Search results for: waste plastic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3461

Search results for: waste plastic

971 Influence of an Octenidine Based Wound Gel on Postoperative Wound Healing and Scarring after Abdominoplasty

Authors: Johannes Matiasek

Abstract:

Introduction and Aims: Octenidine is a common antiseptic agent in the area of surgical interventions because of its antimicrobial efficacy and outstanding biocompatibility index. We investigate the direct postoperative application of octenilin® on typical procedures in the field of plastic surgery in a prospective, randomized controlled intervention study. The aim of this study is to determine the influence of a direct postoperative application of an octenidine-containing wound gel on wound healing and scarring after abdominoplasty. Material and Methods: In this study, we enrolled 33 patients who underwent abdominoplasty because of medical indications (e.g. Cutis laxa abdominis). To ensure an intraindividual comparison, each patient received both dressings (study-group: octenilin® wound gel; control-group: Omnistrip® dry plaster) immediately after surgery. We evaluate wound-healing tendency, pain during dressing changes and scar formation after two weeks, three, six and twelve months. Regarding scar-evaluation skin-elasticity, sebum on the skin, transepidermal waterloss, skin hydration, melanin content and erythema level were determined with special probes. Furthermore the Vancouver Scar Scale (VSS) and pain level during dressing change are determined. Results: At the time of surgery the mean patient’s age was 44.1 years. On average 5.6 dressing changes were necessary. Wound healing disorders occurred more often in the control-group. In the control-group (dry plaster Omnistrip®) patients reported significantly more pain and superficial skin injuries during dressing changes occurred. Objective scar-evaluation after 3, 6 and 12 months resulted in a significant higher skin-elasticity and significant lower transepidermal water loss in the octenilin® group which is confirmed in the VSS. Conclusion: The immediate postoperative application of the octenidine-containing hydrogel octenilin® after abdominoplasty results in favoured scar formation compared to our actual standard therapy. Less hypertrophic scar formation was observed in the study-group.

Keywords: abdominoplasty, octenidine, scarring, wound healing

Procedia PDF Downloads 187
970 Development of a New Method for the Evaluation of Heat Tolerant Wheat Genotypes for Genetic Studies and Wheat Breeding

Authors: Hameed Alsamadany, Nader Aryamanesh, Guijun Yan

Abstract:

Heat is one of the major abiotic stresses limiting wheat production worldwide. To identify heat tolerant genotypes, a newly designed system involving a large plastic box holding many layers of filter papers positioned vertically with wheat seeds sown in between for the ease of screening large number of wheat geno types was developed and used to study heat tolerance. A collection of 499 wheat geno types were screened under heat stress (35ºC) and non-stress (25ºC) conditions using the new method. Compared with those under non-stress conditions, a substantial and very significant reduction in seedling length (SL) under heat stress was observed with an average reduction of 11.7 cm (P<0.01). A damage index (DI) of each geno type based on SL under the two temperatures was calculated and used to rank the genotypes. Three hexaploid geno types of Triticum aestivum [Perenjori (DI= -0.09), Pakistan W 20B (-0.18) and SST16 (-0.28)], all growing better at 35ºC than at 25ºC were identified as extremely heat tolerant (EHT). Two hexaploid genotypes of T. aestivum [Synthetic wheat (0.93) and Stiletto (0.92)] and two tetraploid genotypes of T. turgidum ssp dicoccoides [G3211 (0.98) and G3100 (0.93)] were identified as extremely heat susceptible (EHS). Another 14 geno types were classified as heat tolerant (HT) and 478 as heat susceptible (HS). Extremely heat tolerant and heat susceptible geno types were used to develop re combinant inbreeding line populations for genetic studies. Four major QTLs, HTI4D, HTI3B.1, HTI3B.2 and HTI3A located on wheat chromosomes 4D, 3B (x2) and 3A, explaining up to 34.67 %, 28.93 %, 13.46% % and 11.34% phenotypic variation, respectively, were detected. The four QTLs together accounted for 88.40% of the total phenotypic variation. Random wheat geno types possessing the four heat tolerant alleles performed significantly better under the heat condition than those lacking the heat tolerant alleles indicating the importance of the four QTLs in conferring heat tolerance in wheat. Molecular markers are being developed for marker assisted breeding of heat tolerant wheat.

