Search results for: hybrid fuzzy weighted k-nearest neighbor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3084

Search results for: hybrid fuzzy weighted k-nearest neighbor

594 DNA Barcoding for Identification of Dengue Vectors from Assam and Arunachal Pradesh: North-Eastern States in India

Authors: Monika Soni, Shovonlal Bhowmick, Chandra Bhattacharya, Jitendra Sharma, Prafulla Dutta, Jagadish Mahanta

Abstract:

Aedes aegypti and Aedes albopictus are considered as two major vectors to transmit dengue virus. In North-east India, two states viz. Assam and Arunachal Pradesh are known to be high endemic zone for dengue and Chikungunya viral infection. The taxonomical classification of medically important vectors are important for mapping of actual evolutionary trends and epidemiological studies. However, misidentification of mosquito species in field-collected mosquito specimens could have a negative impact which may affect vector-borne disease control policy. DNA barcoding is a prominent method to record available species, differentiate from new addition and change of population structure. In this study, a combined approach of a morphological and molecular technique of DNA barcoding was adopted to explore sequence variation in mitochondrial cytochrome c oxidase subunit I (COI) gene within dengue vectors. The study has revealed the map distribution of the dengue vector from two states i.e. Assam and Arunachal Pradesh, India. Approximate five hundred mosquito specimens were collected from different parts of two states, and their morphological features were compared with the taxonomic keys. The analysis of detailed taxonomic study revealed identification of two species Aedes aegypti and Aedes albopictus. The species aegypti comprised of 66.6% of the specimen and represented as dominant dengue vector species. The sequences obtained through standard DNA barcoding protocol were compared with public databases, viz. GenBank and BOLD. The sequences of all Aedes albopictus have shown 100% similarity whereas sequence of Aedes aegypti has shown 99.77 - 100% similarity of COI gene with that of different geographically located same species based on BOLD database search. From dengue prevalent different geographical regions fifty-nine sequences were retrieved from NCBI and BOLD databases of the same and related taxa to determine the evolutionary distance model based on the phylogenetic analysis. Neighbor-Joining (NJ) and Maximum Likelihood (ML) phylogenetic tree was constructed in MEGA6.06 software with 1000 bootstrap replicates using Kimura-2-Parameter model. Data were analyzed for sequence divergence and found that intraspecific divergence ranged from 0.0 to 2.0% and interspecific divergence ranged from 11.0 to 12.0%. The transitional and transversional substitutions were tested individually. The sequences were deposited in NCBI: GenBank database. This observation claimed the first DNA barcoding analysis of Aedes mosquitoes from North-eastern states in India and also confirmed the range expansion of two important mosquito species. Overall, this study insight into the molecular ecology of the dengue vectors from North-eastern India which will enhance the understanding to improve the existing entomological surveillance and vector incrimination program.

Keywords: COI, dengue vectors, DNA barcoding, molecular identification, North-east India, phylogenetics

Procedia PDF Downloads 303
593 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence

Procedia PDF Downloads 329
592 Comparison of E-learning and Face-to-Face Learning Models Through the Early Design Stage in Architectural Design Education

Authors: Gülay Dalgıç, Gildis Tachir

Abstract:

Architectural design studios are ambiencein where architecture design is realized as a palpable product in architectural education. In the design studios that the architect candidate will use in the design processthe information, the methods of approaching the design problem, the solution proposals, etc., are set uptogetherwith the studio coordinators. The architectural design process, on the other hand, is complex and uncertain.Candidate architects work in a process that starts with abstre and ill-defined problems. This process starts with the generation of alternative solutions with the help of representation tools, continues with the selection of the appropriate/satisfactory solution from these alternatives, and then ends with the creation of an acceptable design/result product. In the studio ambience, many designs and thought relationships are evaluated, the most important step is the early design phase. In the early design phase, the first steps of converting the information are taken, and converted information is used in the constitution of the first design decisions. This phase, which positively affects the progress of the design process and constitution of the final product, is complex and fuzzy than the other phases of the design process. In this context, the aim of the study is to investigate the effects of face-to-face learning model and e-learning model on the early design phase. In the study, the early design phase was defined by literature research. The data of the defined early design phase criteria were obtained with the feedback graphics created for the architect candidates who performed e-learning in the first year of architectural education and continued their education with the face-to-face learning model. The findings of the data were analyzed with the common graphics program. It is thought that this research will contribute to the establishment of a contemporary architectural design education model by reflecting the evaluation of the data and results on architectural education.

