Search results for: ongoing training
2502 Binarization and Recognition of Characters from Historical Degraded Documents
Authors: Bency Jacob, S.B. Waykar
Abstract:
Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.Keywords: binarization, denoising, global thresholding, local thresholding, thresholding
Procedia PDF Downloads 3482501 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 3572500 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension
Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe
Abstract:
The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.Keywords: neural network, hypertension, data set, training set, supervised learning
Procedia PDF Downloads 3982499 Authorship Attribution Using Sociolinguistic Profiling When Considering Civil and Criminal Cases
Authors: Diana A. Sokolova
Abstract:
This article is devoted to one of the possibilities for identifying the author of an oral or written text - sociolinguistic profiling. Sociolinguistic profiling is utilized as a forensic linguistics technique to identify individuals through language patterns, particularly in criminal cases. It examines how social factors influence language use. This study aims to showcase the significance of linguistic profiling for attributing authorship in texts and emphasizes the necessity for its continuous enhancement while considering its strengths and weaknesses. The study employs semantic-syntactic, lexical-semantic, linguopragmatic, logical, presupposition, authorization, and content analysis methods to investigate linguistic profiling. The research highlights the relevance of sociolinguistic profiling in authorship attribution and underscores the importance of ongoing refinement of the technique, considering its limitations. This study emphasizes the practical application of linguistic profiling in legal settings and underscores the impact of social factors on language use, contributing to the field of forensic linguistics. Data collection involves collecting oral and written texts from criminal and civil court cases to analyze language patterns for authorship attribution. The collected data is analyzed using various linguistic analysis methods to identify individual characteristics and patterns that can aid in authorship attribution. The study addresses the effectiveness of sociolinguistic profiling in identifying authors of texts and explores the impact of social factors on language use in legal contexts. In spite of advantages challenges in linguistics profiling have spurred debates and controversies in academic circles, legal environments, and the public sphere. So, this research highlights the significance of sociolinguistic profiling in authorship attribution and emphasizes the need for further development of this method, considering its strengths and weaknesses.Keywords: authorship attribution, detection of identifying, dialect, features, forensic linguistics, social influence, sociolinguistics, unique speech characteristics
Procedia PDF Downloads 442498 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization
Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon
Abstract:
The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization
Procedia PDF Downloads 4482497 Multi Data Management Systems in a Cluster Randomized Trial in Poor Resource Setting: The Pneumococcal Vaccine Schedules Trial
Authors: Abdoullah Nyassi, Golam Sarwar, Sarra Baldeh, Mamadou S. K. Jallow, Bai Lamin Dondeh, Isaac Osei, Grant A. Mackenzie
Abstract:
A randomized controlled trial is the "gold standard" for evaluating the efficacy of an intervention. Large-scale, cluster-randomized trials are expensive and difficult to conduct, though. To guarantee the validity and generalizability of findings, high-quality, dependable, and accurate data management systems are necessary. Robust data management systems are crucial for optimizing and validating the quality, accuracy, and dependability of trial data. Regarding the difficulties of data gathering in clinical trials in low-resource areas, there is a scarcity of literature on this subject, which may raise concerns. Effective data management systems and implementation goals should be part of trial procedures. Publicizing the creative clinical data management techniques used in clinical trials should boost public confidence in the study's conclusions and encourage further replication. In the ongoing pneumococcal vaccine schedule study in rural Gambia, this report details the development and deployment of multi-data management systems and methodologies. We implemented six different data management, synchronization, and reporting systems using Microsoft Access, RedCap, SQL, Visual Basic, Ruby, and ASP.NET. Additionally, data synchronization tools were developed to integrate data from these systems into the central server for reporting systems. Clinician, lab, and field data validation systems and methodologies are the main topics of this report. Our process development efforts across all domains were driven by the complexity of research project data collected in real-time data, online reporting, data synchronization, and ways for cleaning and verifying data. Consequently, we effectively used multi-data management systems, demonstrating the value of creative approaches in enhancing the consistency, accuracy, and reporting of trial data in a poor resource setting.Keywords: data management, data collection, data cleaning, cluster-randomized trial
