Search results for: statistical machine translation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7120

Search results for: statistical machine translation

4600 Vitamin D Levels in Relation to Thyroid Disorders

Authors: Binaya Tamang, Buddhhi Raj Pokhrel, Narayan Gautam

Abstract:

Background: There may be a connection between thyroid function and vitamin D status since both bind to similar nuclear hormone receptors and have similar response regions on gene promoters. The purpose of the current study was to investigate the relationship between thyroid hormones and vitamin D levels in females who were attending a tertiary care center in western Nepal and were either hypothyroid or euthyroid. Methods: This hospital-based cross-sectional study was carried out between March 2020 and March 2021 by the Biochemistry department of the Universal College of Medical Sciences (UCMS), Bhairahawa, Province No. 5, Nepal, in cooperation with Internal medicine. Prior to the study, institutional review committee approval (UCMS/IRC/008/20) was acquired from UCMS. Women who visited the Internal Medicine OPD of UCMS and were advised to get a thyroid function test (TFT) were included in the study population. Only those who were willing to participate in the study were enrolled after the goals and advantages of the study had been explained to them. Participants who had recently used vitamin D supplements and medications that affected thyroid hormones were excluded. The participants gave their consent verbally and in writing. After getting the consent, a convenient sample technique was applied. Serum was isolated after drawing 3 ml of blood in a plain vial. Chemiluminescence assay was used to analyze vitamin D and thyroid hormones (MAGLUMI 2000). SPSS version 16.0 for Windows was used to conduct the statistical analysis. Statistical significance was defined as a P-value < 0.05. Results: Majority of the study population (n=214, 71%) had insufficient serum vitamin D levels. Among the thyroid groups, the median Vitamin D levels were significantly lower in hypothyroid (16.88 ng/ml) as compared to the euthyroid groups (25.01 ng/ml) (P<0.001). Similarly, serum Vitamin D levels were considerably lower in the obese population (16.86 ng/ml) as compared to the normal BMI group (24.90 ng/ml) (P<0.001) as well as in the vegetarian (15.43 ng.ml) than mixed diet consumer (24.89 ng/ml) (P<0.01). Even after the adjustment for these variables, the Vitamin D levels were significantly lower in the hypothyroid population than in the euthyroid group (P<0.001). Conclusion: Comparing the hypothyroid population to the euthyroid, the median serum vitamin D levels were considerably lower. We were alarmed to see that the majority of euthyroid participants also had low levels of vitamin D. Therefore if left untreated, low vitamin D levels in hypothyroid patients could worsen their health further.

Keywords: vitamin D, thyroid hormones, euthyroid, hypothyroid, Nepal

Procedia PDF Downloads 142
4599 The Evaluation of Occupational Exposure of Chrome in Welders of Stainless Steels

Authors: L. Musak, J. Valachova, T. Vasicko, O. Osina

Abstract:

