Search results for: real anthropometric database
4451 The European Union: Considering Its Alleged Endangerment
Authors: Jesús Ulloa
Abstract:
The creation, rise, and consolidation of far right-wing, ultranationalist, and eurosceptic parties in Europe after the Second World War pose a real threat towards the disintegration of the European Union. Starting more than thirty years ago with Jean-Marie Le Pen's FN and Margaret Thatcher's policies, to Marine Le Pen's current FN and anti-immigration proposals along with Nigel Farage's UKIP and their intentions to leave the European Union, the progress of right-wing parties should be noted, taking into account that they may have very important differences within their postures but that they also reach common ground in certain areas. The actual disintegration of the EU would represent an enormous failure of the new liberal world order. Through this essay, the roots of this political parties will be analyzed and the conclusion of whether the disintegration may become a reality or if the principles of cooperation and unity will prevail will be answered.Keywords: eurosceptic, ultarnationalist, right-wing, European Union
Procedia PDF Downloads 5854450 Sociocultural and Critical Approach for Summer Study Abroad Program in Higher Education
Authors: Magda Silva
Abstract:
This paper presents the empirical and the theoretical principles associated with the Duke in Brazil Summer Program. Using a sociocultural model and critical theory, this study abroad maximizes students’ ability to enrich language competence, intercultural skills, and critical thinking. The fourteen-year implementation of this project demonstrates the global importance of foreign language teaching as the program unfolds into real life scenarios within the cultures of distinct regions of Brazil; Cosmopolitan Rio, in the southeast, and rural Belém, northern Amazon region.Keywords: study abroad, critical thinking, sociocultural theory, foreign language, empirical, theoretical
Procedia PDF Downloads 4114449 Top-K Shortest Distance as a Similarity Measure
Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard
Abstract:
Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.Keywords: graph matching, link prediction, shortest path, similarity
Procedia PDF Downloads 3614448 Integrated Formulation of Project Scheduling and Material Procurement Considering Different Discount Options
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
On-time availability of materials in the construction sites plays an outstanding role in successful achievement of project’s deliverables. Thus, this paper has investigated formulation of project scheduling and material procurement at the same time, by a mixed-integer programming model, aiming to minimize/maximize penalty/reward to deliver the project and minimize material holding, ordering, and procurement costs, respectively. We have taken both all-units and incremental discount possibilities into consideration to address more flexibility from the procurement side with regard to real world conditions. Finally, the applicability and efficiency of the mathematical model is tested by different numerical examples.Keywords: discount strategies, material purchasing, project planning, project scheduling
Procedia PDF Downloads 2644447 Temporal Case-Based Reasoning System for Automatic Parking Complex
Authors: Alexander P. Eremeev, Ivan E. Kurilenko, Pavel R. Varshavskiy
Abstract:
In this paper, the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR.Keywords: analogous reasoning, case-based reasoning, intelligent decision support systems, temporal reasoning
Procedia PDF Downloads 5304446 SFO-ECRSEP: Sensor Field Optimızation Based Ecrsep For Heterogeneous WSNS
Authors: Gagandeep Singh
Abstract:
The sensor field optimization is a serious issue in WSNs and has been ignored by many researchers. As in numerous real-time sensing fields the sensor nodes on the corners i.e. on the segment boundaries will become lifeless early because no extraordinary safety is presented for them. Accordingly, in this research work the central objective is on the segment based optimization by separating the sensor field between advance and normal segments. The inspiration at the back this sensor field optimization is to extend the time spam when the first sensor node dies. For the reason that in normal sensor nodes which were exist on the borders may become lifeless early because the space among them and the base station is more so they consume more power so at last will become lifeless soon.Keywords: WSNs, ECRSEP, SEP, field optimization, energy
Procedia PDF Downloads 3014445 A Finite Memory Residual Generation Filter for Fault Detection
Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang
Abstract:
In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults.Keywords: residual generation filter, finite memory structure, kalman filter, fast detection
Procedia PDF Downloads 6994444 An Improved GA to Address Integrated Formulation of Project Scheduling and Material Ordering with Discount Options
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of the resource constraint project scheduling and material ordering problems have received significant attention within the last decades. Hence, the issue has been investigated here with the aim to minimize total project costs. Furthermore, the presented model considers different discount options in order to approach the real world conditions. The incorporated alternatives consist of all-unit and incremental discount strategies. On the other hand, a modified version of the genetic algorithm is applied in order to solve the model for larger sizes, in particular. Finally, the applicability and efficiency of the given model is tested by different numerical instances.Keywords: genetic algorithm, material ordering, project management, project scheduling
Procedia PDF Downloads 3034443 Automated Digital Mammogram Segmentation Using Dispersed Region Growing and Pectoral Muscle Sliding Window Algorithm
Authors: Ayush Shrivastava, Arpit Chaudhary, Devang Kulshreshtha, Vibhav Prakash Singh, Rajeev Srivastava
Abstract:
Early diagnosis of breast cancer can improve the survival rate by detecting cancer at an early stage. Breast region segmentation is an essential step in the analysis of digital mammograms. Accurate image segmentation leads to better detection of cancer. It aims at separating out Region of Interest (ROI) from rest of the image. The procedure begins with removal of labels, annotations and tags from the mammographic image using morphological opening method. Pectoral Muscle Sliding Window Algorithm (PMSWA) is used for removal of pectoral muscle from mammograms which is necessary as the intensity values of pectoral muscles are similar to that of ROI which makes it difficult to separate out. After removing the pectoral muscle, Dispersed Region Growing Algorithm (DRGA) is used for segmentation of mammogram which disperses seeds in different regions instead of a single bright region. To demonstrate the validity of our segmentation method, 322 mammographic images from Mammographic Image Analysis Society (MIAS) database are used. The dataset contains medio-lateral oblique (MLO) view of mammograms. Experimental results on MIAS dataset show the effectiveness of our proposed method.Keywords: CAD, dispersed region growing algorithm (DRGA), image segmentation, mammography, pectoral muscle sliding window algorithm (PMSWA)
Procedia PDF Downloads 3144442 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform
Authors: Sadam Alwadi
Abstract:
Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.Keywords: outlier values, imputation, stock market data, detecting, estimation
Procedia PDF Downloads 844441 Evaluation of Robot Application in Hospitality
Authors: Lina Zhong, Sunny Sun, Rob Law
Abstract:
Artificial intelligence has been developing rapidly. Previous studies have evaluated hotel technology either from an employee or consumer perspective. However, impacts, which mainly include the social and economic impacts of hotel robots, are unknown as they are newly introduced. To bridge the aforementioned research gap, this study evaluates hotel robots from contextual, diagnostic, evaluative, and strategic aspects using framework analysis as a basis to assist hotel managers in real-time hotel marketing strategy management, adjustment and revenue achievement. Findings show that, from a consumer perspective, the overall acceptance of hotel robots is low. The main implication is that the cost of hotel robots should be carefully estimated, and the investment should be made based on phases.Keywords: application, evaluation, framework analysis, hotel robot
Procedia PDF Downloads 1714440 Antimicrobial Activity of Ethnobotanically Selected Medicinal Plants Used in the Treatment of Sexually Transmitted Diseases
Authors: Thilivhali Emmanuel Tshikalange, Phiwokuhle Mamba
Abstract:
Ten medicinal plants used traditionally in the treatment of sexually transmitted diseases (STDs) and urinary tract infections (UTIs) were selected from an ethnobotanical database developed in Mpumalanga. The plants were investigated for their antimicrobial activity against five bacterial strains (Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Neisseria gonorrhoeae and Staphylococcus aureus) and one fungal strain (Candida albicans). Eight of the plants inhibited the growth of all microorganisms at a concentration range of 0.4 mg/ml to 12.5 mg/ml. Acacia karroo showed the most promising antimicrobial activity, with a minimum inhibitory concentration (MIC) of 0.4 mg/ml on Staphylococcus aureus and 0.8 mg/ml on Neisseria gonorrhoeae. All ten plants were further investigated for their antioxidant activities using the DPPH scavenging method. Acacia karroo and Rhoicissus tridentata subsp. cuneifolia showed good antioxidant activity with IC50 values of 0.83 mg/ml and 0.06 mg/ml, respectively. The toxicity of plants was determined using the XTT reduction method against Vero cells. None of the ten plants showed toxicity on the cells. The obtained results confirmed that Acacia karroo and possibly Rhoicissus tridentata subsp. cuneifolia have the potential of being used as antimicrobial agents in the treatment of STDs and UTIs. These results support and validate traditional use of medicinal plants studied.Keywords: antimicrobial, antioxidant, Neisseria gonorrhoeae, sexually transmitted diseases
Procedia PDF Downloads 3374439 Comparison of Nutritional Status of Asthmatic vs Non-asthmatic Adults
Authors: Ayesha Mushtaq
Abstract:
Asthma is a pulmonary disease in which blockade of the airway takes place due to inflammation as a response to certain allergens. Breathing troubles, cough, and dyspnea are one of the few symptoms. Several studies have indicated a significant effect on asthma due to changes in dietary routines. Certain food items, such as oily foods and other materials, are known to cause an increase in the symptoms of asthma. Low dietary intake of fruits and vegetables may be important in relation to asthma prevalence. The objective of this study is to assess and compare the nutritional status of asthmatic and non-asthmatic patients. The significance of this study lies in the factor that it will help nutritionists to arrange a feasible dietary routine for asthmatic patients. This research was conducted at the Pulmonology Department of the Pakistan Institute of Medical Science Islamabad. About thirty hundred thirty-four million people are affected by asthma worldwide. Pakistan is on the verge of being an uplifted urban population and asthma cases are increasingly high these days. Several studies suggest an increase in the Asthmatic patient population due to improper diet. Other studies conducted at different institutions have conducted research on similar topics. These studies have suggested that there is a substantial alteration in the nutritional status of asthmatic and non-Asthmatic patients. This is a cross-sectional study aimed at assessing the nutritious standing of Asthmatic and non-asthmatic patients. This research took place at the Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan. The research included asthmatic and non-asthmatic patients coming to the pulmonology department clinic at the Pakistan Institute of Medical Sciences (PIMS). These patients were aged between 20-60 years. A questionnaire was developed for these patients to estimate their dietary plans in these patients. The methodology included four sections. The first section was the Socio-Demographic profile, which included age, gender, monthly income and occupation. The next section was anthropometric measurements which included the weight, height and body mass index (BMI) of the individual. The next section, section three, was about the biochemical attributes, such as for biochemical profiling, pulmonary function testing (PFT) was performed. In the next section, Dietary habits, which were assessed by using a food frequency questionnaire (FFQ) through food habits and consumption pattern, was assessed. The next section life style data, in which the person's level of physical activity, sleep and smoking habits were assessed. The next section was statistical analysis. All the data obtained from the study were statistically analyzed and assessed. Most of the asthma Patients were females, with weight more than normal or even obese. Body Mass Index (BMI) was higher in asthma Patients than those in non-Asthmatic ones. When the nutritional Values were assessed, we came to know that these patients were low on certain nutrients and their diet included more junk and oily food than healthy vegetables and fruits. Beverages intake was also included in the same assessment. It is evident from this study that nutritional status has a contributory effect on asthma. So, patients on the verge of developing asthma or those who have developed asthma should focus on their diet, maintain good eating habits and take healthy diets, including fruits and vegetables rather than oily foods. Proper sleep may also contribute to the control of asthma.Keywords: NUTRI, BMI, asthma, food
Procedia PDF Downloads 744438 Load Flow Analysis of 5-IEEE Bus Test System Using Matlab
Abstract:
A power flow analysis is a steady-state study of power grid. The goal of power flow analysis is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions. In this paper, the load flow analysis program by Newton Raphson polar coordinates Method is developed. The effectiveness of the developed program is evaluated through a simple 5-IEEE test system bus by simulations using MATLAB.Keywords: power flow analysis, Newton Raphson polar coordinates method
Procedia PDF Downloads 6054437 Quadrotor in Horizontal Motion Control and Maneuverability
Authors: Ali Oveysi Sarabi
Abstract:
In this paper, controller design for the attitude and altitude dynamics of an outdoor quadrotor, which is constructed with low cost actuators and drivers, is aimed. Before designing the controller, the quadrotor is modeled mathematically in Matlab-Simulink environment. To control attitude dynamics, linear quadratic regulator (LQR) based controllers are designed, simulated and applied to the system. Two different proportional-integral-derivative action (PID) controllers are designed to control yaw and altitude dynamics. During the implementation of the designed controllers, different test setups are used. Designed controllers are implemented and tuned on the real system using xPC Target. Tests show that these basic control structures are successful to control the attitude and altitude dynamics.Keywords: helicopter balance, flight dynamics, autonomous landing, control robotics
Procedia PDF Downloads 5144436 Radiologic Assessment of Orbital Dimensions Among Omani Subjects: Computed Tomography Imaging-Based Study
Authors: Marwa Al-Subhi, Eiman Al-Ajmi, Mallak Al-Maamari, Humood Al-Dhuhli, Srinivasa Rao
Abstract:
The orbit and its contents are affected by various pathologies and craniofacial anomalies. Sound knowledge of the normal orbital dimensions is clinically essential for successful surgical outcomes and also in the field of forensic anthropology. Racial, ethnic, and regional variations in the orbital dimensions have been reported. This study sought to determine the orbital dimensions of Omani subjects who had been referred for computed tomography (CT) images at a tertiary care hospital. A total of 273 patients’ CT images were evaluated retrospectively by using an electronic medical records database. The orbital dimensions were recorded using both axial and sagittal planes of CT images. The mean orbital index (OI) was found to be 83.25±4.83 and the prevalent orbital type was categorized as mesoseme. The mean orbital index was 83.34±5.05 and 83.16±4.57 in males and females, respectively, with their difference being statistically not significant (p=0.76). A statistically significant association was observed between the right and left orbits with regard to horizontal distance (p<0.05) and vertical distance (p<0.01) of orbit and OI (p<0.05). No significant difference between the OI and age groups was observed in both males and females. The mean interorbital distance and interzygomatic distance were found to be 19.45±1.52 mm and 95.59±4.08 mm, respectively. Both of these parameters were significantly higher in males (p<0.05). Results of the present study provide reference values of orbital dimensions in Omani subjects. The prevalent orbital type of Omani subjects is mesoseme, which is a hallmark of the white race.Keywords: orbit, orbital index, mesoseme, ethnicity, variation
Procedia PDF Downloads 1524435 Executive Function in Youth With ADHD and ASD: A Systematic Review and Meta-analysis
Authors: Parker Townes, Prabdeep Panesar, Chunlin Liu, Soo Youn Lee, Dan Devoe, Paul D. Arnold, Jennifer Crosbie, Russell Schachar
Abstract:
Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are impairing childhood neurodevelopmental disorders with problems in executive functions. Executive functions are higher-level mental processes essential for daily functioning and goal attainment. There is genetic and neural overlap between ADHD and ASD. The aim of this meta-analysis was to evaluate if pediatric ASD and ADHD have distinct executive function profiles. This review was completed following Cochrane guidelines. Fifty-eight articles were identified through database searching, followed by a blinded screening in duplicate. A meta-analysis was performed for all task performance metrics evaluated by at least two articles. Forty-five metrics from 24 individual tasks underwent analysis. No differences were found between youth with ASD and ADHD in any domain under direct comparison. However, individuals with ASD and ADHD exhibited deficient attention, flexibility, visuospatial abilities, working memory, processing speed, and response inhibition compared to controls. No deficits in planning were noted in either disorder. Only 11 studies included a group with comorbid ASD+ADHD, making it difficult to determine whether common executive function deficits are a function of comorbidity. Further research is needed to determine if comorbidity accounts for the apparent commonality in executive function between ASD and ADHD.Keywords: autism spectrum disorder, ADHD, neurocognition, executive function, youth