Procedia PDF Downloads 312496 The Forms of Representation in Architectural Design Teaching: The Cases of Politecnico Di Milano and Faculty of Architecture of the University of Porto
Authors: Rafael Sousa Santos, Clara Pimena Do Vale, Barbara Bogoni, Poul Henning Kirkegaard
Abstract:
The representative component, a determining aspect of the architect's training, has been marked by an exponential and unprecedented development. However, the multiplication of possibilities has also multiplied uncertainties about architectural design teaching, and by extension, about the very principles of architectural education. In this paper, it is intended to present the results of a research developed on the following problem: the relation between the forms of representation and the architectural design teaching-learning processes. The research had as its object the educational model of two schools – the Politecnico di Milano (POLIMI) and the Faculty of Architecture of the University of Porto (FAUP) – and was led by three main objectives: to characterize the educational model followed in both schools focused on the representative component and its role; to interpret the relation between forms of representation and the architectural design teaching-learning processes; to consider their possibilities of valorisation. Methodologically, the research was conducted according to a qualitative embedded multiple-case study design. The object – i.e., the educational model – was approached in both POLIMI and FAUP cases considering its Context and three embedded unities of analysis: the educational Purposes, Principles, and Practices. In order to guide the procedures of data collection and analysis, a Matrix for the Characterization (MCC) was developed. As a methodological tool, the MCC allowed to relate the three embedded unities of analysis with the three main sources of evidence where the object manifests itself: the professors, expressing how the model is assumed; the architectural design classes, expressing how the model is achieved; and the students, expressing how the model is acquired. The main research methods used were the naturalistic and participatory observation, in-person-interview and documentary and bibliographic review. The results reveal the importance of the representative component in the educational model of both cases, despite the differences in its role. In POLIMI's model, representation is particularly relevant in the teaching of architectural design, while in FAUP’s model, it plays a transversal role – according to an idea of 'general training through hand drawing'. In fact, the difference between models relative to representation can be partially understood by the level of importance that each gives to hand drawing. Regarding the teaching of architectural design, the two cases are distinguished in the relation with the representative component: while in POLIMI the forms of representation serve essentially an instrumental purpose, in FAUP they tend to be considered also for their methodological dimension. It seems that the possibilities for valuing these models reside precisely in the relation between forms of representation and architectural design teaching. It is expected that the knowledge base developed in this research may have three main contributions: to contribute to the maintenance of the educational model of POLIMI and FAUP; through the precise description of the methodological procedures, to contribute by transferability to similar studies; through the critical and objective framework of the problem underlying the forms of representation and its relation with architectural design teaching, to contribute to the broader discussion concerning the contemporary challenges on architectural education.Keywords: architectural design teaching, architectural education, educational models, forms of representation
Procedia PDF Downloads 1262495 Developing Models for Predicting Physiologically Impaired Arm Reaching Paths
Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Mustafa Mhawesh, Reza Langari
Abstract:
This paper describes the development of a model of an impaired human arm performing a reaching motion, which will be used to predict hand path trajectories for people with reduced arm joint mobility. Assuming that the arm was in contact with a surface during the entire movement, the contact conditions at the initial and final task locations were determined and used to generate the entire trajectory. The model was validated by comparing it to experimental data, which simulated an arm joint impairment by physically constraining the joint motion with a brace. Future research will include using the model in the development of physical training protocols that avoid early recruitment of “healthy” Degrees-Of-Freedom (DOF) for reaching motions, thus facilitating an Active Range-Of-Motion Recovery (AROM) for a particular impaired joint.Keywords: higher order kinematic specifications, human motor coordination, impaired movement, kinematic synthesis
