Search results for: modified simplex algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5895

Search results for: modified simplex algorithm

3345 Cooperative Agents to Prevent and Mitigate Distributed Denial of Service Attacks of Internet of Things Devices in Transportation Systems

Authors: Borhan Marzougui

Abstract:

Road and Transport Authority (RTA) is moving ahead with the implementation of the leader’s vision in exploring all avenues that may bring better security and safety services to the community. Smart transport means using smart technologies such as IoT (Internet of Things). This technology continues to affirm its important role in the context of Information and Transportation Systems. In fact, IoT is a network of Internet-connected objects able to collect and exchange different data using embedded sensors. With the growth of IoT, Distributed Denial of Service (DDoS) attacks is also growing exponentially. DDoS attacks are the major and a real threat to various transportation services. Currently, the defense mechanisms are mainly passive in nature, and there is a need to develop a smart technique to handle them. In fact, new IoT devices are being used into a botnet for DDoS attackers to accumulate for attacker purposes. The aim of this paper is to provide a relevant understanding of dangerous types of DDoS attack related to IoT and to provide valuable guidance for the future IoT security method. Our methodology is based on development of the distributed algorithm. This algorithm manipulates dedicated intelligent and cooperative agents to prevent and to mitigate DDOS attacks. The proposed technique ensure a preventive action when a malicious packets start to be distributed through the connected node (Network of IoT devices). In addition, the devices such as camera and radio frequency identification (RFID) are connected within the secured network, and the data generated by it are analyzed in real time by intelligent and cooperative agents. The proposed security system is based on a multi-agent system. The obtained result has shown a significant reduction of a number of infected devices and enhanced the capabilities of different security dispositives.

Keywords: IoT, DDoS, attacks, botnet, security, agents

Procedia PDF Downloads 146
3344 An Investigation Enhancing E-Voting Application Performance

Authors: Aditya Verma

Abstract:

E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.

Keywords: blockchain, parallel bft, consensus algorithms, performance

Procedia PDF Downloads 168
3343 Structural, Electronic and Optical Properties of LiₓNa1-ₓH for Hydrogen Storage

Authors: B. Bahloul

Abstract:

This study investigates the structural, electronic, and optical properties of LiH and NaH compounds, as well as their ternary mixed crystals LiₓNa1-ₓH, adopting a face-centered cubic structure with space group Fm-3m (number 225). The structural and electronic characteristics are examined using density functional theory (DFT), while empirical methods, specifically the modified Moss relation, are employed for analyzing optical properties. The exchange-correlation potential is determined through the generalized gradient approximation (PBEsol-GGA) within the density functional theory (DFT) framework, utilizing the projected augmented wave pseudopotentials (PAW) approach. The Quantum Espresso code is employed for conducting these calculations. The calculated lattice parameters at equilibrium volume and the bulk modulus for x=0 and x=1 exhibit good agreement with existing literature data. Additionally, the LiₓNa1-ₓH alloys are identified as having a direct band gap.

Keywords: DFT, structural, electronic, optical properties

Procedia PDF Downloads 74
3342 Measuring Energy Efficiency Performance of Mena Countries

Authors: Azam Mohammadbagheri, Bahram Fathi

Abstract:

DEA has become a very popular method of performance measure, but it still suffers from some shortcomings. One of these shortcomings is the issue of having multiple optimal solutions to weights for efficient DMUs. The cross efficiency evaluation as an extension of DEA is proposed to avoid this problem. Lam (2010) is also proposed a mixed-integer linear programming formulation based on linear discriminate analysis and super efficiency method (MILP model) to avoid having multiple optimal solutions to weights. In this study, we modified MILP model to determine more suitable weight sets and also evaluate the energy efficiency of MENA countries as an application of the proposed model.

