Search results for: heat deliver
1033 Effect of Prophylactic Oxytocin Therapy on Duration of Retained Fetal Membrane (RFM) in Periparturient Dairy Cows
Authors: Hamid Ghasemzadeh- Nava, Maziar Kaveh Baghbadorani, Amin Tamadon
Abstract:
Considering response of uterus to ecbolic effect of oxytocin near the time of parturition, this study was done for investigating the effect of prophylactic administration of this hormone on duration of fetal membrane retention, time interval to first detectable estrus, time interval to first service, and conception rate at first service in cases of both normal parturition and dystocia. For this reason cows with (n=18) and without (n=18) dystocia assigned randomly to treatment (n=12) or control (n=6) groups and received intramuscular injection of 100 IU of oxytocin or 10 mL of normal saline respectively. Further observations and investigations indicate that duration of fetal retention is significantly shorter in treatment group cows compared to control groups, regardless of having dystocia (P=0.002) or normal spontaneous calving (P=0.001). The same trend exists for conception rate at first service in which cows in treatment groups had significantly higher conception rate (CR) in comparison to cows in control groups with (P=0.0003) or without dystocia (P=0.017). The time interval to first detected heat and first service didn’t show any difference between groups.Keywords: conception rate, oxytocin, RFM, time to first service
Procedia PDF Downloads 4371032 Reducing Energy Consumption in Architectural Spaces by Optimizing Natural Light Transmission
Authors: Parisa Javid
Abstract:
In architecture, daylight contributes to humans' mental and physical well-being and reduces the consumption of fossil fuels. Accordingly, Iran's rich architecture has valuable achievements and experiences that should be recognized and introduced to the Iranian and international architecture communities. There are many ways to reduce energy consumption in buildings, but electricity accounts for a large part of that consumption. Lighting up spaces with natural light is a significant factor in reducing energy consumption and preventing electricity dissipation. Aside from being expensive, electric lighting systems cause excessive heat and physical injury (eyes). This study is based on library records and documents. Modern lighting systems are used to reduce energy consumption in the interior of a building to allow for optimal transmission of natural light. It discusses how to use natural light in architecture and the benefits of natural light in buildings. Solar energy can be used more efficiently, and electrical power can be saved in residential, administrative, commercial, and educational buildings by using new methods such as light tubes and mirror directors. Modern lighting systems, natural light, and reduced energy consumption are keywords for these systems, which quickly return their investment.Keywords: modern lighting systems, natural light, reduced energy consumption
Procedia PDF Downloads 1011031 Structure and Tribological Properties of Moisture Insensitivity Si Containing Diamond-Like Carbon Film
Authors: Mingjiang Dai, Qian Shi, Fang Hu, Songsheng Lin, Huijun Hou, Chunbei Wei
Abstract:
A diamond-like carbon (DLC) is considered as a promising protective film since its high hardness and excellent tribological properties. However, DLC films are very sensitive to the environmental condition, its friction coefficient could dramatic change in high humidity, therefore, limited their further application in aerospace, the watch industry, and micro/nano-electromechanical systems. Therefore, most studies focus on the low friction coefficient of DLC films at a high humid environment. However, this is out of satisfied in practical application. An important thing was ignored is that the DLC coated components are usually used in the diversed environment, which means its friction coefficient may evidently change in different humid condition. As a result, the invalidation of DLC coated components or even sometimes disaster occurred. For example, DLC coated minisize gears were used in the watch industry, and the customer may frequently transform their locations with different weather and humidity even in one day. If friction coefficient is not stable in dry and high moisture conditions, the watch will be inaccurate. Thus, it is necessary to investigate the stable tribological behavior of DLC films in various environments. In this study, a-C:H:Si films were deposited by multi-function magnetron sputtering system, containing one ion source device and a pair of SiC dual mid-frequent targets and two direct current Ti/C targets. Hydrogenated carbon layers were manufactured by sputtering the graphite target in argon and methane gasses. The silicon was doped in DLC coatings by sputtering silicon carbide targets and the doping content were adjusted by mid-frequent sputtering current. The microstructure of the film was characterized by Raman spectrometry, X-ray photoelectron spectroscopy, and transmission electron microscopy while its friction behavior under different humidity conditions was studied using a ball-on-disc tribometer. The a-C:H films with Si content from 0 to 17at.% were obtained and the influence of Si content on the structure and tribological properties under the relative humidity of 50% and 85% were investigated. Results show that the a-C:H:Si film has typical diamond-like characteristics, in which Si mainly existed in the form of Si, SiC, and SiO2. As expected, the friction coefficient of a-C:H films can be effectively changed after Si doping, from 0.302 to 0.176 in RH 50%. The further test shows that the friction coefficient value of a-C:H:Si film in RH 85% is first increase and then decrease as a function of Si content. We found that the a-C:H:Si films with a Si content of 3.75 at.% show a stable friction coefficient of 0.13 in different humidity environment. It is suggestion that the sp3/sp2 ratio of a-C:H films with 3.75 at.% Si was higher than others, which tend to form the silica-gel-like sacrificial layers during friction tests. Therefore, the films deliver stable low friction coefficient under controlled RH value of 50 and 85%.Keywords: diamond-like carbon, Si doping, moisture environment, table low friction coefficient