Procedia PDF Downloads 3412494 Harnessing the Opportunities of E-Learning and Education in Promoting Literacy in Nigeria
Authors: Victor Oluwaseyi Olowonisi
Abstract:
The paper aimed at presenting an overview on the concept of e-learning as it relates to higher education and how it provides opportunities for students, instructors and the government in developing the educational sector. It also touched on the benefits and challenges attached to e-learning as a new medium of reaching more students especially in the Nigerian context. The opportunities attributed to e-learning in the paper includes breaking boundaries barriers, reaching a larger number of students, provision of jobs for ICT experts, etc. In contrary, poor power supply, cost of implementation, poor computer literacy, technophobia (fear of technology), computer crime and system failure were some of the challenges of e-learning discussed in the paper. The paper proffered that the government can help the people gain more from e-learning through its financing. Also, it was stated that instructors/lecturers and students need to undergo training on computer application in order for e-learning to be more effective in developing higher education in Nigeria.Keywords: e-learning, education, higher education, increasing literacy
Procedia PDF Downloads 2742493 Nutrition Support Practices and Nutritional Status of Adolescents Receiving Antiretroviral Therapy in Selected Hospitals in Ethiopia
Authors: Meless Gebrie Bore, Lin Perry, Xiaoyue Xu, Andargachew Kassa, Marilyn Cruickshank
Abstract:
Background: Adolescents living with HIV (ALHIV) in Ethiopia face significant health challenges, particularly related to nutrition, which is essential for optimizing antiretroviral therapy (ART) outcomes. This population is vulnerable to nutritional deficiencies due to increased energy demands and the adverse effects of HIV, alongside rapid growth and low socio-economic status. Despite advances in ART, research on nutritional care for ALHIV in Ethiopia is limited. Integrated nutritional interventions are critical for improving health outcomes, yet comprehensive guidance is lacking. This study aimed to evaluate healthcare workers' practices in ART clinics, assess the nutritional status of ALHIV, and provide recommendations for enhancing nutritional care. Method: Cross-sectional surveys were conducted, recruiting 44 healthcare professionals and 384 ALHIV across ten public hospitals in Addis Ababa and Oromia regions. Participants were selected using purposive sampling for healthcare workers and proportionate random sampling for ALHIV engaged in ART services. Data was collected using a pre-tested structured questionnaire with quantitative and qualitative components facilitated by trained healthcare workers through the Kobo Toolbox program. Results: Findings revealed that while most healthcare workers conducted basic nutritional assessments, more sensitive methods were rarely used. Only 36.4% assessed dietary intake and 27.3% evaluated food security. Nutrition counseling was limited, with only 38.6% providing such services regularly. Health Care worker participants expressed dissatisfaction with the integration of nutrition services due to a lack of training and resources. Nutritional assessments revealed that 24.2% of ALHIV were classified as thin, 21.7% as stunted, and 34.9% as malnourished based on mid-upper arm circumference, with 19.4% experiencing severe acute malnutrition. These results highlight the urgent need and opportunities to improve nutritional support tailored to ALHIV-specific needs. Conclusion and Recommendations: Study findings identified evidence of substantial nutritional deficits and critical gaps in nutritional care for ALHIV in Ethiopian ART clinics. While basic assessment and counseling were generally practiced, limited use of more sensitive methods and inadequate integration of nutrition services hindered care effectiveness. To improve health outcomes, it is essential to enhance training for healthcare workers, develop standardized nutrition guidelines, and allocate resources effectively. Conducting further research with large, diverse samples and integrating comprehensive nutritional care alongside ART services will enable better matching of the nutritional needs of this vulnerable population.Keywords: adolescents living with HIV(ALHIV), antiretroviral therapy (ART), HIV, Ethiopia, malnutrition, nutritional support, stunting, thinness
Procedia PDF Downloads 182492 Using Priority Order of Basic Features for Circumscribed Masses Detection in Mammograms
Authors: Minh Dong Le, Viet Dung Nguyen, Do Huu Viet, Nguyen Huu Tu
Abstract:
In this paper, we present a new method for circumscribed masses detection in mammograms. Our method is evaluated on 23 mammographic images of circumscribed masses and 20 normal mammograms from public Mini-MIAS database. The method is quite sanguine with sensitivity (SE) of 95% with only about 1 false positive per image (FPpI). To achieve above results we carry out a progression following: Firstly, the input images are preprocessed with the aim to enhance key information of circumscribed masses; Next, we calculate and evaluate statistically basic features of abnormal regions on training database; Then, mammograms on testing database are divided into equal blocks which calculated corresponding features. Finally, using priority order of basic features to classify blocks as an abnormal or normal regions.Keywords: mammograms, circumscribed masses, evaluated statistically, priority order of basic features
Procedia PDF Downloads 3382491 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization
Procedia PDF Downloads 1732490 Farmers’ Perception and Response to Climate Change Across Agro-ecological Zones in Conflict-Ridden Communities in Cameroon
Authors: Lotsmart Fonjong
Abstract:
The livelihood of rural communities in the West African state of Cameroon, which is largely dictated by natural forces (rainfall, temperatures, and soil), is today threatened by climate change and armed conflict. This paper investigates the extent to which rural communities are aware of climate change, how their perceptions of changes across different agro-ecological zones have impacted farming practices, output, and lifestyles, on the one hand, and the extent to which local armed conflicts are confounding their efforts and adaptation abilities. The paper is based on a survey conducted among small farmers in selected localities within the forest and savanna ecological zones of the conflict-ridden Northwest and Southwest Cameroon. Attention is paid to farmers’ gender, scale, and type of farming. Farmers’ perception of/and response to climate change are analysed alongside local rainfall and temperature data and mobilization for climate justice. Findings highlight the fact that farmers’ perception generally corroborates local climatic data. Climatic instability has negatively affected farmers’ output, food prices, standards of living, and food security. However, the vulnerability of the population varies across ecological zones, gender, and crop types. While these factors also account for differences in local response and adaptation to climate change, ongoing armed conflicts in these regions have further complicated opportunities for climate-driven agricultural innovations, inputs, and exchange of information among farmers. This situation underlines how poor communities, as victims, are forced into many complex problems outsider their making. It is therefore important to mainstream farmers’ perceptions and differences into policy strategies that consider both climate change and Anglophone conflict as national security concerns foe sustainable development in Cameroon.Keywords: adaptation policies, climate change, conflict, small farmers, cameroon
Procedia PDF Downloads 1632489 The Development of the Psychosomatic Nursing Model from an Evidence-Based Action Research on Proactive Mental Health Care for Medical Inpatients
Authors: Chia-Yi Wu, Jung-Chen Chang, Wen-Yu Hu, Ming-Been Lee
Abstract:
In nearly all physical health conditions, suicide risk is increased compared to healthy people even after adjustment for age, gender, mental health, and substance use diagnoses. In order to highlight the importance of suicide risk assessment for the inpatients and early identification and engagement for inpatients’ mental health problems, a study was designed aiming at developing a comprehensive psychosomatic nursing engagement (PSNE) model with standardized operation procedures informing how nurses communicate, assess, and engage with the inpatients with emotional distress. The purpose of the study was to promote the gatekeeping role of clinical nurses in performing brief assessment and interventions to detect depression and anxiety symptoms among the inpatients, particularly in non-psychiatric wards. The study will be carried out in a 2000-bed university hospital in Northern Taiwan in 2019. We will select a ward for trial and develop feasible procedures and in-job training course for the nurses to offer mental health care, which will also be validated through professional consensus meeting. The significance of the study includes the following three points: (1) The study targets at an important but less-researched area of PSNE model in the cultural background of Taiwan, where hospital service is highly accessible, but mental health and suicide risk assessment are hardly provided by non-psychiatric healthcare personnel. (2) The issue of PSNE could be efficient and cost-effective in the identification of suicide risks at an early stage to prevent inpatient suicide or to reduce future suicide risk by early treatment of mental illnesses among the high-risk group of hospitalized patients who are more than three-times lethal to suicide. (3) Utilizing a brief tool with its established APP ('The Five-item Brief Symptom