Keywords: bread wheat, heat tolerance, screening, RILs, QTL mapping, association analysis

Procedia PDF Downloads 530
969 Aligning the Sustainability Policy Areas for Decarbonisation and Value Addition at an Organisational Level

Authors: Bishal Baniya

Abstract:

This paper proposes the sustainability related policy areas for decarbonisation and value addition at an organizational level. General and public sector organizations around the world are usually significant in terms of consuming resources and producing waste – powered through their massive procurement capacity. However, these organizations also possess huge potential to cut resource use and emission as many of these organizations controls supply chain of goods/services. They can therefore be a trend setter and can easily lead other major economic sectors such as manufacturing, construction and mining, transportation, etc. in pursuit towards paradigm shift for sustainability. Whilst the environmental and social awareness has improved in recent years and they have identified policy areas to improve the organizational environmental performance, value addition to the core business of the organization hasn’t been understood and interpreted correctly. This paper therefore investigates ways to align sustainability policy measures in a way that it creates better value proposition relative to benchmark by accounting both eco and social efficiency. Preliminary analysis shows co-benefits other than resource and cost savings fosters the business cases for organizations and this can be achieved by better aligning the policy measures and engaging stakeholders.

Keywords: policy measures, environmental performance, value proposition, organisational level

Procedia PDF Downloads 134
968 A Thermodynamic Study of Parameters that Affect the Nitration of Glycerol with Nitric Acid

Authors: Erna Astuti, Supranto, Rochmadi, Agus Prasetya

Abstract:

Biodiesel production from vegetable oil will produce glycerol as by-product about 10% of the biodiesel production. The amount of glycerol that was produced needed alternative way to handling immediately so as to not become the waste that polluted environment. One of the solutions was to process glycerol to polyglycidyl nitrate (PGN). PGN is synthesized from glycerol by three-step reactions i.e. nitration of glycerol, cyclization of 13- dinitroglycerine and polymerization of glycosyl nitrate. Optimum condition of nitration of glycerol with nitric acid has not been known. Thermodynamic feasibility should be done before run experiments in the laboratory. The aim of this study was to determine the parameters those affect nitration of glycerol and nitric acid and chose the operation condition. Many parameters were simulated to verify its possibility to experiment under conditions which would get the highest conversion of 1, 3-dinitroglycerine and which was the ideal condition to get it. The parameters that need to be studied to obtain the highest conversion of 1, 3-dinitroglycerine were mol ratio of nitric acid/glycerol, reaction temperature, mol ratio of glycerol/dichloromethane and pressure. The highest conversion was obtained in the range of mol ratio of nitric acid /glycerol between 2/1 – 5/1, reaction temperature of 5-25o C and pressure of 1 atm. The parameters that need to be studied further to obtain the highest conversion of 1.3 DNG are mol ratio of nitric acid/glycerol and reaction temperature.

Keywords: Nitration, glycerol, thermodynamic, optimum condition

Procedia PDF Downloads 304
967 Hydroxyapatite from Biowaste for the Reinforcement of Polymer

Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam

Abstract:

Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: biomaterial, biopolymer, bone, hydroxyapatite

Procedia PDF Downloads 306
966 Effect of Temperature and Deformation Mode on Texture Evolution of AA6061

Authors: M. Ghosh, A. Miroux, L. A. I. Kestens

Abstract:

At molecular or micrometre scale, practically all materials are neither homogeneous nor isotropic. The concept of texture is used to identify the structural features that cause the properties of a material to be anisotropic. For metallic materials, the anisotropy of the mechanical behaviour originates from the crystallographic nature of plastic deformation, and is therefore controlled by the crystallographic texture. Anisotropy in mechanical properties often constitutes a disadvantage in the application of materials, as it is often illustrated by the earing phenomena during drawing. However, advantages may also be attained when considering other properties (e.g. optimization of magnetic behaviour to a specific direction) by controlling texture through thermo-mechanical processing). Nevertheless, in order to have better control over the final properties it is essential to relate texture with materials processing route and subsequently optimise their performance. However, up to date, few studies have been reported about the evolution of texture in 6061 aluminium alloy during warm processing (from room temperature to 250ºC). In present investigation, recrystallized 6061 aluminium alloy samples were subjected to tensile and plane strain compression (PSC) at room and warm temperatures. The gradual change of texture following both deformation modes were measured and discussed. Tensile tests demonstrate the mechanism at low strain while PSC does the same at high strain and eventually simulate the condition of rolling. Cube dominated texture of the initial rolled and recrystallized AA6061 sheets were replaced by domination of S and R components after PSC at room temperature, warm temperature (250ºC) though did not reflect any noticeable deviation from room temperature observation. It was also noticed that temperature has no significant effect on the evolution of grain morphology during PSC. The band contrast map revealed that after 30% deformation the substructure inside the grain is mainly made of series of parallel bands. A tendency for decrease of Cube and increase of Goss was noticed after tensile deformation compared to as-received material. Like PSC, texture does not change after deformation at warm temperature though. n-fibre was noticed for all the three textures from Goss to Cube.

Keywords: AA 6061, deformation, temperature, tensile, PSC, texture

Procedia PDF Downloads 472
965 Evaluation of the Costs and Benefits of Mumbai Sewage Disposal Project, India

Authors: Indrani Gupta, Leena Vachasiddha, Rakesh Kumar

Abstract:

Municipal Corporation of Greater Mumbai intends to undertake Mumbai Sewage Disposal (MSDP) for improvement of environment in and around Mumbai city. Sewage generated from the city currently gets partly into the inadequate collection system for treatment and the rest into nearby marine water body through drains. This paper addresses the cost benefit analysis of MSDP works for better compliance of sewage treatment and disposal. Cost benefit analysis indicates that the investment in sewage treatment is economically beneficial and will provide immense social, environmental, health and economic benefits. Monetary values of positive benefits such as avoided health costs, enhanced fish catches and improved tourism have been quantified. The total capital cost of the project is estimated to be about INR 51,510 million and operation and maintenance cost is about INR 2240.6 million per year. The cost benefit analysis indicates that a benefit of about 25,882 million per year can be achieved due to the implementation of this project. Other than these benefits, better marine ecosystem quality; higher property cost; improved recreational opportunities were not included because of lack of information.

Keywords: waste water treatment, cost-benefit analysis, health, tourism, fisheries

Procedia PDF Downloads 319
964 Investigation on the Fire Resistance of Ultra-High Performance Concrete with Natural Fibers

Authors: Dong Zhang, Kang Hai Tan, Aravind Dasari

Abstract:

Increasing concern on environmental sustainability and waste management has driven the construction and building sector towards renewable materials. In this work, we have explored the usage of natural fibers as an alternative to synthetic fibers like polypropylene (PP) in ultra-high performance concrete (UHPC). PP fibers are incorporated into concrete to resist explosive thermal spalling of UHPC during a fire exposure scenario. Experimental studies on the effect of natural fiber on the mechanical properties and spalling resistance of UHCP were conducted. The residual mechanical properties of UHPC with natural fibers were tested after heating to different temperatures. Spalling behavior of UHPC with natural fibers is also assessed by heating the samples according to ISO 834 fire curve. A range of analytical, physical and microscopic characterization techniques was also used on the concrete samples before and after being subjected to elevated temperature to investigate the phase and microstructural change of the sample. The findings show that natural fibers are able to improve fire resistance of UHPC. Adding natural fibers can prevent UHPC from spalling at high temperature. This study provides an alternative, which is at low cost and environmentally friendly, to prevent spalling of UHPC.