Procedia PDF Downloads 3661030 Internet-Delivered Cognitive Behaviour Therapy for Depression Comorbid with Diabetes: Preliminary Findings
Authors: Lisa Robins, Jill Newby, Kay Wilhelm, Therese Fletcher, Jessica Smith, Trevor Ma, Adam Finch, Lesley Campbell, Jerry Greenfield, Gavin Andrews
Abstract:
Background:Depression treatment for people living with depression comorbid with diabetes is of critical importance for improving quality of life and diabetes self-management, however depression remains under-recognised and under-treated in this population. Cost—effective and accessible forms of depression treatment that can enhance the delivery of mental health services in routine diabetes care are needed. Provision of internet-delivered Cognitive Behaviour Therapy (iCBT) provides a promising way to deliver effective depression treatment to people with diabetes. Aims:To explore the outcomes of the clinician assisted iCBT program for people with comorbid Major Depressive Disorder (MDD) and diabetes compared to those who remain under usual care. The main hypotheses are that: (1) Participants in the treatment group would show a significant improvement on disorder specific measures (Patient Health Questionnaire; PHQ-9) relative to those in the control group; (2) Participants in the treatment group will show a decrease in diabetes-related distress relative to those in the control group. This study will also examine: (1) the effect of iCBT for MDD on disability (as measured by the SF-12 and SDS), general distress (as measured by the K10), (2) the feasibility of these treatments in terms of acceptability to diabetes patients and practicality for clinicians (as measured by the Credibility/Expectancy Questionnaire; CEQ). We hypothesise that associated disability, and general distress will reduce, and that patients with comorbid MDD and diabetes will rate the program as acceptable. Method:Recruit 100 people with MDD comorbid with diabetes (either Type 1 or Type 2), and randomly allocate to: iCBT (over 10 weeks) or treatment as usual (TAU) for 10 weeks, then iCBT. Measure pre- and post-intervention MDD severity, anxiety, diabetes-related distress, distress, disability, HbA1c, lifestyle, adherence, satisfaction with clinicians input and the treatment. Results:Preliminary results comparing MDD symptom levels, anxiety, diabetes-specific distress, distress, disability, HbA1c levels, and lifestyle factors from baseline to conclusion of treatment will be presented, as well as data on adherence to the lessons, homework downloads, satisfaction with the clinician's input and satisfaction with the mode of treatment generally.Keywords: cognitive behaviour therapy, depression, diabetes, internet
Procedia PDF Downloads 4911029 Structural, Elastic, Vibrational and Thermal Properties of Perovskites AHfO3 (a=Ba,Sr,Eu)
Authors: H. Krarcha
Abstract:
The structural, elastic, vibrational and thermal properties of AHfO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The optimized lattice parameters, independent elastic constants (C11, C12 and C44), bulk modulus (B), compressibility (b), shear modulus (G), Young’s modulus (Y ), Poisson’s ratio (n), Lame´’s coefficients (m, l), as well as band structure, density of states and electron density distributions are obtained and analyzed in comparison with the available theoretical and experimental data. For the first time the numerical estimates of elastic parameters of the polycrystalline AHfO3 ceramics (in framework of the VoigteReusseHill approximation) are performed. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the FP-LAPW method, is applied to study the thermal and vibrational effects. Predicted temperature and pressure effects on the structural parameters, thermal expansions, heat capacities, and Debye temperatures are determined from the non-equilibrium Gibbs functions.Keywords: Hafnium, elastic propreties, first principles calculation, perovskite
Procedia PDF Downloads 3841028 Flavonoids: Essential Players in Nutrition
Authors: D. Baranova, E. Neborak
Abstract:
Polyphenols, particularly flavonoids like quercetin, fisetin, and kaempferol, have gained significant attention in nutrition due to their antioxidant, senolytic, and anti-inflammatory properties. These compounds are commonly found in various plant-based foods and are represented by diverse subclasses, each with unique health benefits. Understanding their absorption, metabolism, and bioactivity within the human body is crucial for unlocking their full potential. Quercetin, for instance, exists in multiple forms, impacting its solubility and absorption in the intestine. Its intake, often derived from sources like apples, is affected by cooking methods, with medium heat retaining its potency. Fisetin, also present in fruits and vegetables, demonstrates neuroprotective qualities and stability under varied conditions compared to quercetin. Similarly, kaempferol, found in fruits and vegetables, displays antioxidative effects but is influenced by cooking techniques, with specific methods preserving its polyphenolic content better. Overall, these polyphenols offer promising health benefits, yet their optimal dosage and specific dietary recommendations warrant further research to harness their full nutritional potential.Keywords: polyphenols, flavonoids, absorption, quercetin, kaempferol, fisetin, senolytics, absorption, cooking method
Procedia PDF Downloads 721027 Effect of Gaseous Imperfections on the Supersonic Flow Parameters for Air in Nozzles
Authors: Merouane Salhi, Toufik Zebbiche
Abstract:
When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas doesn’t remain perfect. Its state equation change and it becomes for a real gas. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermodynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for the molecular size and intermolecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure
Procedia PDF Downloads 4481026 Numerical Modeling of Phase Change Materials Walls under Reunion Island's Tropical Weather
Authors: Lionel Trovalet, Lisa Liu, Dimitri Bigot, Nadia Hammami, Jean-Pierre Habas, Bruno Malet-Damour
Abstract:
The MCP-iBAT1 project is carried out to study the behavior of Phase Change Materials (PCM) integrated in building envelopes in a tropical environment. Through the phase transitions (melting and freezing) of the material, thermal energy can be absorbed or released. This process enables the regulation of indoor temperatures and the improvement of thermal comfort for the occupants. Most of the commercially available PCMs are more suitable to temperate climates than to tropical climates. The case of Reunion Island is noteworthy as there are multiple micro-climates. This leads to our key question: developing one or multiple bio-based PCMs that cover the thermal needs of the different locations of the island. The present paper focuses on the numerical approach to select the PCM properties relevant to tropical areas. Numerical simulations have been carried out with two softwares: EnergyPlusTM and Isolab. The latter has been developed in the laboratory, with the implicit Finite Difference Method, in order to evaluate different physical models. Both are Thermal Dynamic Simulation (TDS) softwares that predict the building’s thermal behavior with one-dimensional heat transfers. The parameters used in this study are the construction’s characteristics (dimensions and materials) and the environment’s description (meteorological data and building surroundings). The building is modeled in accordance with the experimental setup. It is divided into two rooms, cells A and B, with same dimensions. Cell A is the reference, while in cell B, a layer of commercial PCM (Thermo Confort of MCI Technologies) has been applied to the inner surface of the North wall. Sensors are installed in each room to retrieve temperatures, heat flows, and humidity rates. The collected data are used for the comparison with the numerical results. Our strategy is to implement two similar buildings at different altitudes (Saint-Pierre: 70m and Le Tampon: 520m) to measure different temperature ranges. Therefore, we are able to collect data for various seasons during a condensed time period. The following methodology is used to validate the numerical models: calibration of the thermal and PCM models in EnergyPlusTM and Isolab based on experimental measures, then numerical testing with a sensitivity analysis of the parameters to reach the targeted indoor temperatures. The calibration relies on the past ten months’ measures (from September 2020 to June 2021), with a focus on one-week study on November (beginning of summer) when the effect of PCM on inner surface temperatures is more visible. A first simulation with the PCM model of EnergyPlus gave results approaching the measurements with a mean error of 5%. The studied property in this paper is the melting temperature of the PCM. By determining the representative temperature of winter, summer and inter-seasons with past annual’s weather data, it is possible to build a numerical model of multi-layered PCM. Hence, the combined properties of the materials will provide an optimal scenario for the application on PCM in tropical areas. Future works will focus on the development of bio-based PCMs with the selected properties followed by experimental and numerical validation of the materials. 1Materiaux ´ a Changement de Phase, une innovation pour le B ` ati TropicalKeywords: energyplus, multi-layer of PCM, phase changing materials, tropical area
Procedia PDF Downloads 951025 The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet
Authors: Bilge Demir, Ahmet Durgutlu, Mustafa Acarer
Abstract:
In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.Keywords: AZ31 magnesium alloy, microstructures, micro hardness TIG welding
Procedia PDF Downloads 3901024 Cellular Degradation Activity is Activated by Ambient Temperature Reduction in an Annual Fish (Nothobranchius rachovii)
Authors: Cheng-Yen Lu, Chin-Yuan Hsu
Abstract:
Ambient temperature reduction (ATR) can extend the lifespan of an annual fish (Nothobranchius rachovii), but the underlying mechanism is unknown. In this study, the expression, concentration, and activity of cellular-degraded molecules were evaluated in the muscle of N. rachovii reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures by biochemical techniques. The results showed that (i) the activity of the 20S proteasome, the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), the expression of lysosome-associated membrane protein type 2a (Lamp 2a), and lysosome activity increased with ATR; (ii) the expression of the 70 kD heat shock cognate protein (Hsc 70) decreased with ATR; (iii) the expression of the 20S proteasome, the expression of lysosome-associated membrane protein type 1 (Lamp 1), the expression of molecular target of rapamycin (mTOR), the expression of phosphorylated mTOR (p-mTOR), and the p-mTOR/mTOR ratio did not change with ATR. These findings indicated that ATR activated the activity of proteasome, macroautophagy, and chaperone-mediated autophagy. Taken together these data reveal that ATR likely activates cellular degradation activity to extend the lifespan of N. rachovii.Keywords: ambient temperature reduction, autophagy, degradation activity, lifespan, proteasome
Procedia PDF Downloads 4621023 Development of Water-Based Thermal Insulation Paints Using Silica Aerogel
Authors: Lu Yanru, Handojo Djati Utomo, Yin Xi Jiang, Li Xiaodong
Abstract:
Insulation plays a key role in the sustainable building due to the contribution of energy consumption reduction. Without sufficient insulation, a great amount of the energy used to heat or cool a building will be lost to the outdoors. In this study, we developed a highly efficient thermal insulation paint with the incorporation of silica aerogel. Silica aerogel, with a low thermal conductivity of 0.01 W/mK, has been successfully prepared from the solid waste from the incineration plants. It has been added into water-based paints to increase its thermal insulation properties. To investigate the thermal insulation performance of silica aerogel additive, the paint samples were mixed with silica aerogel at different sizes and with various portions. The thermal conductivity, water resistance, thermal stability and adhesion strength of the samples were tested and evaluated. The thermal diffusivity measurements proved that adding silica aerogel additive could improve the thermal insulation properties of the paint significantly. Up to 5 ˚C reductions were observed after applying paints with silica aerogel additive compare to the one without it. The results showed that the developed thermal insulation paints have great potential for an application in green and sustainable building.Keywords: silica aerogel, thermal insulation, water-based paints, water resistant