Introduction: Stainless steel is resistant to electrochemical corrosion by passivation. Welders are greatly exposed to welding fumes of toxic metals, which added to this steel. The content of chromium (Cr) in steel was above 11.5%, Ni and Mo from 2 to 6.5%. The aim of the study was the evaluation of occupational exposure to Cr, chromosome analysis and valuation of individual susceptibility polymorphism of gene CCND1 c.870 G>A. Materials and Methods: The exposed group was consisted from 117 welders of stainless steels. The average age was 38.43 years and average exposure time 7.14 years. Smokers represented 40.17%. The control group consisted of 123 non-exposed workers with an average age of 39.74 years and time employment 16.67 years. Smokers accounted for 22.76%. Analysis of Cr in blood and urine was performed by atomic absorption spectrophotometry (AAS Varian SpectraAA 30P) with electrothermal decomposition of the sample in the graphite furnace. For the evaluation of chromosomal aberrations (CA) was used cytogenetic analysis of peripheral blood lymphocytes, gene polymorphism was determined by PCR-RFLP reaction using appropriate primers and restriction enzymes. For statistical analysis was used the Mann-Whitney U-test. Results: The mean Cr level in exposed group was 0.095 mmol/l (0.019 min-max 0.504). No value does exceed the average normal value. The average value Cr in urine was 7.9 mmol/mol creatinine (min 0.026 to max 19.26). The total number of CA was 1.86% in compared to 1.70% controls. (CTA-type 0.90% vs 0.80% and CSA-type 0.96% vs 0.90%). In the number of total CA was observed statistical difference between smokers and non-smokers of exposed group (S-1.57% vs. NS-2.04%, P<0.05). In CCND1 gene polymorphisms was observed the increasing of the total CA with wild-type allele (WT) via heterozygous to the VAR genotype (1.44%<1.82%<2.13%). There was observed a statistically higher incidence of CTA-type aberrations in variant genotypes between exposed and control groups (1.22% vs. 0.59%, P<0.05). Discussion and conclusions: The work place is usually higher source of exposure to harmful factors. Workers need consistently and checked frequently health control. In assessing the risk of adverse effects of metals is important to consider their persistence, behavior and bioavailability. Prolonged exposure to carcinogens may not manifest symptoms of poisoning, but delayed effects may occur, which resulted in a higher incidence of malignant tumors.

Keywords: genotoxicity, chromium, stainless steels, welders

Procedia PDF Downloads 369
4598 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 486
4597 Ensuring Cyber Security Using Kippo Honeypots

Authors: S. Vivekananda Pandian

Abstract:

A major challenging task in this current scenario is protecting your computer and other electronic gadgets against Cyber-attacks. In this current era Cyber warfare becomes a major threat to the entire world which targets a particular organization or a country spreading the Malwares, Breaching the securities, causing major loss to the organization. Several sectors both public and private are computerized such as Energy sectors, Oil refinery sectors, Defense sectors and Aviation sectors are prone to attacks. Several attacks are unknown while accessing the internet. To study the characteristics and Intention of the Attacker Kippo Honeypots are used. Honeypots are the trap set by us which enables them to monitor the malicious activities and detailed study about attackers which leads to strengthening of the security.

Keywords: attackers, security, Kippo Honeypots, virtual machine

Procedia PDF Downloads 427
4596 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 245
4595 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 52
4594 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 72
4593 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools

Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad

Abstract:

Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.

Keywords: EDM, cyrogenic, TWR, MRR

Procedia PDF Downloads 457
4592 A Probabilistic View of the Spatial Pooler in Hierarchical Temporal Memory

Authors: Mackenzie Leake, Liyu Xia, Kamil Rocki, Wayne Imaino

Abstract:

In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds. Following the discussion of the initialization of parameters for the thresholds, corresponding qualitative arguments about the learning dynamics of the spatial pooler are discussed.

Keywords: hierarchical temporal memory, HTM, learning algorithms, machine learning, spatial pooler

Procedia PDF Downloads 345
4591 Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides

Authors: Josef Brychta, Jiri Kratochvil, Marek Pagac

Abstract:

The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness.

Keywords: grained cutting materials difficult to machine materials, optimum utilization, mechanic, manufacturing

Procedia PDF Downloads 300
4590 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
4589 Cross-Cultural Adaptation and Validation of the Child Engagement in Daily Life in Greek

Authors: Rigas Dimakopoulos, Marianna Papadopoulou, Roser Pons

Abstract:

Background: Participation in family, recreational activities and self-care is an integral part of health. It is also the main outcome of rehabilitation services for children and adolescents with motor disabilities. There are currently no tools in Greek to assess participation in young children. Purpose: To culturally adapt and validate the Greek version of the Child Engagement in Daily Living (CEDL). Method: The CEDL was cross-culturally translated into Greek using forward-backward translation, review by the expert committee, pretest application and final review. Internal consistency was evaluated using the Cronbach alpha and test-retest reliability using the intra-class correlation coefficient (ICC). Parents of children aged 18 months to 5 years and with motor disabilities were recruited. Participants completed the CEDL and the children’s gross motor function was classified using the Gross Motor Function Classification System (GMFCS). Results: Eighty-three children were included, GMFCS I-V. Mean ± standard deviation of the CEDL domains “frequency of participation” “enjoyment of participation” and “self-care” were 58.4±14.0, 3.8±1.0 and 49.9±24, respectively. Internal consistency of all domains was high; Cronbach alpha for “frequency of participation” was 0.83, for “enjoyment of participation” was 0.76 and for “self-care” was 0.92. Test-retest reliability (ICC) was excellent for the “self-care” (0.95) and good for “frequency of participation” and “enjoyment of participation” domains (0.90 and 0.88, respectively). Conclusion: The Greek CEDL has good reliability. It can be used to evaluate participation in Greek young children with motor disabilities GMFCS levels I-V.

Keywords: participation, child, disabilities, child engagement in daily living

Procedia PDF Downloads 175
4588 Designing Space through Narratives: The Role of the Tour Description in the Architectural Design Process

Authors: A. Papadopoulou

Abstract:

When people are asked to provide an oral description of a space they usually provide a Tour description, which is a dynamic type of spatial narrative centered on the narrator’s body, rather than a Map description, which is a static type of spatial narrative focused on the organization of the space as seen from above. Also, subjects with training in the architecture discipline tend to adopt a Tour perspective of space when the narrative refers to a space they have actually experienced but tend to adopt a Map perspective when the narrative refers to a space they have merely imagined. This pilot study aims to investigate whether the Tour description, which is the most common mode in the oral descriptions of experienced space, is a cognitive perspective taken in the process of designing a space. The study investigates whether a spatial description provided by a subject with architecture training in the type of a Tour description would be accurately translated into a spatial layout by other subjects with architecture training. The subjects were given the Tour description in written form and were asked to make a plan drawing of the described space. The results demonstrate that when we conceive and design space we do not adopt the same rules and cognitive patterns that we adopt when we reconstruct space from our memory. As shown by the results of this pilot study, the rules that underlie the Tour description were not detected in the translation from narratives to drawings. In a different phase, the study also investigates how would subjects with architecture training describe space when forced to take a Tour perspective in their oral description of a space. The results of this second phase demonstrate that if intentionally taken, the Tour perspective leads to descriptions of space that are more detailed and focused on experiential aspects.

Keywords: architecture, design process, embodied cognition, map description, oral narratives, tour description

Procedia PDF Downloads 158
4587 Design of a Drift Assist Control System Applied to Remote Control Car

Authors: Sheng-Tse Wu, Wu-Sung Yao

Abstract:

In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.

Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics

Procedia PDF Downloads 397
4586 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision

Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek

Abstract:

This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.

Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking

Procedia PDF Downloads 458
4585 Development of the ‘Teacher’s Counselling Competence Self-Efficacy Scale’

Authors: Riin Seema

Abstract:

Guidance and counseling as a whole-school responsibility is a global trend. Counseling is a specific competence, that consist of cognitive, emotional, attitudinal, and behavioral components. To authors best knowledge, there are no self-assessment scales for teachers in the whole world to measure teachers’ counseling competency. In 2016 an Estonian scale on teachers counseling competence was developed during an Interdisciplinary Project at Tallinn University. The team consisted of 10 interdisciplinary students (psychology, nursery school, special and adult education) and their supervisor. In 2017 another international Interdisciplinary Project was carried out for adapting the scale in English for international students. Firstly, the Estonian scale was translated by 2 professional translators, and then a group of international Erasmus students (again from psychology, nursery school, special and adult education) selected the most suitable translation for the scale. The developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ measures teacher’s self-efficacy beliefs in their own competence to perform different counseling tasks (creating a counseling relationship, using different reflection techniques, etc.). The scale consists of 47 questions in a 5-point numeric scale. The scale is created based on counseling theory and scale development and validation theory. The scale has been used as a teaching and learning material for counseling courses by 174 Estonian and 10 international student teachers. After filling out the scale, the students also reflected on the scale and their own counseling competencies. The study showed that the scale is unidimensional and has an excellent Cronbach alpha coefficient. Student’s qualitative feedback on the scale has been very positive, as the scale supports their self-reflection. In conclusion, the developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ is a useful tool for supporting student teachers’ learning.