Keywords: data envelopment analysis, discriminate analysis, cross efficiency, MILP model

Procedia PDF Downloads 688
3341 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 218
3340 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 68
3339 Investigation of the Usability of Biochars Obtained from Olive Pomace and Smashed Olive Seeds as Additives for Bituminous Binders

Authors: Muhammed Ertugrul Celoglu, Beyza Furtana, Mehmet Yilmaz, Baha Vural Kok

Abstract:

Biomass, which is considered to be one of the largest renewable energy sources in the world, has a potential to be utilized as a bitumen additive after it is processed by a wide variety of thermochemical methods. Furthermore, biomasses are renewable in short amounts of time, and they possess a hydrocarbon structure. These characteristics of biomass promote their usability as additives. One of the most common ways to create materials with significant economic values from biomasses is the processes of pyrolysis. Pyrolysis is defined as the process of an organic matter’s thermochemical degradation (carbonization) at a high temperature and in an anaerobic environment. The resultant liquid substance at the end of the pyrolysis is defined as bio-oil, whereas the resultant solid substance is defined as biochar. Olive pomace is the resultant mildly oily pulp with seeds after olive is pressed and its oil is extracted. It is a significant source of biomass as the waste of olive oil factories. Because olive pomace is waste material, it could create problems just as other waste unless there are appropriate and acceptable areas of utilization. The waste material, which is generated in large amounts, is generally used as fuel and fertilizer. Generally, additive materials are used in order to improve the properties of bituminous binders, and these are usually expensive materials, which are produced chemically. The aim of this study is to investigate the usability of biochars obtained after subjecting olive pomace and smashed olive seeds, which are considered as waste materials, to pyrolysis as additives in bitumen modification. In this way, various ways of use will be provided for waste material, providing both economic and environmental benefits. In this study, olive pomace and smashed olive seeds were used as sources of biomass. Initially, both materials were ground and processed through a No.50 sieve. Both of the sieved materials were subjected to pyrolysis (carbonization) at 400 ℃. Following the process of pyrolysis, bio-oil and biochar were obtained. The obtained biochars were added to B160/220 grade pure bitumen at 10% and 15% rates and modified bitumens were obtained by mixing them in high shear mixtures at 180 ℃ for 1 hour at 2000 rpm. Pure bitumen and four different types of bitumen obtained as a result of the modifications were tested with penetration, softening point, rotational viscometer, and dynamic shear rheometer, evaluating the effects of additives and the ratios of additives. According to the test results obtained, both biochar modifications at both ratios provided improvements in the performance of pure bitumen. In the comparison of the test results of the binders modified with the biochars of olive pomace and smashed olive seed, it was revealed that there was no notable difference in their performances.

Keywords: bituminous binders, biochar, biomass, olive pomace, pomace, pyrolysis

Procedia PDF Downloads 134
3338 Modified DNA as a Base Material for Nonlinear Optics

Authors: Ewelina Nowak, Anna Wisla-Swider

Abstract:

Deoxyribonucleic acid (DNA) is a biomolecule which exhibits an electro-optic properties. These features are related with structure of double-stranded helix. Modification of DNA with ionic liquids allows intensify these properties. The aim of our study was synthesis of ionic liquids that are used the formation of DNA-surfactant complexes in order to obtain new materials with potential application for nonlinear optics. Complexes were achieved through the ion exchange reactions of carbazole-based and imidazole-based ionic liquids with H+ ions from salmon DNA. To examination the properties of obtained complexes DNA-ionic liquids there were investigated using circular dichroism (CD), UV-Vis spectra and infrared spectroscopy (IR). Additionally, the resulting DNA-surfactant complexes were characterized in terms of solubility in common organic solvents and water.

Keywords: deoxyribonucleic acid, biomolecule, carbazole, imidazole, ionic liquids, ion exchange reactions

Procedia PDF Downloads 467
3337 Design, Analysis and Obstacle Avoidance Control of an Electric Wheelchair with Sit-Sleep-Seat Elevation Functions

Authors: Waleed Ahmed, Huang Xiaohua, Wilayat Ali

Abstract:

The wheelchair users are generally exposed to physical and psychological health problems, e.g., pressure sores and pain in the hip joint, associated with seating posture or being inactive in a wheelchair for a long time. Reclining Wheelchair with back, thigh, and leg adjustment helps in daily life activities and health preservation. The seat elevating function of an electric wheelchair allows the user (lower limb amputation) to reach different heights. An electric wheelchair is expected to ease the lives of the elderly and disable people by giving them mobility support and decreasing the percentage of accidents caused by users’ narrow sight or joystick operation errors. Thus, this paper proposed the design, analysis and obstacle avoidance control of an electric wheelchair with sit-sleep-seat elevation functions. A 3D model of a wheelchair is designed in SolidWorks that was later used for multi-body dynamic (MBD) analysis and to verify driving control system. The control system uses the fuzzy algorithm to avoid the obstacle by getting information in the form of distance from the ultrasonic sensor and user-specified direction from the joystick’s operation. The proposed fuzzy driving control system focuses on the direction and velocity of the wheelchair. The wheelchair model has been examined and proven in MSC Adams (Automated Dynamic Analysis of Mechanical Systems). The designed fuzzy control algorithm is implemented on Gazebo robotic 3D simulator using Robotic Operating System (ROS) middleware. The proposed wheelchair design enhanced mobility and quality of life by improving the user’s functional capabilities. Simulation results verify the non-accidental behavior of the electric wheelchair.

Keywords: fuzzy logic control, joystick, multi body dynamics, obstacle avoidance, scissor mechanism, sensor

Procedia PDF Downloads 129
3336 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.

Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark

Procedia PDF Downloads 81
3335 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function

Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio

Abstract:

Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).

Keywords: algorithm, diabetes, laboratory medicine, non-invasive

Procedia PDF Downloads 36
3334 A Trends Analysis of Yatch Simulator

Authors: Jae-Neung Lee, Keun-Chang Kwak

Abstract:

This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding.

Keywords: yacht simulator, simulator, trends analysis, SIFT

Procedia PDF Downloads 434
3333 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 110
3332 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning

Authors: Richard O’Riordan, Saritha Unnikrishnan

Abstract:

Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.

Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection

Procedia PDF Downloads 107
3331 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: delayed systems, fuzzy immune PID, optimization, Smith predictor

Procedia PDF Downloads 436
3330 Polyacrylate Modified Copper Nanoparticles with Controlled Size

Authors: Robert Prucek, Aleš Panáček, Jan Filip, Libor Kvítek, Radek Zbořil

Abstract:

The preparation of Cu nanoparticles (NPs) through the reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate with a molecular weight of 1200 is reported. Cu NPs were synthesized at a concentration of copper salt equal to 2.5, 5, and 10 mM, and at a molar ratio of copper ions and monomeric unit of polyacrylate equal to 1:2. The as-prepared Cu NPs have diameters of about 2.5–3 nm for copper concentrations of 2.5 and 5 mM, and 6 nm for copper concentration of 10 mM. Depending on the copper salt concentration and concentration of additionally added polyacrylate to Cu particle dispersion, primarily formed NPs grow through the process of aggregation and/or coalescence into clusters and/or particles with a diameter between 20–100 nm. The amount of additionally added sodium polyacrylate influences the stability of Cu particles against air oxidation. The catalytic efficiency of the prepared Cu particles for the reduction of 4-nitrophenol is discussed.

Keywords: copper, nanoparticles, sodium polyacrylate, catalyst, 4-nitrophenol

Procedia PDF Downloads 279
3329 Guidance on Writing Operation Notes in Ophthalmic Surgeries

Authors: Wasse Uddin Ahmed Saleh, Nawreenbinte Anwar

Abstract:

A well-written operating note is crucial as a teaching tool for providing patients with high-quality medical care and fending off medico-legal claims. In this review article, some adjustments have been advised to the operative note guidelines by the Royal College of Surgeons (RCS) for different methods of ocular anesthesia and ophthalmic procedures like cataract surgeries, kerato-refractive surgeries, glaucoma surgeries, oculoplastic surgeries, etc. Some modifications of the WHO Surgical Safety Checklist have also been mentioned, including pre-operative responsibilities of the nurses, operative assistants and operating ophthalmologists. It has become essential to assemble globally accepted structured operative note guidelines modified for each ocular surgery.

