, sterilized (UHT) and supplemented with Bifidobacterium lactis and inulin (0.5 %) after cooling . A sample was made without inulin as a control. Bifidobacterium lactis population was enumerated at days 0, 4, 8 and 12 together with measurement of pH, acidity and viscosity of the samples. Also sensory property of the product was evaluated by a 15 panel testers. The number of live bacterial cells was maintained at the functional level of 106-108 cfu/ml after keeping for 12 days in refrigerated temperature (4°C). Coliforms were found to be absent in the products during the storage. Chocolate milk containing 1% fat and inulin has the best effect on the survival and number of B. lactis at day 8 and after that. Moreover, the addition of inulin did not affect the sensorial quality of the product. In this work, chocolate has been evaluated as a potential protective carrier for oral delivery of B. lactis and inulin.

Keywords: chocolate milk, synbiotic, bifidobacterium lactis, inulin

Procedia PDF Downloads 362
1632 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: photovoltaic solar wall, solar energy, passive ventilation, active ventilation

Procedia PDF Downloads 398
1631 Optimal Portfolio of Multi-service Provision based on Stochastic Model Predictive Control

Authors: Yifu Ding, Vijay Avinash, Malcolm McCulloch

Abstract:

As the proliferation of decentralized energy systems, the UK power system allows small-scale entities such as microgrids (MGs) to tender multiple energy services including energy arbitrage and frequency responses (FRs). However, its operation requires the balance between the uncertain renewable generations and loads in real-time and has to fulfill their provision requirements of contract services continuously during the time window agreed, otherwise it will be penalized for the under-delivered provision. To hedge against risks due to uncertainties and maximize the economic benefits, we propose a stochastic model predictive control (SMPC) framework to optimize its operation for the multi-service provision. Distinguished from previous works, we include a detailed economic-degradation model of the lithium-ion battery to quantify the costs of different service provisions, as well as accurately describe the changing dynamics of the battery. Considering a branch of load and generation scenarios and the battery aging, we formulate a risk-averse cost function using conditional value at risk (CVaR). It aims to achieve the maximum expected net revenue and avoids severe losses. The framework will be performed on a case study of a PV-battery grid-tied microgrid in the UK with real-life data. To highlight its performance, the framework will be compared with the case without the degradation model and the deterministic formulation.

Keywords: model predictive control (MPC), battery degradation, frequency response, microgrids

Procedia PDF Downloads 126
1630 Top-Down Construction Method in Concrete Structures: Advantages and Disadvantages of This Construction Method

Authors: Hadi Rouhi Belvirdi

Abstract:

The construction of underground structures using the traditional method, which begins with excavation and the implementation of the foundation of the underground structure, continues with the construction of the main structure from the ground up, and concludes with the completion of the final ceiling, is known as the Bottom-Up Method. In contrast to this method, there is an advanced technique called the Top-Down Method, which has practically replaced the traditional construction method in large projects in industrialized countries in recent years. Unlike the traditional approach, this method starts with the construction of surrounding walls, columns, and the final ceiling and is completed with the excavation and construction of the foundation of the underground structure. Some of the most significant advantages of this method include the elimination or minimization of formwork surfaces, the removal of temporary bracing during excavation, the creation of some traffic facilities during the construction of the structure, and the possibility of using it in limited and high-traffic urban spaces. Despite these numerous advantages, unfortunately, there is still insufficient awareness of this method in our country, to the extent that it can be confidently stated that most stakeholders in the construction industry are unaware of the existence of such a construction method. However, it can be utilized as a very important execution option alongside other conventional methods in the construction of underground structures. Therefore, due to the extensive practical capabilities of this method, this article aims to present a methodology for constructing underground structures based on the aforementioned advanced method to the scientific community of the country, examine the advantages and limitations of this method and their impacts on time and costs, and discuss its application in urban spaces. Finally, some underground structures executed in the Ahvaz urban rail, which are being implemented using this advanced method to the best of our best knowledge, will be introduced.

Keywords: top-down method, bottom-up method, underground structure, construction method

Procedia PDF Downloads 16
1629 Review on Crew Scheduling of Bus Transit: A Case Study in Kolkata

Authors: Sapan Tiwari, Namrata Ghosh

Abstract:

In urban mass transit, crew scheduling always plays a significant role. It deals with the formulation of work timetables for its staff so that an organization can meet the demand for its products or services. The efficient schedules of a specified timetable have an enormous impact on staff demand. It implies that an urban mass transit company's financial outcomes are strongly associated with planning operations in the region. The research aims to demonstrate the state of the crew scheduling studies and its practical implementation in mass transit businesses in metropolitan areas. First, there is a short overview of past studies in the field. Subsequently, the restrictions and problems with crew scheduling and some models, which have been developed to solve the related issues with their mathematical formulation, are defined. The comments are completed by a description of the solution opportunities provided by computer-aided scheduling program systems for operational use and exposures from urban mass transit organizations. Furthermore, Bus scheduling is performed using the Hungarian technique of problem-solving tasks and mathematical modeling. Afterward, the crew scheduling problem, which consists of developing duties using predefined tasks with set start and end times and places, is resolved. Each duty has to comply with a set line of work. The objective is to minimize a mixture of fixed expenses (number of duties) and varying costs. After the optimization of cost, the outcome of the research is that the same frequency can be provided with fewer buses and less workforce.