Keywords: competency, counseling, self-efficacy, teacher students

Procedia PDF Downloads 146
4584 Using Neural Networks for Click Prediction of Sponsored Search

Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov

Abstract:

Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.

Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate

Procedia PDF Downloads 572
4583 Experimental Evaluation of UDP in Wireless LAN

Authors: Omar Imhemed Alramli

Abstract:

As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.

Keywords: TCP, UDP, IPERF, wireless LAN

Procedia PDF Downloads 354
4582 Quantifying Impairments in Whiplash-Associated Disorders and Association with Patient-Reported Outcomes

Authors: Harpa Ragnarsdóttir, Magnús Kjartan Gíslason, Kristín Briem, Guðný Lilja Oddsdóttir

Abstract:

Introduction: Whiplash-Associated Disorder (WAD) is a health problem characterized by motor, neurological and psychosocial symptoms, stressing the need for a multimodal treatment approach. To achieve individualized multimodal approach, prognostic factors need to be identified early using validated patient-reported and objective outcome measures. The aim of this study is to demonstrate the degree of association between patient-reported and clinical outcome measures of WAD patients in the subacute phase. Methods: Individuals (n=41) with subacute (≥1, ≤3 months) WAD (I-II), medium to high-risk symptoms, or neck pain rating ≥ 4/10 on the Visual Analog Scale (VAS) were examined. Outcome measures included measurements for movement control (Butterfly test) and cervical active range of motion (cAROM) using the NeckSmart system, a computer system using an inertial measurement unit (IMU) that connects to a computer. The IMU sensor is placed on the participant’s head, who receives visual feedback about the movement of the head. Patient-reported neck disability, pain intensity, general health, self-perceived handicap, central sensitization, and difficulties due to dizziness were measured using questionnaires. Excel and R statistical software were used for statistical analyses. Results: Forty-one participants, 15 males (37%), 26 females (63%), mean (SD) age 36.8 (±12.7), underwent data collection. Mean amplitude accuracy (AA) (SD) in the Butterfly test for easy, medium, and difficult paths were 2.4mm (0.9), 4.4mm (1.8), and 6.8mm (2.7), respectively. Mean cAROM (SD) for flexion, extension, left-, and right rotation were 46.3° (18.5), 48.8° (17.8), 58.2° (14.3), and 58.9° (15.0), respectively. Mean scores on the Neck Disability Index (NDI), VAS, Dizziness Handicap Inventory (DHI), Central Sensitization Inventory (CSI), and 36-Item Short Form Survey RAND version (RAND) were 43% (17.4), 7 (1.7), 37 (25.4), 51 (17.5), and 39.2 (17.7) respectively. Females showed significantly greater deviation for AA compared to males for easy and medium Butterfly paths (p<0.05). Statistically significant moderate to strong positive correlation was found between the DHI and easy (r=0.6, p=0.05), medium (r=0.5, p=0.05)) and difficult (r=0.5, p<0.05) Butterfly paths, between the total RAND score and all cAROMs (r between 0.4-0.7, p≤0.05) except flexion (r=0.4, p=0.7), and between the NDI score and CSI (r=0.7, p<0.01), VAS (r=0.5, p<0.01), and DHI (r=0.7, p<0.01) scores respectively. Discussion: All patient-reported and objective measures were found to be outside the reference range. Results suggest females have worse movement control in the neck in the subacute WAD phase. However, no statistical difference based on gender was found in patient-reported measures. Suggesting females might have worse movement control than males in general in this phase. The correlation found between DHI and the Butterfly test can be explained because the DHI measures proprioceptive symptoms like dizziness and eye movement disorders that can affect the outcome of movement control tests. A correlation was found between the total RAND score and cAROM, suggesting that a reduced range of motion affects the quality of life. Significance: The NeckSmart system can detect abnormalities in cAROM, fine movement control, and kinesthesia of the neck. Results suggest females have worse movement control than males. Results show a moderate to a high correlation between several patient-reported and objective measurements.