Procedia PDF Downloads 1901022 Investigations in Machining of Hot Work Tool Steel with Mixed Ceramic Tool
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
Hard turning has been explored as an alternative to the conventional one used for manufacture of Parts using tool steels. In the present study, the effects of cutting speed, feed rate and Depth of Cut (DOC) on cutting forces, specific cutting force, power and surface roughness in the hard turning are experimentally investigated. Experiments are carried out using mixed ceramic(Al2O3+TiC) cutting tool of corner radius 0.8mm, in turning operations on AISI H13 tool steel, heat treated to a hardness of 62 HRC. Based on Design of Experiments (DOE), a total of 20 tests are carried out. The range of each one of the three parameters is set at three different levels, viz, low, medium and high. The validity of the model is checked by Analysis of variance (ANOVA). Predicted models are derived from regression analysis. Comparison of experimental and predicted values of specific cutting force, power and surface roughness shows that good agreement has been achieved between them. Therefore, the developed model may be recommended to be used for predicting specific cutting force, power and surface roughness in hard turning of tool steel that is AISI H13 steel.Keywords: hard turning, specific cutting force, power, surface roughness, AISI H13, mixed ceramic
Procedia PDF Downloads 7001021 Numerical Study of Heat Transfer in Silica Aerogel
Authors: Amal Maazoun, Abderrazak Mezghani, Ali Ben Moussa
Abstract:
Aerogel consists of a ramified and inter-connected solid skeleton enclosing a very important number of nano-sized pores filled with air that occupies most of the volume and makes very low density. The thermal conductivity of this material can reach lower values than those of any other material, and it changes with the type of the aerogel and its composition. So, in order to explain the causes of the super-insulation of our material and to determine the factors in which depends on its conductivity we used a numerical simulation. We have developed a numerical code that generates random fractal structure of silica aerogel with pre-defined concentration, properties of the backbone and the gas in the pores as well as the size of the particles. The calculation of the conductivity at any point of domain shows that it is not constant and that it depends on the pore size and the location in the pore. A numerical method based on resolution by inversion of block tridiagonal matrices is used to calculate the equivalent thermal conductivity of the whole fractal structure. The average conductivity calculated for each concentration is in good agreement with those of typical aerogels. And we found that the equivalent thermal conductivity of a silica aerogel depends strongly not only on the porosity but also on the tortuosity of the solid backbone.Keywords: aerogel, fractal structure, numerical study, porous media, thermal conductivity
Procedia PDF Downloads 2911020 Identification of Thermally Critical Zones Based on Inter Seasonal Variation in Temperature
Authors: Sakti Mandal
Abstract:
Varying distribution of land surface temperature in an urbanized environment is a globally addressed phenomenon. Usually has been noticed that criticality of surface temperature increases from the periphery to the urban centre. As the centre experiences maximum severity of heat throughout the year, it also represents most critical zone in terms of thermal condition. In this present study, an attempt has been taken to propose a quantitative approach of thermal critical zonation (TCZ) on the basis of seasonal temperature variation. Here the zonation is done by calculating thermal critical value (TCV). From the Landsat 8 thermal digital data of summer and winter seasons for the year 2014, the land surface temperature maps and thermally critical zonation has been prepared, and corresponding dataset has been computed to conduct the overall study of that particular study area. It is shown that TCZ can be clearly identified and analyzed by the help of inter-seasonal temperature range. The results of this study can be utilized effectively in future urban development and planning projects as well as a framework for implementing rules and regulations by the authorities for a sustainable urban development through an environmentally affable approach.Keywords: thermal critical values (TCV), thermally critical zonation (TCZ), land surface temperature (LST), Landsat 8, Kolkata Municipal Corporation (KMC)
Procedia PDF Downloads 1971019 Antioxidant Properties of Rice Bran Oil Using Various Heat Treatments
Authors: Supakan Rattanakon, Jakkrapan Boonpimon, Akkaragiat Bhuangsaeng, Aphiwat Ratriphruek
Abstract:
Rice bran oil (RBO) has been found to lower the level of serum cholesterol, has antioxidant and anti-carcinogenic property, and attenuate allergic inflammation. These properties of RBO are due to antioxidant compositions, especially, phenolic compounds. The higher amount of these active compounds in RBO, the greater value of RBO is. Thermal process of rice bran before solvent RBO extraction has been found to have a higher phenolic contents. Therefore, the purpose of this study is to using different heating methods on rice bran before the solvent extraction. Then, % yield of RBO, total phenolic content (TPC), and antioxidant property of two white Thai rice; KDML105 and RD6 were determined. The Folin-Ciocalteu colorimetric assay was used to determine TPC and scavenging of free radicals (DPPH) was used to determine antioxidant property expressed as EC50. The result showed that thermal process did not increase % yield of RBO but increase the TPC with 1.41 mg gallic acid equivalent (GAEmg-1). The highest TPC was found in KDML105 by using sonicator. The highest antioxidant activity was found in RD6 using autoclave. The EC50 of RBO was 0.04 mg/mL. Further study should be performed on different pretreatments to increase the TPC and antioxidant property.Keywords: antioxidant, rice bran oil, total phenol content, white rice
Procedia PDF Downloads 2531018 Formulation and Invivo Evaluation of Salmeterol Xinafoate Loaded MDI for Asthma Using Response Surface Methodology
Authors: Paresh Patel, Priya Patel, Vaidehi Sorathiya, Navin Sheth