Rating Scale, BSRS-5'), we will invent the standardized procedure of PSNE and referral steps in collaboration with the medical teams across the study hospital. New technological tools nested within nursing assessment/intervention will concurrently be invented to facilitate better care quality. The major outcome measurements will include tools for early identification of common mental distress and suicide risks, i.e., the BSRS-5, revised BSRS-5, and the 9-item Concise Mental Health Checklist (CMHC-9). The main purpose of using the CMHC-9 in clinical suicide risk assessment is mainly to provide care and build-up therapeutic relationship with the client, so it will also be used to nursing training highlighting the skills of supportive care. Through early identification of the inpatients’ depressive symptoms or other mental health care needs such as insomnia, anxiety, or suicide risk, the majority of the nursing clinicians would be able to engage in critical interventions that alleviate the inpatients’ suffering from mental health problems, given a feasible nursing input.Keywords: mental health care, clinical outcome improvement, clinical nurses, suicide prevention, psychosomatic nursing
Procedia PDF Downloads 1112488 Empowering Female Entrepreneurs for Economic Development: Challenges and Prospects within the Nigerian Economy
Authors: Inyene Nathaniel Nkanta
Abstract:
The present economic situation in Nigeria, with an increase in inflation rate due to the fall of crude oil prices and post covid-19 crisis, has increased the level of poverty and suffering in Nigeria, particularly the women. Against that backdrop, this research project is initiated to explore ways to empower women through entrepreneurship education and training to ameliorate the poverty level amongst women in Nigeria. A qualitative approach to data collection will be applied in this study and to test the assertions of this research project empirically, this research adopts a case study research method as this will enable me to obtain and probe ways women can be empowered through semi-structured interviews and focus groups. The result of this research project will provide an original perspective on human capital development, most importantly, the need for entrepreneurial education and entrepreneurial literature and practice.Keywords: women, Nigeria, entrepreneurship education, Economic development, human capital
Procedia PDF Downloads 902487 Comparison and Validation of a dsDNA biomimetic Quality Control Reference for NGS based BRCA CNV analysis versus MLPA
Authors: A. Delimitsou, C. Gouedard, E. Konstanta, A. Koletis, S. Patera, E. Manou, K. Spaho, S. Murray
Abstract:
Background: There remains a lack of International Standard Control Reference materials for Next Generation Sequencing-based approaches or device calibration. We have designed and validated dsDNA biomimetic reference materials for targeted such approaches incorporating proprietary motifs (patent pending) for device/test calibration. They enable internal single-sample calibration, alleviating sample comparisons to pooled historical population-based data assembly or statistical modelling approaches. We have validated such an approach for BRCA Copy Number Variation analytics using iQRS™-CNVSUITE versus Mixed Ligation-dependent Probe Amplification. Methods: Standard BRCA Copy Number Variation analysis was compared between mixed ligation-dependent probe amplification and next generation sequencing using a cohort of 198 breast/ovarian cancer patients. Next generation sequencing based copy number variation analysis of samples spiked with iQRS™ dsDNA biomimetics were analysed using proprietary CNVSUITE software. Mixed ligation-dependent probe amplification analyses were performed on an ABI-3130 Sequencer and analysed with Coffalyser software. Results: Concordance of BRCA – copy number variation events for mixed ligation-dependent probe amplification and CNVSUITE indicated an overall sensitivity of 99.88% and specificity of 100% for iQRS™-CNVSUITE. The negative predictive value of iQRS-CNVSUITE™ for BRCA was 100%, allowing for accurate exclusion of any event. The positive predictive value was 99.88%, with no discrepancy between mixed ligation-dependent probe amplification and iQRS™-CNVSUITE. For device calibration purposes, precision was 100%, spiking of patient DNA demonstrated linearity to 1% (±2.5%) and range from 100 copies. Traditional training was supplemented by predefining the calibrator to sample cut-off (lock-down) for amplicon gain or loss based upon a relative ratio threshold, following training of iQRS™-CNVSUITE using spiked iQRS™ calibrator and control mocks. BRCA copy number variation analysis using iQRS™-CNVSUITE™ was successfully validated and ISO15189 accredited and now enters CE-IVD performance evaluation. Conclusions: The inclusion of a reference control competitor (iQRS™ dsDNA mimetic) to next generation sequencing-based sequencing offers a more robust sample-independent approach for the assessment of copy number variation events compared to mixed ligation-dependent probe amplification. The approach simplifies data analyses, improves independent sample data analyses, and allows for direct comparison to an internal reference control for sample-specific quantification. Our iQRS™ biomimetic reference materials allow for single sample copy number variation analytics and further decentralisation of diagnostics to single patient sample assessment.Keywords: validation, diagnostics, oncology, copy number variation, reference material, calibration