Keywords: whiplash associated disorders, car-collision, neck, trauma, subacute

Procedia PDF Downloads 70
4581 Emotions Evoked by Robots - Comparison of Older Adults and Students

Authors: Stephanie Lehmann, Esther Ruf, Sabina Misoch

Abstract:

Background: Due to demographic change and shortage of skilled nursing staff, assistive robots are built to support older adults at home and nursing staff in care institutions. When assistive robots facilitate tasks that are usually performed by humans, user acceptance is essential. Even though they are an important aspect of acceptance, emotions towards different assistive robots and different situations of robot-use have so far not been examined in detail. The appearance of assistive robots can trigger emotions that affect their acceptance. Acceptance of robots is assumed to be greater when they look more human-like; however, too much human similarity can be counterproductive. Regarding different groups, it is assumed that older adults have a more negative attitude towards robots than younger adults. Within the framework of a simulated robot study, the aim was to investigate emotions of older adults compared to students towards robots with different appearances and in different situations and so contribute to a deeper view of the emotions influencing acceptance. Methods: In a questionnaire study, vignettes were used to assess emotions toward robots in different situations and of different appearance. The vignettes were composed of two situations (service and care) shown by video and four pictures of robots varying in human similarity (machine-like to android). The combination of the vignettes was randomly distributed to the participants. One hundred forty-two older adults and 35 bachelor students of nursing participated. They filled out a questionnaire that surveyed 30 positive and 30 negative emotions. For each group, older adults and students, a sum score of “positive emotions” and a sum score of “negative emotions” was calculated. Mean value, standard deviation, or n for sample size and % for frequencies, according to the scale level, were calculated. For differences in the scores of positive and negative emotions for different situations, t-tests were calculated. Results: Overall, older adults reported significantly more positive emotions than students towards robots in general. Students reported significantly more negative emotions than older adults. Regarding the two different situations, the results were similar for the care situation, with older adults reporting more positive emotions than students and less negative emotions than students. In the service situation, older adults reported significantly more positive emotions; negative emotions did not differ significantly from the students. Regarding the appearance of the robot, there were no significant differences in emotions reported towards the machine-like, the mechanical-human-like and the human-like appearance. Regarding the android robot, students reported significantly more negative emotions than older adults. Conclusion: There were differences in the emotions reported by older adults compared to students. Older adults reported more positive emotions, and students reported more negative emotions towards robots in different situations and with different appearances. It can be assumed that older adults have a different attitude towards the use of robots than younger people, especially young adults in the health sector. Therefore, the use of robots in the service or care sector should not be rejected rashly based on the attitudes of younger persons, without considering the attitudes of older adults equally.

Keywords: emotions, robots, seniors, young adults

Procedia PDF Downloads 466
4580 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 63
4579 Accurate and Repeatable Pressure Control for Critical Testing of Advanced Ceramics Using Proportional and Derivative Controller

Authors: Benchalak Muangmeesri

Abstract:

The purpose of this paper is to discuss how to test the best control performance of a ceramics. Hydraulic press machine (HPM) is the most common shaping of advanced ceramic with products, dimensions, and ceramic products mainly from synthetic powders. A microcontroller can be achieved to control process and has set high standards in the shaping of raw materials in powder form. HPM was proposed to develop a position control system that linked to the embedded controller PIC16F877 via Proportional and Derivative (PD) controller. The model is performed using MATLAB/SIMULINK and the best control performance of an HPM. Finally, PD controller results, showing the best performance as it had the smallest overshoot and highest quality using a microcontroller control.