Abstract:
The aim of present work was to fabricate Salmeterol Xinafoate (SX) metered dose inhaler (MDI) for asthma and to evaluate the SX loaded solid lipid nanoparticles (SLNs) for pulmonary delivery. Solid lipid nanoparticles can be used to deliver particles to the lungs via MDI. A modified solvent emulsification diffusion technique was used to prepare Salmeterol Xinafoate loaded solid lipid nanoparticles by using compritol 888 ATO as lipid, tween 80 as surfactant, D-mannitol as cryoprotecting agent and L-leucine was used to improve aerosolization behaviour. Box-Behnken design was applied with 17 runs. 3-D surface response plots and contour plots were drawn and optimized formulation was selected based on minimum particle size and maximum % EE. % yield, in vitro diffusion study, scanning electron microscopy, X-ray diffraction, DSC, FTIR also characterized. Particle size, zeta potential analyzed by Zetatrac particle size analyzer and aerodynamic properties was carried out by cascade impactor. Pre convulsion time was examined for control group, treatment group and compare with marketed group. MDI was evaluated for leakage test, flammability test, spray test and content per puff. By experimental design, particle size and % EE found to be in range between 119-337 nm and 62.04-76.77% by solvent emulsification diffusion technique. Morphologically, particles have spherical shape and uniform distribution. DSC & FTIR study showed that no interaction between drug and excipients. Zeta potential shows good stability of SLNs. % respirable fraction found to be 52.78% indicating reach to the deep part of lung such as alveoli. Animal study showed that fabricated MDI protect the lungs against histamine induced bronchospasm in guinea pigs. MDI showed sphericity of particle in spray pattern, 96.34% content per puff and non-flammable. SLNs prepared by Solvent emulsification diffusion technique provide desirable size for deposition into the alveoli. This delivery platform opens up a wide range of treatment application of pulmonary disease like asthma via solid lipid nanoparticles.Keywords: salmeterol xinafoate, solid lipid nanoparticles, box-behnken design, solvent emulsification diffusion technique, pulmonary delivery
Procedia PDF Downloads 4511017 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length
Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park
Abstract:
Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.Keywords: bond strength, climate change, pull-out test, substitution of reinforcement material, textile
Procedia PDF Downloads 4761016 Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System
Authors: Abdulrazzak Akroot, Lutfu Namli
Abstract:
Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface.Keywords: solid oxide fuel cell, anode-supported model, electrolyte-supported model, energy analysis, exergy analysis
Procedia PDF Downloads 1541015 Modified Atmosphere Packaging (MAP) and the Effect of Chemical Preservative to Enhance Shelf Life of Khoa
Authors: Tanima Chowdhury, Sanjay Chattopadhaya, Narayan Ch. Saha
Abstract:
Khoa is an indigenous heat desiccated milk product having very poor shelf life. At ambient condition, shelf-life of khoa is normally only 2 days. The aim of present study was to determine the effect of benzoic acid as preservative as well as modified atmosphere packaging (MAP) technology to enhance shelf life of khoa at 27±2°C and 65% RH. During storage, analysis of chemical, sensory as well as microbiological characteristics were taken into consideration to mark distinguishable changes between the package of modified atmosphere technology (MAP) and ordinarily packed khoa (with and without preservative) samples. The results indicated a significant decrease of moisture content, pH and sensory scores and increase in titratable acidity, standard plate count and yeast and mould count during storage, irrespective of the type of packaging conditions. However, the rate of changes in characteristics of product packed in modified atmosphere was found to be slow. The storage study indicated that the khoa packed in ordinary packaging, with and without preservative, was acceptable for 4 and 8 days, respectively, whereas for modified atmosphere packed samples, it was consumable up to 8 and 12 days, respectively.Keywords: benzoic acid, khoa, modified atmosphere packaging, shelf life
Procedia PDF Downloads 3161014 Thermal Behavior of the Extensive Green Roofs in Riyadh City
Authors: Ashraf Muharam, Nasser Al-Hemiddi, El Sayed Amer
Abstract:
Green roof is one of sustainable practice for reducing the environmental impact of a building. Green roofs are vegetation roofs that are partially or completely covered building's roof. It can provide multiple environmental benefits such as mitigation of urban heat island effect and protecting buildings against solar radiation. In Riyadh city buildings consume about 70 % of the total energy used in the building for cooling and heating because of the Riyadh's harsh and tropical climate. So, the study aim was identifying the thermal performance of extensive green roof and comparing its performance with concrete roof performance during summer season. The experimental validations results indicated that the extensive green roofs system was better than concrete roof system for lowering the indoor air temperature. It could reduce the indoor air temperature from 2°C to 5.5°C compared to the concrete roof system. Also, the finding of this study demonstrated that extensive green roof system could reduce 12% to 33% of energy consumption of air conditioning in Riyadh city during summer seasons by using environmentally friendly insulation.Keywords: thermal performance, green roof system, concrete roof system, tropical climatic, internal temperatures
Procedia PDF Downloads 4081013 Utilization of a Composite of Oil Ash, Scoria, and Expanded Perlite with Polyethylene Glycol for Energy Storage Systems
Authors: Khaled Own Mohaisen, Md. Hasan Zahir, Salah U. Al-Dulaijan, Shamsad Ahmad, Mohammed Maslehuddin
Abstract:
Shape-stabilized phase change materials (ss-PCMs) for energy storage systems were developed using perlite, scoria, and oil ash as a carrier, with polyethylene glycol (PEG) with a molecular weight of 6000 as phase change material (PCM). Physical mixing using simple impregnation of ethanol evaporation technique method was carried out to fabricate the form stabilized PCM. The fabricated PCMs prevent leakage, reduce the supercooling effect and minimize recalescence problems of the PCM. The differential scanning calorimetry (DSC) results show that perlite composite (ExPP) has the highest latent heat of melting and freezing values of (141.6 J/g and 143.7 J/g) respectively, compared with oil ash (OAP) and scoria (SCP) composites. Moreover, ExPP has the highest impregnation ratio, energy storage efficiency, and energy storage capacity compared with OAP and SCP. However, OAP and SCP have higher thermal conductivity values compared to ExPP composites which accelerate the thermal storage response in the composite. These results were confirmed with DSC, and the characteristic of the PCMs was investigated by using XRD and FE-SEM techniques.Keywords: expanded perlite, oil ash, scoria, energy storage material
Procedia PDF Downloads 921012 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain
Authors: Carlos A. Domínguez Torres, Antonio Domínguez Delgado
Abstract:
In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.Keywords: passive cooling, ventilated façades, energy-efficient building, CFD, FEM
Procedia PDF Downloads 3561011 The Influence of Ni Elements on Mechanical Properties and Microstructure of Twinning Induced Plasticity (TWIP)
Authors: Yuksel Akinay, Fatih Hayat
Abstract:
The influence of Ni elements on mechanical properties and microstructure of twinning induced plasticity (TWIP) steels were investigated in this study. TWIP 1 (0,6C, 24Mn) and TWIP 2 (0,6C, 24Mn, 1Ni) high Mn TWIP (Twinning Induced Plasticity) steels were fabricated, and were annealed at 700°C, 800°C and 900°C for 150 minute and then air-cooled. The microstructures and mechanical properties of specimens were analysed to investigate influence of Ni element on TWIP steel. The carbide precipitations have seen in microstructure of TWIP 1 and TWIP 2 specimen annealed at 700 °C. However, the microstructures of TWIP 1 annealed at 800°C and 900°C are fully austenite and some grains are including annealing twins. However twining did not occur at TWIP 2 specimens annealed at 700 °C, 800 °C and 900 °C. TWIP 2 steel contains also Ni element differently from TWIP 1 steel. It can conclude that, Nickel (Ni) was restrained formation of twinning. The reversion of the tensile strength occurred between 700°C and 800°C because of the carbide precipitation hardening. Beside that, hardness value has decreased between 800 °C and 900 °C, which show a good agreement with the equilibrium dissolution temperature of M3C carbides. However, the results show that, carbide precipitations also are as strong barriers for the formation of twining. For this reason, twinning was not obtained at 700 °C.Keywords: high manganese, heat treatment, SEM, TWIP steel, cold rolling, nickel
Procedia PDF Downloads 3591010 Exploring the Contribution of Dynamic Capabilities to a Firm's Value Creation: The Role of Competitive Strategy
Authors: Mona Rashidirad, Hamid Salimian
Abstract:
Dynamic capabilities, as the most considerable capabilities of firms in the current fast-moving economy may not be sufficient for performance improvement, but their contribution to performance is undeniable. While much of the extant literature investigates the impact of dynamic capabilities on organisational performance, little attention has been devoted to understand whether and how dynamic capabilities create value. Dynamic capabilities as the mirror of competitive strategies should enable firms to search and seize new ideas, integrate and coordinate the firm’s resources and capabilities in order to create value. A careful investigation to the existing knowledge base remains us puzzled regarding the relationship among competitive strategies, dynamic capabilities and value creation. This study thus attempts to fill in this gap by empirically investigating the impact of dynamic capabilities on value creation and the mediating impact of competitive strategy on this relationship. We aim to contribute to dynamic capability view (DCV), in both theoretical and empirical senses, by exploring the impact of dynamic capabilities on firms’ value creation and whether competitive strategy can play any role in strengthening/weakening this relationship. Using a sample of 491 firms in the UK telecommunications market, the results demonstrate that dynamic sensing, learning, integrating and coordinating capabilities play a significant role in firm’s value creation, and competitive strategy mediates the impact of dynamic capabilities on value creation. Adopting DCV, this study investigates whether the value generating from dynamic capabilities depends on firms’ competitive strategy. This study argues a firm’s competitive strategy can mediate its ability to derive value from its dynamic capabilities and it explains the extent a firm’s competitive strategy may influence its value generation. The results of the dynamic capabilities-value relationships support our expectations and justify the non-financial value added of the four dynamic capability processes in a highly turbulent market, such as UK telecommunications. Our analytical findings of the relationship among dynamic capabilities, competitive strategy and value creation provide further evidence of the undeniable role of competitive strategy in deriving value from dynamic capabilities. The results reinforce the argument for the need to consider the mediating impact of organisational contextual factors, such as firm’s competitive strategy to examine how they interact with dynamic capabilities to deliver value. The findings of this study provide significant contributions to theory. Unlike some previous studies which conceptualise dynamic capabilities as a unidimensional construct, this study demonstrates the benefits of understanding the details of the link among the four types of dynamic capabilities, competitive strategy and value creation. In terms of contributions to managerial practices, this research draws attention to the importance of competitive strategy in conjunction with development and deployment of dynamic capabilities to create value. Managers are now equipped with solid empirical evidence which explains why DCV has become essential to firms in today’s business world.Keywords: dynamic capabilities, resource based theory, value creation, competitive strategy