Keywords: education modeling, architecture education, design education, design process

Procedia PDF Downloads 137
591 A Study on Children's Literature for Multiracial Asian American Children

Authors: Kaori Mori Want

Abstract:

American society is a racially diverse society and there are children books that tell the importance of respecting racial differences. Through reading books, children understand the world around them little by little along with their direct interaction with the world in reality. They find role models in books, strive to be like role models, and grow confidence in who they are. Books thus nurture the mind of children. On the other hand, because of their small presence, children books for multiracial Asian American children are scarce. Multiracial Asian American population is increasing but they are still minority in number. The lack of children’s books for these children may deprive the opportunities of them to embrace their multiraciality positively because they cannot find someone like them in any books. Children books for multiracial Asian American are still not that many, but a few have been being published recently. This paper introduces children books for multiracial Asian American children, and examines how they address issues pertaining to these children, and how they could nurture their self-esteem. Many states of the US used to ban interracial marriages and interracial families and their children once were discriminated against in American society. There was even a theory called the hybrid degeneracy theory which claimed that mixed race children were inferior mentally and physically. In this negative social environment, some multiracial Asian American people report that they had trouble embracing their multiracial identity positively. Yet, children books for these children are full of positive messages. This paper will argue the importance of children books for the mental growth of multiracial Asian American children, and how these books can contribute to the development of multiculturalism in the US in general.

Keywords: critical mixed race studies in the US, hapa children literature, interracial marriage, multiraciality

Procedia PDF Downloads 360
590 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 85
589 Review of Vertical Axis Wind Turbine

Authors: Amare Worku, Harikrishnan Muralidharan

Abstract:

The research for more environmentally friendly sources of energy is a result of growing environmental awareness. In this aspect, wind energy is a very good option and there are two different wind turbines, horizontal axis wind turbine (HAWT) and vertical axis turbine (VAWT). For locations outside of integrated grid networks, vertical axis wind turbines (VAWT) present a feasible solution. However, those turbines have several drawbacks related to various setups, VAWT has a very low efficiency when compared with HAWT, but they work under different conditions and installation areas. This paper reviewed numerous measurements taken to improve the efficiency of VAWT configurations, either directly or indirectly related to the performance efficiency of the turbine. Additionally, the comparison and advantages of HAWT and VAWT turbines and also the findings of the design methodologies used for the VAWT design have been reviewed together with efficiency enhancement revision. Most of the newly modified designs are based on the turbine blade structure modification but need other studies on behalf other than electromechanical modification. Some of the techniques, like continuous variation of pitch angle control and swept area control, are not the most effective since VAWT is Omni-directional, and so wind direction is not a problem like HAWT. Hybrid system technology has become one of the most important and efficient methods to enhance the efficiency of VAWT. Besides hybridization, the contra-rotating method is also good if the installation area is big enough in an urban area.

Keywords: wind turbine, horizontal axis wind turbine, vertical axis wind turbine, hybridization

Procedia PDF Downloads 102
588 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 389
587 A Variable Neighborhood Search with Tabu Conditions for the Roaming Salesman Problem

Authors: Masoud Shahmanzari

Abstract:

The aim of this paper is to present a Variable Neighborhood Search (VNS) with Tabu Search (TS) conditions for the Roaming Salesman Problem (RSP). The RSP is a special case of the well-known traveling salesman problem (TSP) where a set of cities with time-dependent rewards and a set of campaign days are given. Each city can be visited on any day and a subset of cities can be visited multiple times. The goal is to determine an optimal campaign schedule consist of daily open/closed tours that visit some cities and maximizes the total net benefit while respecting daily maximum tour duration constraints and the necessity to return campaign base frequently. This problem arises in several real-life applications and particularly in election logistics where depots are not fixed. We formulate the problem as a mixed integer linear programming (MILP), in which we capture as many real-world aspects of the RSP as possible. We also present a hybrid metaheuristic algorithm based on a VNS with TS conditions. The initial feasible solution is constructed via a new matheuristc approach based on the decomposition of the original problem. Next, this solution is improved in terms of the collected rewards using the proposed local search procedure. We consider a set of 81 cities in Turkey and a campaign of 30 days as our largest instance. Computational results on real-world instances show that the developed algorithm could find near-optimal solutions effectively.

Keywords: optimization, routing, election logistics, heuristics

Procedia PDF Downloads 92
586 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses

Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi

Abstract:

The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.