Keywords: ocular surgeries, operation notes, cataract surgery, kerato-refractive surgery, Oculoplastic surgeries, guidelines

Procedia PDF Downloads 138
3328 Molecular Analysis of Somaclonal Variation in Tissue Culture Derived Bananas Using MSAP and SSR Marker

Authors: Emma K. Sales, Nilda G. Butardo

Abstract:

The project was undertaken to determine the effects of modified tissue culture protocols e.g. age of culture and hormone levels (2,4-D) in generating somaclonal variation. Moreover, the utility of molecular markers (SSR and MSAP) in sorting off types/somaclones were investigated. Results show that somaclonal variation is in effect due to prolonged subculture and high 2,4-D concentration. The resultant variation was observed to be due to high level of methylation events specifically cytosine methylation either at the internal or external cytosine and was identified by methylation sensitive amplification polymorphism (MSAP). Simple sequence repeats (SSR) on the other hand, was able to associate a marker to a trait of interest. These therefore, show that molecular markers can be an important tool in sorting out variation/mutants at an early stage.

Keywords: methylation, MSAP, somaclones, SSR, subculture, 2, 4-D

Procedia PDF Downloads 301
3327 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices

Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese

Abstract:

Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.

Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis

Procedia PDF Downloads 178
3326 Design, Prototyping, Integration, Flight Testing of a 20 cm Span Fully Autonomous Fixed Wing Micro Air Vehicle

Authors: Vivek Paul, Abel Nelly, Shoeb A Adeel, R. Tilak, S. Maheshwaran, S. Pulikeshi, Roshan Antony, C. S. Suraj

Abstract:

This paper presents the complete design and development cycle of a 20 cm span fixed wing micro air vehicle that was developed at CSIR-NAL, under the micro air vehicle development program. The design is a cropped delta flying wing MAV with a modified N22 airfoil of 12.3% thickness. The design was fabricated using the fused deposition method- RPT technique. COTS components were procured and integrated into this RPT prototype. A commercial autopilot that was proven in the earlier MAV designs was used for this MAV. The MAV was flown fully autonomous for 14mins at an open field. The flight data showed good performance as expected from the MAV design. The paper also describes about the process involved in the design of MAVs.

Keywords: autopilot, autonomous mode, flight testing, MAV, RPT

Procedia PDF Downloads 521
3325 Low-Temperature Catalytic Incineration of Acetone over MnCeOx Catalysts Supported on Mesoporous Aluminosilicate: The Mn-Ce Bimetallic Effect

Authors: Liang-Yi Lin, Hsunling Bai

Abstract:

In this work, transition metal (metal= Co, Fe, Ni, Cu, and Mn) modified cerium oxide catalysts supported on mesoporous aluminosilicate particles (Ce/Al-MSPs) were prepared using waste silicate as the precursors through aerosol-assisted flow process, and their catalytic performances were investigated for acetone incineration. Tests on the bimetallic Ce/Al-MSPs and Mn/Al-MSPs and trimetallic Mn-Ce, Fe-Ce, Co-Ce, Ni-Ce, and Cu-Ce/Al-MSPs in the temperature range of 100-300 oC demonstrated that Ce was the main active metal while Mn acted as a suitable promoter in acetone incineration reactions. Among tested catalysts, Mn-Ce/Al-MSPs with a Mn/Ce molar ratio of 2/1 exhibited the highest acetone catalytic activity. Moreover, the synergetic effect was observed for trimetallic Mn-Ce/Al-MSPs on the acetone removal as compared to the bimetallic Ce/Al-MSPs or Mn/Al-MSPs catalysts.

Keywords: acetone, catalytic oxidation, cerium oxide, mesoporous silica

Procedia PDF Downloads 434
3324 Hybrid EMPCA-Scott Approach for Estimating Probability Distributions of Mutual Information

Authors: Thuvanan Borvornvitchotikarn, Werasak Kurutach

Abstract:

Mutual information (MI) is widely used in medical image registration. In the different medical images analysis, it is difficult to choose an optimal bins size number for calculating the probability distributions in MI. As the result, this paper presents a new adaptive bins number selection approach that named a hybrid EMPCA-Scott approach. This work combines an expectation maximization principal component analysis (EMPCA) and the modified Scott’s rule. The proposed approach solves the binning problem from the various intensity values in medical images. Experimental results of this work show the lower registration errors compared to other adaptive binning approaches.

Keywords: mutual information, EMPCA, Scott, probability distributions

Procedia PDF Downloads 250
3323 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network

Authors: Boukari Nassim

Abstract:

This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.

Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network

Procedia PDF Downloads 347
3322 Improving Security by Using Secure Servers Communicating via Internet with Standalone Secure Software

Authors: Carlos Gonzalez

Abstract:

This paper describes the use of the Internet as a feature to enhance the security of our software that is going to be distributed/sold to users potentially all over the world. By placing in a secure server some of the features of the secure software, we increase the security of such software. The communication between the protected software and the secure server is done by a double lock algorithm. This paper also includes an analysis of intruders and describes possible responses to detect threats.

Keywords: internet, secure software, threats, cryptography process

Procedia PDF Downloads 336
3321 A Study on Bonding Strength, Waterproofing and Flexibility of Environment Friendly, and Cost Effective Cementitious Grout Mixture for Tile Joints

Authors: Gowthamraj Vungarala

Abstract:

This paper presents the experimental investigation on the bond strength, waterproofing abilities and flexibility of tile joint when Ordinary Portland Cement (OPC) or White Portland Cement (WPC) CEM II A-LL 42.5N and porcelain powder graded between 200 microns and 75 microns is mixed with vinyl acetate monomer (VAM), hydroxypropyl methyl cellulose ether, ethylene co-polymer rubber powder and Styrene butyl rubber (SBR). Use of porcelain powder which is tough to decompose as a form of industrial refuse which helps environmental safety and waste usage.

Keywords: styrene butane rubber, hydroxypropyl methyl cellulose ether, vinyl acetate monomer, polymer modified cement, polyethylene, porcelain powder

Procedia PDF Downloads 98
3320 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator

Authors: Di Yao, Gunther Prokop, Kay Buttner

Abstract:

Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.

Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory

Procedia PDF Downloads 269
3319 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization

Procedia PDF Downloads 159
3318 Mineral Chemistry of Extraordinary Ilmenite from the Gabbroic Rocks of Abu Ghalaga Area, Eastern Desert, Egypt: Evidence to Metamorphic Modification

Authors: Yaser Maher Abdel Aziz Hawa

Abstract:

An assemblage of Mn-bearing ilmenite, titanomagnetite (4-17 vol.%) and subordinate chalcopyrite, pyrrhptite and pyrite is present as dissiminations in gabbroic rocks of Abu Ghalaga area, Eastern Desert, Egypt. The neoproterozoic gabbroic rocks encompasses these opaques are emplaced during oceanic island arc stage which represents the Nubian shield of Egypt. However, some textural features of these opaques suggest a relict igneous. The high Mn (up to 5.8 MnO%, 1282% MnTiO3) and very low Mg contents (0.21 MgO%, 0.82 MgTiO3) are dissimilar to those of any igneous ilmenite of tholeiitic rocks. Most of these ilmenites are associated mostly with metamorphic hornblende. Hornblende thermometry estimate crystallization of about 560°C. the present study suggests that the ilmenite under consideration has been greatly metamorphically modified, having lost Mg and gained Mn by diffusion.

Keywords: titanomagnetite, Ghalaga, ilmenite, chemistry

Procedia PDF Downloads 329
3317 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 52
3316 Decoration of Multi-Walled Carbon Nanotubes by CdS Nanoparticles Using Magnetron Sputtering Method

Authors: Z. Ghorannevis, E. Akbarnejad, B. Aghazadeh, M. Ghoranneviss

Abstract:

Carbon nanotubes (CNTs) modified with semiconductor nanocrystalline particles may find wide applications due to their unique properties. Here Cadmium Sulfide (CdS) nanoparticles were successfully grown on Multi-Walled Carbon Nanotubes (MWNTs) via a magnetron sputtering method for the first time. The CdS/MWNTs sample was characterized with X-ray diffraction (XRD), Field Emission Scanning and High Resolution Transmission Electron Microscopies (SEM/TEM) and four point probe. The obtained images show clearly the decoration of the MWNTs by the CdS nanoparticles, and the XRD measurements indicate the CdS structure as hexagonal type. Moreover, the physical properties of the CdS/MWNTs were compared with the physical properties of the CdS nanoparticles grown on the silicon. Electrical measurements of CdS and CdS/MWNTs reveal that CdS/MWNTs has lower resistivity than the CdS sample which may be due to the higher carrier concentrations.

Keywords: CdS, MWNTs, HRTEM, magnetron sputtering

Procedia PDF Downloads 407