Keywords: crew scheduling, duty, optimization of cost, urban mass transit

Procedia PDF Downloads 152
1628 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: big data analysis, document classification, multi-category, text mining, topic analysis

Procedia PDF Downloads 274
1627 Health Burden of Disease Assessment for Minimizing Aflatoxin Exposure in Peanuts

Authors: Min-Pei Ling

Abstract:

Aflatoxin is a fungal secondary metabolite with high toxicity capable of contaminating various types of food crops. It has been identified as a Group 1 human carcinogen by the International Agency for Research on Cancer. Chronic aflatoxin exposure has caused a worldwide public food safety concern. Peanuts and peanut products are the major sources of aflatoxin exposure. Therefore, some reduction interventions have been developed to minimize contamination through the peanut production chain. The purpose of this study is to estimate the efficacy of interventions in reducing the health impact of hepatocellular carcinoma caused by aflatoxin contamination in peanuts. The estimated total disability-adjusted life-years (DALYs) was calculated using FDA-iRISK online software. Six aflatoxin reduction strategies were evaluated, including good agricultural practice (GAP), biocontrol, Purdue Improved Crop Storage packaging, basic processing, ozonolysis, and ultraviolet irradiation. The results indicated that basic processing could prevent huge public health loss of 4,079.7–21,833 total DALYs per year, which accounted for 39.6% of all decreased total DALYs. GAP and biocontrol were both effective strategies in the farm field, while the other three interventions were limited in reducing total DALYs. In conclusion, this study could help farmers, processing plants, and government policymakers to alleviate aflatoxin contamination issues in the peanut production chain.

Keywords: aflatoxin, health burden, disability-adjusted life-years, peanuts

Procedia PDF Downloads 135
1626 The Impact of Government Expenditure on Economic Growth: A Study of Asian Countries

Authors: K. P. K. S. Lahirushan, W. G. V. Gunasekara

Abstract:

Main purpose of this study is to identifying the impact of government expenditure on economic growth in Asian Countries. Consequently, Fist, objective is to analyze whether government expenditure causes economic growth in Asian countries vice versa and then scrutinizing long-run equilibrium relationship exists between them. The study completely based on secondary data. The methodology being quantitative that includes econometrical techniques of cointegration, panel fixed effects model and granger causality in the context of panel data of Asian countries; Singapore, Malaysia, Thailand, South Korea, Japan, China, Sri Lanka, India and Bhutan with 44 observations in each country, totaling to 396 observations from 1970 to 2013. The model used is the random effects panel OLS model. As with the above methodology, the study found the fascinating outcome. At first, empirical findings exhibit a momentous positive impact of government expenditure on Gross Domestic Production in Asian region. Secondly, government expenditure and economic growth indicate a long-run relationship in Asian countries. In conclusion, there is a unidirectional causality from economic growth to government expenditure and government expenditure to economic growth in Asian countries. Hence the study is validated that it is in line with the Keynesian theory and Wagner’s law as well. Consequently, it can be concluded that role of government would play a vital role in economic growth of Asian Countries .However; if government expenditure did not figure out with the economy’s needs it might be considerably inspiration the economy in a negative way so that society bears the costs.

Keywords: Asian countries, government expenditure, Keynesian theory, Wagner’s theory, random effects panel ols model

Procedia PDF Downloads 353
1625 Increasing Efficiency of Own Used Fuel Gas by “LOTION” Method in Generating Systems PT. Pertamina EP Cepu Donggi Matindok Field in Central Sulawesi Province, Indonesia

Authors: Ridwan Kiay Demak, Firmansyahrullah, Muchammad Sibro Mulis, Eko Tri Wasisto, Nixon Poltak Frederic, Agung Putu Andika, Lapo Ajis Kamamu, Muhammad Sobirin, Kornelius Eppang

Abstract:

PC Prove LSM successfully improved the efficiency of Own Used Fuel Gas with the "Lotion" method in the PT Pertamina EP Cepu Donggi Matindok Generating System. The innovation of using the "LOTION" (LOAD PRIORITY SELECTION) method in the generating system is modeling that can provide a priority qualification of main and non-main equipment to keep gas processing running even though it leaves 1 GTG operating. GTG operating system has been integrated, controlled, and monitored properly through PC programs and web-based access to answer Industry 4.0 problems. The results of these improvements have succeeded in making Donggi Matindok Field Production reach 98.77 MMSCFD and become a proper EMAS candidate in 2022-2023. Additional revenue from increasing the efficiency of the use of own used gas amounting to USD USD 5.06 Million per year and reducing operational costs from maintenance efficiency (ABO) due to saving running hours GTG amounted to USD 3.26 Million per year. Continuity of fuel gas availability for the GTG generation system can maintain the operational reliability of the plant, which is 3.833333 MMSCFD. And reduced gas emissions wasted to the environment by 33,810 tons of C02 eq per year.

Keywords: LOTION method, load priority selection, fuel gas efficiency, gas turbine generator, reduce emissions

Procedia PDF Downloads 63