Keywords: high temperature, natural fiber, spalling, ultra-high performance concrete

Procedia PDF Downloads 157
963 Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia

Authors: Yetti Marlida, Syukri Arif, Nadirman Haska

Abstract:

Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013

Keywords: oil palm trunk, enzymatic hydrolysis, saccharification

Procedia PDF Downloads 500
962 Some Characteristics Based on Literature, for an Ideal Disinfectant

Authors: Saimir Heta, Ilma Robo, Rialda Xhizdari, Kers Kapaj

Abstract:

The stability of an ideal disinfectant should be constant regardless of the change in the atmospheric conditions of the environment where it is kept. If the conditions such as temperature or humidity change, it is understood that it will also be necessary to approach possible changes in the holding materials such as plastic or glass bottles with the aim of protecting, for example, the disinfectant from the excessive lighting of the environment, which can also be translated as an increase in the temperature of disinfectant as a fluid. Material and Methods: In this study, an attempt was made to find the most recent published data about the best possible combination of disinfectants indicated for use after dental procedures. This purpose of the study was realized by comparing the basic literature that is studied in the field of dentistry by students with the most published data in the literature of recent years about this topic. Each disinfectant is represented by a number called the disinfectant count, in which different factors can influence the increase or reduction of variables whose production remains a specific statistic for a specific disinfectant. Results: The changes in the atmospheric conditions where the disinfectant is deposited and stored in the environment are known to affect the stability of the disinfectant as a fluid; this fact is known and even cited in the leaflets accompanying the manufactured boxes of disinfectants. It is these cares, in the form of advice, which are based not only on the preservation of the disinfectant but also on the application in order to have the desired clinical result. Aldehydes have the highest constant among the types of disinfectants, followed by acids. The lowest value of the constant belongs to the class of glycols, the predecessors of which were the halogens, in which class there are some representatives with disinfection applications. The class of phenols and acids have almost the same intervals of constants. Conclusions: If the goal were to find the ideal disinfectant among the large variety of disinfectants produced, a good starting point would be to find something unchanging or a fixed, unchanging element on the basis of which the comparison can be made properties of different disinfectants. Precisely based on the results of this study, the role of the specific constant according to the specific disinfectant is highlighted. Finding an ideal disinfectant, like finding a medication or the ideal antibiotic, is an ongoing but unattainable goal.

Keywords: different disinfectants, ideal, specific constant, dental procedures

Procedia PDF Downloads 52
961 The Utilisation of Two Types of Fly Ashes Used as Cement Replacement in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffill

Abstract:

This study represents the results of an experimental work using two types of fly ashes as a cement replacement in soft soil stabilisation. The fly ashes (FA1 and FA2) used in this study are by-products resulting from an incineration processes between 800 and 1200 ˚C. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were initially conducted on soil treated with different percentages of FA1 (0, 3, 6, 9, 12, and 15%) to identify the optimum FA1 content. Then FA1 was chemically activated by FA2 which has high alkalinity by blending the optimum content of FA1 with different portions of FA2. The improvement levels were evaluated dependent on the results obtained from consistency limits and compaction tests along with the results of unconfined compressive strength (UCS) tests which were conducted on specimens of soil treated with FA1 and FA2 and exposed to different periods of curing (zero, 7, 14, and 28 days). The results indicated that the FA1 and FA2 used in this study effectively improved the physical and geotechnical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.17 with 12% of FA1; however, there was a slight increase in IP with the use of FA2. Meanwhile, 12% of FA1 was identified as the optimum percentage improving the UCS of stabilised soil significantly. Furthermore, FA2 was found effective as a chemical activator to FA1 where the UCS was improved significantly after using FA2.

Keywords: fly ashes, soft soil stabilisation, waste materials, unconfined compressive strength

Procedia PDF Downloads 221
960 Effect of Temperature on the Water Retention Capacity of Liner Materials

Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla

Abstract:

Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.

Keywords: soil water retention curve, sand-expansive clay liner, suction, temperature

Procedia PDF Downloads 121
959 Preparation of Tempeh Spores Powder

Authors: Jaruwan Chutrtong, Tanakwan Bussabun

Abstract:

Study production of tempeh inoculums powder by freeze-drying comparison with dry at 50°C and the sun bask for developing efficient tempeh inoculums for tempeh producing. Rhizopus oligosporus in PDA slant cultures was incubated at 30°C for 3-5 days until spores and mycelium. Preparation spores suspension with sterilized water and then count the number of started spores. Fill spores suspension in Rice flour and soy flour, mixed with water (in the ratio 10: 7), which is steamed and sterilized at 121°C 15min. Incubated at room temperature for 4 days, count number of spores. Then take the progressive infection and full spore dough to dry at 50°C, sun bask, and lyophilize. Grind to powder. Then pack in plastic bags, stored at 5°C. To investigate quality of inoculums which use different methods, tempeh was fermented every 4 weeks for 24 weeks of the experiment. The result found that rice flour is not suitable to use as raw material in the production of powdered spores. Fungi can growth rarely. Less number of spores and requires more time than soy flour. For drying method, lyophilization is the least possible time. Samples from this method are very hard and very dark and harder to grind than other methods. Drying at 50°C takes longer time than lyophilization but can also set time use for drying. Character of the dry samples is hard solid and brown color, but can be grinded easier. The sun drying takes the longest time, can’t determine the exact time. When the spore powder was used to fermented tempeh immediately, product has similar characters as which use spores that was fresh prepared. The tempeh has normal quality. When spore powder stored at low temperature, tempeh from storage spore in weeks 4, 8 and 12 is still normal. Time spending in production was close to the production of fresh spores. After storage spores for 16 and 20 weeks, tempeh is still normal but growth and sporulation were take longer time than usual (about 6 hours). At 24 week storage, fungal growth is not good, made tempeh looks inferior to normal color, also smell and texture.

Keywords: freez drying, preparation, spores powder, tempeh

Procedia PDF Downloads 189
958 Improving the Strength Characteristics of Soil Using Cotton Fibers

Authors: Bindhu Lal, Karnika Kochal

Abstract:

Clayey soil contains clay minerals with traces of metal oxides and organic matter, which exhibits properties like low drainage, high plasticity, and shrinkage. To overcome these issues, various soil reinforcement techniques are used to elevate the stiffness, water tightness, and bearing capacity of the soil. Such techniques include cementation, bituminization, freezing, fiber inclusion, geo-synthetics, nailing, etc. Reinforcement of soil with fibers has been a cost-effective solution to soil improvement problems. An experimental study was undertaken involving the inclusion of cotton waste fibers in clayey soil as reinforcement with different fiber contents (1%, 1.5%, 2%, and 2.5% by weight) and analyzing its effects on the unconfined compressive strength of the soil. Two categories of soil were taken, comprising of natural clay and clay mixed with 5% sodium bentonite by weight. The soil specimens were subjected to proctor compaction and unconfined compression tests. The validated outcome shows that fiber inclusion has a strikingly positive impact on the compressive strength and axial strain at failure of the soil. Based on the commendatory results procured, compressive strength was found to be directly proportional to the fiber content, with the effect being more pronounced at lower water content.

Keywords: bentonite clay, clay, cotton fibers, unconfined compressive strength

Procedia PDF Downloads 158
957 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant

Procedia PDF Downloads 277
956 Biodiesel Production from Animal Fat Using Trans-Esterification Process with Zeolite as a Solid Catalyst to Improve the Efficiency of Production

Authors: Dinda A. Utami, Muhammad N. Alfarizi

Abstract:

The purpose of this study was to determine the ability of zeolite catalyst for the trans- esterification reaction in biodiesel production from animal fat. The ability of the zeolite as a catalyst is determined by the structure and composition of the zeolite. An important factor that determines the properties of zeolites in catalysis includes adsorption capability to the compound of the reactants. Zeolites with a pore size of specific properties selectively adsorbing molecules. A molecule can be adsorbed by either the zeolite cavities if the size and shape of the molecule in accordance with the size and shape of the cavity in the zeolite. At this time, it is common to use homogeneous catalysts for biodiesel. We know these catalysts have some disadvantages in its use. Such as the difficulty of separation of the product with the catalyst, the generation of waste that is harmful to the environment due to residual catalysts can’t be reused, and the difficulty of handling and storage. But nowadays, solid catalyst developed technically to improve the efficiency of biodiesel production. In this case of study, we used trans-esterification process wherein the triglyceride is reacted with an alcohol with zeolite as a solid catalyst and it will produce biodiesel and glycerol as a byproduct. Development of solid catalyst seems to be the perfect solution to address the problems associated with homogeneous catalysts.

Keywords: biodiesel, animal fat, trans esterification, zeolite catalyst

Procedia PDF Downloads 245
955 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems

Authors: M. Okeke, A. Blyth

Abstract:

Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.

Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC

Procedia PDF Downloads 284
954 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 286
953 Traffic Congestions Modeling and Predictions by Social Networks

Authors: Bojan Najdenov, Danco Davcev

Abstract:

Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.

Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android

Procedia PDF Downloads 462
952 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718

Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou

Abstract:

Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.

Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718

Procedia PDF Downloads 132
951 A Review on Nuclear Desalination Technology

Authors: Aiswarya C. L, Swatantra Pratap Singh

Abstract:

In recent years, most desalination plants have been powered by fossil fuels, and to a lesser extent, by green energy. Greenhouse gases emitted by fossil-fuelled plants significantly impact the global climate. So scientists are forced to develop a powerful energy source to protect the environment with greater sustainability due to climate change issues. Nuclear energy can supply much more fresh water than what is currently available. Furthermore, it is more affordable and does not emit any greenhouse gases. This review compares conventional desalination plants with nuclear-powered desalination plants in terms of cost, energy consumption, water recovery, and environmental issues. On the basis of the review conducted, nuclear desalination has been demonstrated to be technically feasible and economically competitive with a variety of fossil fuels, renewable energy sources, and waste heat sources. Nuclear sources have been criticized due to their lack of safety. But studies show, if we were able to handle the issue with care, the problems could be eliminated. Here we're looking at the Seawater Reverse Osmosis Plant (SWROP) at Kudankulam Nuclear Power Plant in Tamil Nadu, India and review the further possibility of implementing nuclear desalination technology in other states of India.

Keywords: energy consumption, environmental impacts, nuclear desalination, water recovery

Procedia PDF Downloads 191
950 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in Hong Kong Construction Industry

Authors: Kwok Tak Kit

Abstract:

The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2ᵒC above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.

Keywords: sustainability, sustainable engineering, BIM, LEED

Procedia PDF Downloads 133
949 Finite Element Analysis of Shape Memory Alloy Stents in Coronary Arteries

Authors: Amatulraheem Al-Abassi, K. Khanafer, Ibrahim Deiab

Abstract:

The coronary artery stent is a promising technology that can treat various coronary diseases. Materials used for manufacturing medical stents should have high biocompatible properties. Stent alloys, in particular, are remarkably promising good clinical outcomes, however, there is threaten of restenosis (reoccurring of artery narrowing due to fatty plaque), stent recoiling, or in long-term the occurrence of stent fracture. However, stents that are made of Nickel-titanium (Nitinol) can bare extensive plastic deformation and resist restenosis. This shape memory alloy has outstanding mechanical properties. Nitinol is a unique shape memory alloy as it has unique mechanical properties such as; biocompatibility, super-elasticity, and recovery to original shape under certain loads. Stent failure may cause complications in vascular diseases and possibly blockage of blood flow. Thus, studying the behaviors of the stent under different medical conditions will help the doctors and cardiologists to predict when it is necessary to change the stent in order to prevent any severe morbidity outcomes. To the best of our knowledge, there are limited published papers that analyze the stent behavior with regards to the contact surfaces of plaque layer and blood vessel. Thus, stent material properties will be discussed in this investigation to highlight the mechanical and clinical differences between various stents. This research analyzes the performance of Nitinol stent in well-known stent design to determine its bearing with stress and its dislocation in blood vessels, in comparison to stents made of different biocompatible materials. In addition, a study of its performance will be represented in the system. Finite Element Analysis is the core of this study. Thus, a physical representative model will be discussed to show the distribution of stress and strain along the interaction surface between the stent and the artery. The reaction of vascular tissue to the stent will be evaluated to predict the possibility of restenosis within the treated area.