Procedia PDF Downloads 794434 Technical and Economic Potential of Partial Electrification of Railway Lines
Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong
Abstract:
Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.Keywords: electrification, hybrid, railway, storage
Procedia PDF Downloads 4324433 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 2154432 Advanced Combinatorial Method for Solving Complex Fault Trees
Authors: José de Jesús Rivero Oliva, Jesús Salomón Llanes, Manuel Perdomo Ojeda, Antonio Torres Valle
Abstract:
Combinatorial explosion is a common problem to both predominant methods for solving fault trees: Minimal Cut Set (MCS) approach and Binary Decision Diagram (BDD). High memory consumption impedes the complete solution of very complex fault trees. Only approximated non-conservative solutions are possible in these cases using truncation or other simplification techniques. The paper proposes a method (CSolv+) for solving complex fault trees, without any possibility of combinatorial explosion. Each individual MCS is immediately discarded after its contribution to the basic events importance measures and the Top gate Upper Bound Probability (TUBP) has been accounted. An estimation of the Top gate Exact Probability (TEP) is also provided. Therefore, running in a computer cluster, CSolv+ will guarantee the complete solution of complex fault trees. It was successfully applied to 40 fault trees from the Aralia fault trees database, performing the evaluation of the top gate probability, the 1000 Significant MCSs (SMCS), and the Fussell-Vesely, RRW and RAW importance measures for all basic events. The high complexity fault tree nus9601 was solved with truncation probabilities from 10-²¹ to 10-²⁷ just to limit the execution time. The solution corresponding to 10-²⁷ evaluated 3.530.592.796 MCSs in 3 hours and 15 minutes.Keywords: system reliability analysis, probabilistic risk assessment, fault tree analysis, basic events importance measures
Procedia PDF Downloads 474431 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case
Authors: Lukas Reznak, Maria Reznakova
Abstract:
Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany
Procedia PDF Downloads 2494430 Breath Ethanol Imaging System Using Real Time Biochemical Luminescence for Evaluation of Alcohol Metabolic Capacity
Authors: Xin Wang, Munkbayar Munkhjargal, Kumiko Miyajima, Takahiro Arakawa, Kohji Mitsubayashi
Abstract:
The measurement of gaseous ethanol plays an important role of evaluation of alcohol metabolic capacity in clinical and forensic analysis. A 2-dimensional visualization system for gaseous ethanol was constructed and tested in visualization of breath and transdermal alcohol. We demonstrated breath ethanol measurement using developed high-sensitive visualization system. The concentration of breath ethanol calculated with the imaging signal was significantly different between the volunteer subjects of ALDH2 (+) and (-).Keywords: breath ethanol, ethnaol imaging, biochemical luminescence, alcohol metabolism
Procedia PDF Downloads 3524429 The Modelling of Real Time Series Data
Authors: Valeria Bondarenko
Abstract:
We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.Keywords: mathematical model, random process, Wiener process, fractional Brownian motion
Procedia PDF Downloads 3594428 A Mathematical-Based Formulation of EEG Fluctuations
Authors: Razi Khalafi
Abstract:
Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.Keywords: Brain, stimuli, partial differential equation, response, eeg signal
Procedia PDF Downloads 4354427 A Development of Science Instructional Model Based on Stem Education Approach to Enhance Scientific Mind and Problem Solving Skills for Primary Students
Authors: Prasita Sooksamran, Wareerat Kaewurai
Abstract:
STEM is an integrated teaching approach promoted by the Ministry of Education in Thailand. STEM Education is an integrated approach to teaching Science, Technology, Engineering, and Mathematics. It has been questioned by Thai teachers on the grounds of how to integrate STEM into the classroom. Therefore, the main objective of this study is to develop a science instructional model based on the STEM approach to enhance scientific mind and problem-solving skills for primary students. This study is participatory action research, and follows the following steps: 1) develop a model 2) seek the advice of experts regarding the teaching model. Developing the instructional model began with the collection and synthesis of information from relevant documents, related research and other sources in order to create prototype instructional model. 2) The examination of the validity and relevance of instructional model by a panel of nine experts. The findings were as follows: 1. The developed instructional model comprised of principles, objective, content, operational procedures and learning evaluation. There were 4 principles: 1) Learning based on the natural curiosity of primary school level children leading to knowledge inquiry, understanding and knowledge construction, 2) Learning based on the interrelation between people and environment, 3) Learning that is based on concrete learning experiences, exploration and the seeking of knowledge, 4) Learning based on the self-construction of knowledge, creativity, innovation and 5) relating their findings to real life and the solving of real-life problems. The objective of this construction model is to enhance scientific mind and problem-solving skills. Children will be evaluated according to their achievements. Lesson content is based on science as a core subject which is integrated with technology and mathematics at grade 6 level according to The Basic Education Core Curriculum 2008 guidelines. The operational procedures consisted of 6 steps: 1) Curiosity 2) Collection of data 3) Collaborative planning 4) Creativity and Innovation 5) Criticism and 6) Communication and Service. The learning evaluation is an authentic assessment based on continuous evaluation of all the material taught. 2. The experts agreed that the Science Instructional Model based on the STEM Education Approach had an excellent level of validity and relevance (4.67 S.D. 0.50).Keywords: instructional model, STEM education, scientific mind, problem solving
Procedia PDF Downloads 1934426 Application of De Novo Programming Approach for Optimizing the Business Process
Authors: Z. Babic, I. Veza, A. Balic, M. Crnjac
Abstract:
The linear programming model is sometimes difficult to apply in real business situations due to its assumption of proportionality. This paper shows an example of how to use De Novo programming approach instead of linear programming. In the De Novo programming, resources are not fixed like in linear programming but resource quantities depend only on available budget. Budget is a new, important element of the De Novo approach. Two different production situations are presented: increasing costs and quantity discounts of raw materials. The focus of this paper is on advantages of the De Novo approach in the optimization of production plan for production company which produces souvenirs made from famous stone from the island of Brac, one of the greatest islands from Croatia.Keywords: business process, De Novo programming, optimizing, production
Procedia PDF Downloads 2234425 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana
Authors: Gautier Viaud, Paul-Henry Cournède
Abstract:
Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models
Procedia PDF Downloads 3044424 Characterization of Solanum tuberosum Ammonium Transporter Gene Using Bioinformatics Approach
Authors: Adewole Tomiwa Adetunji, Francis Bayo Lewu, Richard Mundembe
Abstract:
Plants require nitrogen (N) to support desired production levels. There is a need for better understanding of N transport mechanism in order to improve N assimilation by plant root. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which N is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was amplified, sequenced and characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design 976 base pairs AMT1-specific primers which include forward primer 5’- GCCATCGCCGCCGCCGG-3’ and reverse primer 5’-GGGTCAGATCCATACCCGC-3’. These primers were used to amplify the Solanum tuberosum AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family due to the clade and high similarity it shared with other plant AMT1 genes. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1, and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th-10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport.Keywords: ammonium transporter, bioinformatics, nitrogen, primers, Solanum tuberosum
Procedia PDF Downloads 2304423 Numerical Calculation of Heat Transfer in Water Heater
Authors: Michal Spilacek, Martin Lisy, Marek Balas, Zdenek Skala
Abstract:
This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation, and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. Results show that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.Keywords: heat exchanger, heat transfer rate, numerical calculation, thermal images
Procedia PDF Downloads 6174422 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction
Procedia PDF Downloads 533