Procedia PDF Downloads 2411009 Optimal Designof Brush Roll for Semiconductor Wafer Using CFD Analysis
Authors: Byeong-Sam Kim, Kyoungwoo Park
Abstract:
This research analyzes structure of flat panel display (FPD) such as LCD as quantitative through CFD analysis and modeling change to minimize the badness rate and rate of production decrease by damage of large scale plater at wafer heating chamber at semi-conductor manufacturing process. This glass panel and wafer device with atmospheric pressure or chemical vapor deposition equipment for transporting and transferring wafers, robot hands carry these longer and wider wafers can also be easily handled. As a contact handling system composed of several problems in increased potential for fracture or warping. A non-contact handling system is required to solve this problem. The panel and wafer warping makes it difficult to carry out conventional contact to analysis. We propose a new non-contact transportation system with combining air suction and blowout. The numerical analysis and experimental is, therefore, should be performed to obtain compared to results achieved with non-contact solutions. This wafer panel noncontact handler shows its strength in maintaining high cleanliness levels for semiconductor production processes.Keywords: flat panel display, non contact transportation, heat treatment process, CFD analysis
Procedia PDF Downloads 4161008 Ionic Liquids-Polymer Nanoparticle Systems as Breakthrough Tools to Improve the Leprosy Treatment
Authors: A. Julio, R. Caparica, S. Costa Lima, S. Reis, J. G. Costa, P. Fonte, T. Santos De Almeida
Abstract:
The Mycobacterium leprae causes a chronic and infectious disease called leprosy, which the most common symptoms are peripheral neuropathy and deformation of several parts of the body. The pharmacological treatment of leprosy is a combined therapy with three different drugs, rifampicin, clofazimine, and dapsone. However, clofazimine and dapsone have poor solubility in water and also low bioavailability. Thus, it is crucial to develop strategies to overcome such drawbacks. The use of ionic liquids (ILs) may be a strategy to overcome the low solubility since they have been used as solubility promoters. ILs are salts, liquid below 100 ºC or even at room temperature, that may be placed in water, oils or hydroalcoholic solutions. Another approach may be the encapsulation of drugs into polymeric nanoparticles, which improves their bioavailability. In this study, two different classes of ILs were used, the imidazole- and the choline-based ionic liquids, as solubility enhancers of the poorly soluble antileprotic drugs. Thus, after the solubility studies, it was developed IL-PLGA nanoparticles hybrid systems to deliver such drugs. First of all, the solubility studies of clofazimine and dapsone were performed in water and in water: IL mixtures, at ILs concentrations where cell viability is maintained, at room temperature for 72 hours. For both drugs, it was observed an improvement on the drug solubility and [Cho][Phe] showed to be the best solubility enhancer, especially for clofazimine, where it was observed a 10-fold improvement. Later, it was produced nanoparticles, with a polymeric matrix of poly(lactic-co-glycolic acid) (PLGA) 75:25, by a modified solvent-evaporation W/O/W double emulsion technique in the presence of [Cho][Phe]. Thus, the inner phase was an aqueous solution of 0.2 % (v/v) of the above IL with each drug to its maximum solubility determined on the previous study. After the production, the nanosystem hybrid was physicochemically characterized. The produced nanoparticles had a diameter of around 580 nm and 640 nm, for clofazimine and dapsone, respectively. Regarding the polydispersity index, it was in agreement of the recommended value of this parameter for drug delivery systems (around 0.3). The association efficiency (AE) of the developed hybrid nanosystems demonstrated promising AE values for both drugs, given their low solubility (64.0 ± 4.0 % for clofazimine and 58.6 ± 10.0 % for dapsone), that prospects the capacity of these delivery systems to enhance the bioavailability and loading of clofazimine and dapsone. Overall, the study achievement may signify an upgrading of the patient’s quality of life, since it may mean a change in the therapeutic scheme, not requiring doses of drug so high to obtain a therapeutic effect. The authors would like to thank Fundação para a Ciência e a Tecnologia, Portugal (FCT/MCTES (PIDDAC), UID/DTP/04567/2016-CBIOS/PRUID/BI2/2018).Keywords: ionic liquids, ionic liquids-PLGA nanoparticles hybrid systems, leprosy treatment, solubility
Procedia PDF Downloads 1521007 Oxygen Enriched Co-Combustion of Sub-Bituminous Coal/Biomass Waste Fuel Blends
Authors: Chaouki Ghenai
Abstract:
Computational Fluid Dynamic analysis of co-combustion of coal/biomass waste fuel blends is presented in this study. The main objective of this study is to investigate the effects of biomass portions (0%, 10%, 20%, 30%: weight percent) blended with coal and oxygen concentrations (21% for air, 35%, 50%, 75% and 100 % for pure oxygen) on the combustion performance and emissions. The goal is to reduce the air emissions from power plants coal combustion. Sub-bituminous Nigerian coal with calorific value of 32.51 MJ/kg and sawdust (biomass) with calorific value of 16.68 MJ/kg is used in this study. Coal/Biomass fuel blends co-combustion is modeled using mixture fraction/pdf approach for non-premixed combustion and Discrete Phase Modeling (DPM) to predict the trajectories and the heat/mass transfer of the fuel blend particles. The results show the effects of oxygen concentrations and biomass portions in the coal/biomass fuel blends on the gas and particles temperatures, the flow field, the devolitization and burnout rates inside the combustor and the CO2 and NOX emissions at the exit from the combustor. The results obtained in the course of this study show the benefits of enriching combustion air with oxygen and blending biomass waste with coal for reducing the harmful emissions from coal power plants.Keywords: co-combustion, coal, biomass, fuel blends, CFD, air emissions
Procedia PDF Downloads 4181006 A Comparative Analysis of Liberation and Contemplation in Sankara and Aquinas
Authors: Zeite Shumneiyang Koireng
Abstract:
Liberation is the act of liberating or the state of being liberated. Indian philosophy, in general, understands liberation as moksa, which etymological is derived from the Sanskrit root muc+ktin meaning to loose, set free, to let go, discharge, release, liberate, deliver, etc. According to Indian schools of thought, moksa is the highest value on realizing which nothing remains to be realized. It is the cessation of birth and death, all kinds of pain and at the same time, it is the realization of one’s own self. Sankara’s Advaita philosophy is based on the following propositions: Brahman is the only Reality; the world has apparent reality, and the soul is not different from Brahman. According to Sankara, Brahman is the basis on which the world form appears; it is the sustaining ground of all various modification. It is the highest self and the self of all reveals himself by dividing himself [ as it was in the form of various objects] in multiple ways. The whole world is the manifestation of the Supreme Being. Brahman modifying itself into the Atman or internal self of all things is the world. Since Brahman is the Upadhana karana of the world, the sruti speaks of the world as the modification of Brahman into the Atman of the effect. Contemplation as the fulfillment of man finds a radical foundation in Aquinas teaching concerning the natural end or as he also referred to it, natural desire. The third book of the Summa Contra Gentiles begins the study of happiness with a consideration of natural desire. According to him, all creatures, even those devoid of understanding are ordered to God as an ultimate end. Intrinsically, a part of every nature is a tendency or inclination, originating in the natural form and tendency toward the end for which the possessor of nature exists. It is the study of the nature and finality of inclination that Aquinas establishes through an argument of induction man’s Contemplation of God as the fulfillment of his nature. The present paper is attempted to critically approach two important, seminal and originated thought, representing Indian and Western traditions which mark on the thinking of their respective times. Both these thoughts- Advaitic concept of Liberation in the Indian tradition and the concept of Contemplation in Thomas Aquinas’ Summa Contra Gentiles’- confront directly the question of the ultimate meaning of human existence. According to Sankara, it is knowledge and knowledge alone which is the means of moksa and the highest knowledge is moksa itself. Liberation in Sankara Vedanta is attained as a process of purification of self, which gradually and increasingly turns into purer and purer intentional construction. Man’s inner natural tendency for Aquinas is towards knowledge. The human subject is driven to know more and more about reality and in particular about the highest reality. Contemplation of this highest reality is fulfillment in the philosophy of Aquinas. Rather, Contemplation is the perfect activity in man’s present state of existence.Keywords: liberation, Brahman, contemplation, fulfillment
Procedia PDF Downloads 1931005 Recovery of Hydrogen Converter Efficiency Affected by Poisoning of Catalyst with Increasing of Temperature
Authors: Enayat Enayati, Reza Behtash
Abstract:
The purpose of the H2 removal system is to reduce a content of hydrogen and other combustibles in the CO2 feed owing to avoid developing a possible explosive condition in the synthesis. In order to reduce the possibility of forming an explosive gas mixture in the synthesis as much as possible, the hydrogen percent in the fresh CO2, will be removed in hydrogen converter. Therefore the partly compressed CO2/Air mixture is led through Hydrogen converter (Reactor) where the H2, present in the CO2, is reduced by catalytic combustion to values less than 50 ppm (vol). According the following exothermic chemical reaction: 2H2 + O2 → 2H2O + Heat. The catalyst in hydrogen converter consist of platinum on a aluminum oxide carrier. Low catalyst activity maybe due to catalyst poisoning. This will result in an increase of the hydrogen content in the CO2 to the synthesis. It is advised to shut down the plant when the outlet of hydrogen converter increased above 100 ppm, to prevent undesirable gas composition in the plant. Replacement of catalyst will be time exhausting and costly so as to prevent this, we increase the inlet temperature of hydrogen converter according to following Arrhenius' equation: K=K0e (-E_a/RT) K is rate constant of a chemical reaction where K0 is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant. Increment of inlet temperature of hydrogen converter caused to increase the rate constant of chemical reaction and so declining the amount of hydrogen from 125 ppm to 70 ppm.Keywords: catalyst, converter, poisoning, temperature
Procedia PDF Downloads 8211004 Air Conditioning Variation of 1kW Open-Cathode Proton Exchange Membrane (PEM) Fuel Cell
Authors: Mohammad Syahirin Aisha, Khairul Imran Sainan
Abstract:
The PEM fuel cell is a device that generate electric by electrochemical reaction between hydrogen fuel and oxygen in the fuel cell stack. PEM fuel cell consists of an anode (hydrogen supply), a cathode (oxygen supply) and an electrolyte that allow charges move between the two positions of the fuel cell. The only product being developed after the reaction is water (H2O) and heat as the waste which does not emit greenhouse gasses. The performance of fuel cell affected by numerous parameters. This study is restricted to cathode parameters that affect fuel cell performance. At the anode side, the reactant is not going through any changes. Experiments with variation in air velocity (3m/s, 6m/s and 9m/s), temperature (10oC, 20oC, 35oC) and relative humidity (50%, 60%, and 70%) have been carried out. The experiments results are presented in the form of fuel cell stack power output over time, which demonstrate the impacts of the various air condition on the execution of the PEM fuel cell. In this study, the experimental analysis shows that with variation of air conditions, it gives different fuel cell performance behavior. The maximum power output of the experiment was measured at an ambient temperature of 25oC with relative humidity and 9m/s velocity of air.Keywords: air-breathing PEM fuel cell, cathode side, performance, variation in air condition
Procedia PDF Downloads 463