Keywords: shape memory alloy, stent, coronary artery, finite element analysis

Procedia PDF Downloads 185
948 Reuse of Wastewater from the Treated Water Pre-treatment Plant for Agricultural Purposes

Authors: Aicha Assal, El Mostapha Lotfi

Abstract:

According to data from the Directorate General of Meteorology (DGM), the average amount of precipitation recorded nationwide between September 1, 2021, and January 31, 2022, is 38.8 millimeters. This is well below the climatological normal of 106.8 millimeters for the same period between 1981 and 2010. This situation is becoming increasingly worrying, particularly for farmers who are finding it difficult to irrigate their land and feed their livestock. Drought is greatly influenced by the effects of climate change, mainly caused by pollution and greenhouse gases (GHGs). The aim of this work is to contribute to the purification of wastewater (considered as polluting) in order to reuse it for irrigation in agricultural areas or for livestock watering. This will be achieved once physico-chemical treatment tests on these waters have been carried out and validated. The main parameters analyzed in this study, after carrying out discoloration tests on domestic wastewater, include COD (chemical oxygen demand), BOD5 (biochemical oxygen demand), pH, conductivity, dissolved oxygen, suspended solids (SS), phosphate, nitrate, nitrite and ammonium ions, faecal and total coliforms, as well as monitoring heavy metal concentrations. This work is also aimed at reclaiming the sludge produced by the decantation process, which will enable the waste to be transformed and reused as compost in agriculture and gardening.

Keywords: wastewater, irrigation, COD, COB, SS

Procedia PDF Downloads 54
947 Risk Reduction of Household Refuse, a Case Study of Shagari Low-Cost, Mubi North (LGA) Adamawa State, Nigeria

Authors: Maryam Tijjani Kolo

Abstract:

Lack of refuse dumping points has made the residents of Shagari low-cost well armed with some health and environmental related hazards. These studies investigate the effect of household refuse on the resident of Shagari low-cost. A well structured questionnaire was administered to elicit views of the respondent in the study area through adopting cluster sampling method. A total of 100 questionnaires were selected and divided into 50, each to both sections of the study area. Interview was conducted to each household head. Data obtained were analyzed using simple parentages to determine the major hazard in the area. Result showed that majority of the household are civil servant and traders, earning reasonable monthly income. 68% of the respondent has experienced the effect of living close to waste dumping areas, which include unpleasant smell and polluted smoke when refuse is burnt, which causes eye and respiratory induction, human injury from broken bottles or sharp objects as well as water, insect and air borne diseases. Hence, the need to urgently address these menace before it overwhelms the capacities of the community becomes paramount. Thus, the community should be given more enlightenment and refuse dumping sites should be created by the local government area.

Keywords: household, refuse, refuse dumping points, Shagari low-cost

Procedia PDF Downloads 304
946 Heterogeneous Catalytic Hydroesterification of Soybean Oil to Develop a Biodiesel Formation

Authors: O. Mowla, E. Kennedy, M. Stockenhuber

Abstract:

Finding alternative renewable resources of energy has attracted the attentions in consequence of limitation of the traditional fossil fuel resources, increasing of crude oil price and environmental concern over greenhouse gas emissions. Biodiesel (or Fatty Acid Methyl Esters (FAME)), an alternative energy source, is synthesised from renewable sources such as vegetable oils and animal fats and can be produced from waste oils. FAME can be produced via hydroesterification of oils. The process involves two stages. In the first stage of this process, fatty acids and glycerol are being obtained by hydrolysis of the feed stock oil. In the second stage, the recovered fatty acids are then esterified with an alcohol to methyl esters. The presence of a catalyst accelerates the rate of the hydroesterification reaction of oils. The overarching aim of this study is to find the effect of using zeolite as a catalyst in the heterogeneous hydroesterification of soybean oil. Both stages of the catalytic hydroesterification of soybean oil had been conducted at atmospheric and high-pressure conditions using reflux glass reactor and Parr reactor, respectively. The effect of operating parameters such as temperature and reaction time on the overall yield of biodiesel formation was also investigated.

Keywords: biodiesel, heterogeneous catalytic hydroesterification, soybean oil, zeolite

Procedia PDF Downloads 416
945 Integrated Wastewater Reuse Project of the Faculty of Sciences AinChock, Morocco

Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Fouad Amraoui

Abstract:

In Morocco, water scarcity requires the exploitation of non-conventional resources. Rural areas are under-equipped with sanitation infrastructure, unlike urban areas. Decentralized and low-cost solutions could improve the quality of life of the population and the environment. In this context, the Faculty of Sciences Ain Chock "FSAC" has undertaken an integrated project to treat part of its wastewater using a decentralized compact system. The project will propose alternative solutions that are inexpensive and adapted to the context of peri-urban and rural areas in order to treat the wastewater generated and use it for irrigation, watering, and cleaning. For this purpose, several tests were carried out in the laboratory in order to develop a liquid waste treatment system optimized for local conditions. Based on the results obtained at the laboratory scale of the different proposed scenarios, we designed and implemented a prototype of a mini wastewater treatment plant for the Faculty. In this article, we will outline the steps of dimensioning, construction, and monitoring of the mini-station in our Faculty.