Keywords: ceramics, hydraulic press, microcontroller, PD controller

Procedia PDF Downloads 356
4578 Adaptive Auth - Adaptive Authentication Based on User Attributes for Web Application

Authors: Senthuran Manoharan, Rathesan Sivagananalingam

Abstract:

One of the main issues in system security is Authentication. Authentication can be defined as the process of recognizing the user's identity and it is the most important step in the access control process to safeguard data/resources from being accessed by unauthorized users. The static method of authentication cannot ensure the genuineness of the user. Due to this reason, more innovative authentication mechanisms came into play. At first two factor authentication was introduced and later, multi-factor authentication was introduced to enhance the security of the system. It also had some issues and later, adaptive authentication was introduced. In this research paper, the design of an adaptive authentication engine was put forward. The user risk profile was calculated based on the user parameters and then the user was challenged with a suitable authentication method.

Keywords: authentication, adaptive authentication, machine learning, security

Procedia PDF Downloads 249
4577 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 251
4576 Effect of Different Feed Composition on the Growth Performance in Early Weaned Piglets

Authors: Obuzor Eze Obuzor, Ekpoke Okurube Sliver

Abstract:

The study was carried out at Debee farms at Ahoada West Local Government area, Rivers State, Nigeria. To evaluate the impact of two different cost-effective available feed composition on growth performance of weaned piglets. Thirty weaned uncontrolled cross bred (Large white x pietrain) piglets of average initial weight of 3.04 Kg weaned at 30days were assigned to three dietary treatments, comprising three replicates of 10 weaned piglets each, piglets were kept at 7 °C in different pens with dimensions of 4.50 × 4.50 m. The design of the experiment was completely randomized design, data from the study were subjected to one-way analysis of variance (ANOVA) and significant means were separated using Duncan's Multiple Range Test using Statistical Analysis System (SAS) software for windows (2 0 0 3), statistical significance was assessed at P < 0.05 (95% confidence interval) while survival rate was calculated using simple percentage. A standard diet was prepared to meet the nutrient requirements of weaned piglets at (20.8% crude protein). The three diets were fed to the animals in concrete feeding trough, control diet (C) had soybean meal while first treatment had spent grain (T1) and the second treatment had wheat offal (T2) respectively. The experiment was partitioned into four weeks periods (days 1-7, 8-14, 15-21 and 22-28). Feed and water were given unrestrictedly throughout the period of the experiment. The feed intake and weights of the pigs were recorded on weekly basis. Feed conversion ratio and daily weight gain were calculated and the study lasted for four weeks. There was no significant (P>0.05) effect of diet on survival rate, final body weight, average daily weight gain, daily feed intake and feed conversion ratio. The overall performance showed that treatment one (T1) had survival rate (93%), improved daily weight gain (36.21 g), average daily feed intake (120.14 g) and had the best feed conversion ratio (0.29) similar high mean value with the control while treatment two (T2) had lowest and negative response to all parameters. It could be concluded that feed formulated with spent grain is cheaper than control (soybean meal) and also improved the growth performance of weaned piglets.

Keywords: piglets, weaning, feed conversions ratio, daily weight gain

Procedia PDF Downloads 66
4575 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 63
4574 The Mechanical Behavior of a Chemically Stabilized Soil

Authors: I Lamri, L Arabet, M. Hidjeb

Abstract:

The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold.

Keywords: cement, compression strength, shear stress, cohesion, angle of internal friction

Procedia PDF Downloads 488
4573 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load

Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul

Abstract:

While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.

Keywords: aluminum foam, collapse mechanisms, light-weight structures, transport application

Procedia PDF Downloads 398
4572 Factors Associated with Commencement of Non-Invasive Ventilation

Authors: Manoj Kumar Reddy Pulim, Lakshmi Muthukrishnan, Geetha Jayapathy, Radhika Raman

Abstract:

Introduction: In the past two decades, noninvasive positive pressure ventilation (NIPPV) emerged as one of the most important advances in the management of both acute and chronic respiratory failure in children. In the acute setting, it is an alternative to intubation with a goal to preserve normal physiologic functions, decrease airway injury, and prevent respiratory tract infections. There is a need to determine the clinical profile and parameters which point towards the need for NIV in the pediatric emergency setting. Objectives: i) To study the clinical profile of children who required non invasive ventilation and invasive ventilation, ii) To study the clinical parameters common to children who required non invasive ventilation. Methods: All children between one month to 18 years, who were intubated in the pediatric emergency department and those for whom decision to commence Non Invasive Ventilation was made in Emergency Room were included in the study. Children were transferred to the Paediatric Intensive Care Unit and started on Non Invasive Ventilation as per our hospital policy and followed up in the Paediatric Intensive Care Unit. Clinical profile of all children which included age, gender, diagnosis and indication for intubation were documented. Clinical parameters such as respiratory rate, heart rate, saturation, grunting were documented. Parameters obtained were subject to statistical analysis. Observations: Airway disease (Bronchiolitis 25%, Viral induced wheeze 22%) was a common diagnosis in 32 children who required Non Invasive Ventilation. Neuromuscular disorder was the common diagnosis in 27 children (78%) who were Intubated. 17 children commenced on Non Invasive Ventilation who later needed invasive ventilation had Neuromuscular disease. High frequency nasal cannula was used in 32, and mask ventilation in 17 children. Clinical parameters common to the Non Invasive Ventilation group were age < 1 year (17), tachycardia n = 7 (22%), tachypnea n = 23 (72%) and severe respiratory distress n = 9 (28%), grunt n = 7 (22%), SPO2 (80% to 90%) n = 16. Children in the Non Invasive Ventilation + INTUBATION group were > 3 years (9), had tachycardia 7 (41%), tachypnea 9(53%) with a male predominance n = 9. In statistical comparison among 3 groups,'p' value was significant for pH, saturation, and use of Ionotrope. Conclusion: Invasive ventilation can be avoided in the paediatric Emergency Department in children with airway disease, by commencing Non Invasive Ventilation early. Intubation in the pediatric emergency department has a higher association with neuromuscular disorders.

Keywords: clinical parameters, indications, non invasive ventilation, paediatric emergency room

Procedia PDF Downloads 336
4571 From Waste Recycling to Waste Prevention by Households : Could Eco-Feedback Strategies Fill the Gap?

Authors: I. Dangeard, S. Meineri, M. Dupré

Abstract:

large body of research on energy consumption reveals that regular information on energy consumption produces a positive effect on behavior. The present research aims to test this feedback paradigm on waste management. A small-scale experiment on residual household waste was performed in a large french urban area, in partnership with local authorities, as part of the development of larger-scale project. A two-step door-to-door recruitment scheme led to 85 households answering a questionnaire. Among them, 54 accepted to participate in a study on waste (second step). Participants were then randomly assigned to one of the 3 experimental conditions : self-reported feedback on curbside waste, external feedback on waste weight based on information technologies, and no feedback for the control group. An additional control group was added, including households who were not requested to answer the questionnaire. Household residual waste was collected every week, and tags on curbside bins fed a database with waste weight of households. The feedback period lasted 14 weeks (february-may 2014). Quantitative data on waste weight were analysed, including these 14 weeks and the 7 previous weeks. Households were then contacted by phone in order to confirm the quantitative results. Regarding the recruitment questionnaire, results revealed high pro-environmental attitude on the NEP scale, high recycling behavior level and moderate level of source reduction behavior on the adapted 3R scale, but no statistical difference between the 3 experimental groups. Regarding the feedback manipulation paradigm, waste weight reveals important differences between households, but doesn't prove any statistical difference between the experimental conditions. Qualitative phone interviews confirm that recycling is a current practice among participants, whereas source reduction of waste is not, and mainly appears as a producer problem of packaging limitation. We conclude that triggering waste prevention behaviors among recycling households involves long-term feedback and should promote benchmarking, in order to clearly set waste reduction as an objective to be managed through feedback figures.

Keywords: eco-feedback, household waste, waste reduction, experimental research

Procedia PDF Downloads 392