Procedia PDF Downloads 682486 The Effect of Artificial Intelligence on Digital Factory
Authors: Sherif Fayez Lewis Ghaly
Abstract:
up to datefacupupdated planning has the mission of designing merchandise, plant life, procedures, enterprise, regions, and the development of a up to date. The requirements for up-to-date planning and the constructing of a updated have changed in recent years. everyday restructuring is turning inupupdated greater essential up-to-date hold the competitiveness of a manufacturing facilityupdated. restrictions in new regions, shorter existence cycles of product and manufacturing generation up-to-date a VUCA global (Volatility, Uncertainty, Complexity & Ambiguity) up-to-date greater frequent restructuring measures inside a manufacturing facilityupdated. A virtual up-to-date model is the making plans basis for rebuilding measures and up-to-date an fundamental up-to-date. short-time period rescheduling can now not be handled through on-web site inspections and manual measurements. The tight time schedules require 3177227fc5dac36e3e5ae6cd5820dcaa making plans fashions. updated the high variation fee of facup-to-dateries defined above, a method for rescheduling facupdatedries on the idea of a modern-day digital up to datery dual is conceived and designed for sensible software in updated restructuring projects. the point of interest is on rebuild approaches. The purpose is up-to-date preserve the planning basis (virtual up-to-date model) for conversions within a up to datefacupupdated updated. This calls for the application of a methodology that reduces the deficits of present techniques. The goal is up-to-date how a digital up to datery version may be up to date up to date during ongoing up to date operation. a method up-to-date on phoup to dategrammetry technology is presented. the focus is on developing a easy and fee-powerful up to date tune the numerous adjustments that arise in a manufacturing unit constructing in the course of operation. The method is preceded with the aid of a hardware and software assessment up-to-date become aware of the most cost effective and quickest version.Keywords: building information modeling, digital factory model, factory planning, maintenance digital factory model, photogrammetry, restructuring
Procedia PDF Downloads 332485 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition
Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini
Abstract:
Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning
Procedia PDF Downloads 652484 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures
Authors: Reza Rezaeipour Honarmandzad
Abstract:
In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements
Procedia PDF Downloads 4222483 Usability and Biometric Authentication of Electronic Voting System
Authors: Nighat Ayub, Masood Ahmad
Abstract:
In this paper, a new voting system is developed and its usability is evaluated. The main feature of this system is the biometric verification of the voter and then a few easy steps to cast a vote. As compared to existing systems available, e.g dual vote, the new system requires no training in advance. The security is achieved via multiple key concept (another part of this project). More than 100 student voters were participated in the election from University of Malakanad, Chakdara, PK. To achieve the reliability, the voters cast their votes in two ways, i.e. paper based and electronic based voting using our new system. The results of paper based and electronic voting system are compared and it is concluded that the voters cast their votes for the intended candidates on the electronic voting system. The voters were requested to fill a questionnaire and the results of the questionnaire are carefully analyzed. The results show that the new system proposed in this paper is more secure and usable than other systems.Keywords: e-voting, security, usability, authentication
Procedia PDF Downloads 3972482 Increase of Completion Rate of Nursing Care during Therapeutic Hypothermia in Critical Patients
Authors: Yi-Jiun Chou, Ying-Hsuan Li, Yi-Jung Liu, Hsin-Yu Chiang, Hsuan-Ching Wang
Abstract:
Background: Patients received therapeutic hypothermia (TH) after resuscitation from cardiac arrest are more dependent on continue and intensive nursing care. It involves many difficult steps, especially achieving target body temperature. To our best knowledge, there is no consensus or recommended standards on nursing practice of TH. Aim: The aim of this study is to increase the completion rate of nursing care at therapeutic hypothermia. Methods: We took five measures: (1) Amendment of nursing standards of therapeutic hypothermia; (2) Amendment of TH checklist items to nursing records; (3) Establishment of monitor procedure; (4) Design each period of TH care reminder cards; (5) Providing in-service training sections of TH for ICU nursing staff. Outcomes: The completion rate of nursing care at therapeutic hypothermia increased from 78.1% to 89.3%. Conclusion: The project team not only increased the completion rate but also improved patient safety and quality of care.Keywords: therapeutic hypothermia, nursing, critical care, quality of care
Procedia PDF Downloads 4262481 Applying Art Integration on Teaching Quality Assurance for Early Childhood Art Education
Authors: Shih Meng-Chi, Nai-Chia Chao
Abstract:
The study constructed an arts integrative curriculum for early childhood educators and kindergarten teachers to the exciting possibilities of the use of the art integration method. The art integrative curriculum applied art integration that combines and integrates various elements of music, observation, sound, art, instruments, and creation. The program consists of college courses that combine the use of technology with children’s literature, multimedia, music, dance, and drama presentation. This educational program is being used in kindergartens during the pre-service kindergarten teacher training. The study found that arts integrated curriculum was benefit for connecting across domains, multi-sensory experiences, teaching skills, implementation and creation on children art education. The art Integrating instruction helped to provide students with an understanding of the whole framework and improve the teaching quality.Keywords: art integration, teaching quality assurance, early childhood education, arts integrated curriculum
Procedia PDF Downloads 5972480 Importance of Ethics in Cloud Security
Authors: Pallavi Malhotra
Abstract:
This paper examines the importance of ethics in cloud computing. In the modern society, cloud computing is offering individuals and businesses an unlimited space for storing and processing data or information. Most of the data and information stored in the cloud by various users such as banks, doctors, architects, engineers, lawyers, consulting firms, and financial institutions among others require a high level of confidentiality and safeguard. Cloud computing offers centralized storage and processing of data, and this has immensely contributed to the growth of businesses and improved sharing of information over the internet. However, the accessibility and management of data and servers by a third party raise concerns regarding the privacy of clients’ information and the possible manipulations of the data by third parties. This document suggests the approaches various stakeholders should take to address various ethical issues involving cloud-computing services. Ethical education and training is key to all stakeholders involved in the handling of data and information stored or being processed in the cloud.Keywords: IT ethics, cloud computing technology, cloud privacy and security, ethical education
Procedia PDF Downloads 3272479 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1682478 Rehabilitation of the Blind Using Sono-Visualization Tool
Authors: Ashwani Kumar
Abstract:
In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness
Procedia PDF Downloads 3922477 National Defense and Armed Forces Development in the Member States of the Visegrad Group
Authors: E. Hronyecz
Abstract:
Guaranteeing the independence of the V4 Member States, the protection of their national values and their citizens, and the security of the Central and Eastern European region requires the development of military capabilities in terms of the capabilities of nations. As a result, European countries have begun developing capabilities and forces, within which nations are seeking to strengthen the capabilities of their armies and make their interoperability more effective. One aspect of this is the upgrading of military equipment, personnel equipment, and other human resources. Based on the author's preliminary researches - analyzing the scientific literature, the relevant statistical data and conducting of professional consultations with the experts of the research field – it can clearly claimed for all four states of Visegrad Group that a change of direction in the field of defense has been noticeable since the second half of the last decade. Collective defense came to the forefront again; the military training, professionalism, and radical modernization of technical equipment becoming crucial.Keywords: armed forces, cooperation, development, Visegrad Group
Procedia PDF Downloads 1372476 Paraplegic Dimensions of Asymmetric Warfare: A Strategic Analysis for Resilience Policy Plan
Authors: Sehrish Qayyum
Abstract:
In this age of constant technology, asymmetrical warfare could not be won. Attuned psychometric study confirms that screaming sometimes is more productive than active retaliation against strong adversaries. Asymmetric warfare is a game of nerves and thoughts with least vigorous participation for large anticipated losses. It creates the condition of paraplegia with partial but permanent immobility, which effects the core warfare operations, being screams rather than active retaliation. When one’s own power is doubted, it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of asymmetric warfare since the early WWI to WWII, WWII-to Cold War, and then to the current era in three chronological periods exposits that courage makes nations win the battle of warriors to battle of comrades. Asymmetric warfare has been most difficult to fight and survive due to unexpectedness and being lethal despite preparations. Thoughts before action may be the best-assumed strategy to mix Regional Security Complex Theory and OODA loop to develop the Paraplegic Resilience Policy Plan (PRPP) to win asymmetric warfare. PRPP may serve to control and halt the ongoing wave of terrorism, guerilla warfare, and insurgencies, etc. PRPP, along with a strategic work plan, is based on psychometric analysis to deal with any possible war condition and tactic to save millions of innocent lives such that lost in Christchurch New Zealand in 2019, November 2015 Paris attacks, and Berlin market attacks in 2016, etc. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a descriptive psychometric analysis of war conditions with generic application of probability tests to find the best possible options and conditions to develop PRPP for any adverse condition possible so far. Innovation in technology begets innovation in planning and action-plan to serve as a rheostat approach to deal with asymmetric warfare.Keywords: asymmetric warfare, psychometric analysis, PRPP, security
Procedia PDF Downloads 1382475 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 4992474 On the Framework of Contemporary Intelligent Mathematics Underpinning Intelligent Science, Autonomous AI, and Cognitive Computers
Authors: Yingxu Wang, Jianhua Lu, Jun Peng, Jiawei Zhang
Abstract:
The fundamental demand in contemporary intelligent science towards Autonomous AI (AI*) is the creation of unprecedented formal means of Intelligent Mathematics (IM). It is discovered that natural intelligence is inductively created rather than exhaustively trained. Therefore, IM is a family of algebraic and denotational mathematics encompassing Inference Algebra, Real-Time Process Algebra, Concept Algebra, Semantic Algebra, Visual Frame Algebra, etc., developed in our labs. IM plays indispensable roles in training-free AI* theories and systems beyond traditional empirical data-driven technologies. A set of applications of IM-driven AI* systems will be demonstrated in contemporary intelligence science, AI*, and cognitive computers.Keywords: intelligence mathematics, foundations of intelligent science, autonomous AI, cognitive computers, inference algebra, real-time process algebra, concept algebra, semantic algebra, applications
Procedia PDF Downloads 642473 Socio-Economic Analysis of Child Homelessness in South Africa: Implications
Authors: Chigozie Azunna, Botes Lucius
Abstract:
Child homelessness remains a significant challenge in South Africa in the upcoming decade. Despite children making up a substantial portion of South Africa's population, the issue of child homelessness continues to pose a socio-economic crisis with diverse impacts. Achieving the UN 2050 Agenda for Sustainable Development Goals (SDGs), especially in terms of equality and non-discrimination, requires an effective approach to curb child homelessness. Addressing this issue will positively influence the economic trajectory of South Africa's evolving demographic landscape. This research uses content analysis through an extensive review of current literature on child homelessness in South Africa. Findings indicate alignment between national policies and international agendas in tackling child homelessness in South Africa. However, the following statistics depict the ongoing challenge: In metropolitan areas, homelessness stands at 74.1%, whereas non-metro regions account for 25.9%. The City of Tshwane has the highest number of homeless individuals at 18.1%, followed by the City of Johannesburg at 15.6%, while Nelson Mandela Bay Metropolitan has the lowest at 2.7%. Despite existing national policy frameworks, child homelessness persists. The lack of accurate data, compounded by issues such as economic challenges, the lingering impacts of the COVID-19 pandemic, poverty, the HIV/AIDS epidemic, and gaps in policy implementation, has exacerbated the problem. The consequences are dire, affecting children’s physical and emotional health, education, and future opportunities. The study recommends reinforcing actionable policies to address child homelessness effectively. Bridging the urban-rural divide and establishing intra-community networks are crucial for tackling this issue comprehensively. This includes addressing multifaceted challenges such as access to education, disease susceptibility, and the overall vulnerability of homeless children.Keywords: South Africa, child, homeless, SDGs, COVID, urban, rural
Procedia PDF Downloads 33