Keywords: wastewater, purification, optimization, vertical filter, MBBR process, sizing, decentralized pilot, reuse, irrigation, sustainable development

Procedia PDF Downloads 98
944 Barriers Facing the Implementation of Lean Manufacturing in Libyan Manufacturing Companies

Authors: Mohamed Abduelmula, Martin Birkett, Chris Connor

Abstract:

Lean Manufacturing has developed from being a set of tools and methods to becoming a management philosophy which can be used to remove or reduce waste in manufacturing processes and so enhance the operational productivity of an enterprise. Several enterprises around the world have applied the lean manufacturing system and gained great improvements. This paper investigates the barriers and obstacles that face Libyan manufacturing companies to implement lean manufacturing. A mixed-method approach is suggested, starting with conducting a questionnaire to get quantitative data then using this to develop semi-structured interviews to collect qualitative data. The findings of the questionnaire results and how these can be used further develop the semi-structured interviews are then discussed. The survey was distributed to 65 manufacturing companies in Libya, and a response rate of 64.6% was obtained. The results showed that these are five main barriers to implementing lean in Libya, namely organizational culture, skills and expertise, and training program, financial capability, top management, and communication. These barriers were also identified from the literature as being significant obstacles to implementing Lean in other countries industries. Having an understanding of the difficulties that face the implementation of lean manufacturing systems, as a new and modern system and using this to develop a suitable framework will help to improve the manufacturing sector in Libya.

Keywords: lean manufacturing, barriers, questionnaire, Libyan manufacturing companies

Procedia PDF Downloads 225
943 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods

Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad

Abstract:

we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical design

Keywords: hydrogen gas, lightning energy, power plant, resistive element

Procedia PDF Downloads 120
942 Synthesis of Biofuels of New Generation

Authors: Selena Gutiérrez, Araceli Martínez

Abstract:

One of the most important challenges worldwide, scientific and technological, is to have a sustainable energy source; friendly to the environment and widely available. Currently, the 85% of the energy used comes from the fossil sources. Another important environmental problem is that several rubber products (tires, gloves, hoses, among others) are discarded practically without any treatment. In nature, the degradation of such products will take at least 500 years. In 2009, the worldwide rubber production was about 23.6 million tons. In order to solve this problems, our research focus in an alternative synthesis of biofuels in a two-step approach: The metathesis degradation of industrial rubber (models of rubber waste), and the oligomers transesterification. Thus, cis-1,4-polybutadiene (Mn= 9.1x105, Mw/Mn= 2.2) and styrene-butadiene block copolymers with 30% (Mn= 1.61x105; Mw/Mn= 1.3) and 21% wt styrene (Mn= 1.92x105; Mw/Mn= 1.4) were degraded via metathesis with soybean oil as chain transfer agent (CTA) and green solvent; using [(PCy3)2Cl2Ru=CHPh] and [(1,3-diphenyl-4,5-dihydroimidazol-2-ylidene)(PCy3)Ru=CHPh] catalysts. Afterwards, the products were transesterified by basic homogeneous catalysis. Before transesterification, the polystyrene microblocks (Mn= 16,761; Mw/Mn= 1.2) were isolated. Finally, the biofuels obtained (BO) were purified, characterized and showed similar properties to standards biodiesel (SB) (Norms: EN 14214-03 and ASTM D6751-02), i.e. (SB / BO): molecular weight [Daltons] (570 / 543-596), density [g/cm3] (0.86-0.90 / 0.88), kinematic viscosity [mm2/s] (1.90-6.0 / 3.5-4.5), iodine (97 / 97-98) and cetane number (Min.47 / 56-58).

Keywords: biofuels, industrial rubber, metathesis, vegetable oils

Procedia PDF Downloads 248