Keywords: DNA barcoding, species complex, thrips, species delimitation

Procedia PDF Downloads 128
585 Effects of Warning Label on Cigarette Package on Consumer Behavior of Smokers in Batangas City Philippines

Authors: Irene H. Maralit

Abstract:

Warning labels have been found to inform smokers about the health hazards of smoking, encourage smokers to quit, and prevent nonsmokers from starting to smoke. Warning labels on tobacco products are an ideal way of communicating with smokers. Since the intervention is delivered at the time of smoking, nearly all smokers are exposed to warning labels and pack-a-day smokers could be exposed to the warnings more than 7,000 times per year. Given the reach and frequency of exposure, the proponents want to know the effect of warning labels on smoking behavior. Its aims to identify the profile of the smokers associated with its behavioral variables that best describe the users’ perception. The behavioral variables are AVOID, THINK RISK and FORGO. This research study aims to determine if there is significant relationship between the effect of warning labels on cigarette package on Consumer behavior when grouped according to profile variable. The researcher used quota sampling to gather representative data through purposive means to determine the accurate representation of data needed in the study. Furthermore, the data was gathered through the use of a self-constructed questionnaire. The statistical method used were Frequency count, Chi square, multi regression, weighted mean and ANOVA to determine the scale and percentage of the three variables. After the analysis of data, results shows that most of the respondents belongs to age range 22–28 years old with percentage of 25.3%, majority are male with a total number of 134 with percentage of 89.3% and single with total number of 79 and percentage of 52.7%, mostly are high school graduates with total number of 59 and percentage of 39.3, with regards to occupation, skilled workers have the highest frequency of 37 with 24.7%, Majority of the income of the respondents falls under the range of Php 5,001-Php10,000 with 50.7%. And also with regards to the number of sticks consumed per day falls under 6–10 got the highest frequency with 33.3%. The respondents THINK RISK factor got the highest composite mean which is 2.79 with verbal interpretation of agree. It is followed by FORGO with 2.78 composite mean and a verbal interpretation of agree and AVOID variable with composite mean of 2.77 with agree as its verbal interpretation. In terms of significant relationship on the effects of cigarette label to consumer behavior when grouped according to profile variable, sex and occupation found to be significant.

Keywords: consumer behavior, smokers, warning labels, think risk avoid forgo

Procedia PDF Downloads 218
584 Space Weather and Earthquakes: A Case Study of Solar Flare X9.3 Class on September 6, 2017

Authors: Viktor Novikov, Yuri Ruzhin

Abstract:

The studies completed to-date on a relation of the Earth's seismicity and solar processes provide the fuzzy and contradictory results. For verification of an idea that solar flares can trigger earthquakes, we have analyzed a case of a powerful surge of solar flash activity early in September 2017 during approaching the minimum of 24th solar cycle was accompanied by significant disturbances of space weather. On September 6, 2017, a group of sunspots AR2673 generated a large solar flare of X9.3 class, the strongest flare over the past twelve years. Its explosion produced a coronal mass ejection partially directed towards the Earth. We carried out a statistical analysis of the catalogs of earthquakes USGS and EMSC for determination of the effect of solar flares on global seismic activity. New evidence of earthquake triggering due to the Sun-Earth interaction has been demonstrated by simple comparison of behavior of Earth's seismicity before and after the strong solar flare. The global number of earthquakes with magnitude of 2.5 to 5.5 within 11 days after the solar flare has increased by 30 to 100%. A possibility of electric/electromagnetic triggering of earthquake due to space weather disturbances is supported by results of field and laboratory studies, where the earthquakes (both natural and laboratory) were initiated by injection of electrical current into the Earth crust. For the specific case of artificial electric earthquake triggering the current density at a depth of earthquake, sources are comparable with estimations of a density of telluric currents induced by variation of space weather conditions due to solar flares. Acknowledgment: The work was supported by RFBR grant No. 18-05-00255.

Keywords: solar flare, earthquake activity, earthquake triggering, solar-terrestrial relations

Procedia PDF Downloads 143
583 Isolation and Identification of Sarcocystis suihominis in a Slaughtered Domestic Pig (Sus scrofa) in Benue State, Nigeria

Authors: H. I. Obadiah, S. N. Wieser, E. A. Omudu, B. O. Atu, O. Byanet, L. Schnittger, M. Florin-Christensen

Abstract:

Sarcocystis sp. are Apicomplexan protozoan parasites with a life cycle that involves a predator and a prey as final and intermediate hosts, respectively. In tissues of the intermediate hosts, the parasites produce sarcocysts that vary in size and morphology according to the species. When a suitable predator ingests sarcocyst-containing meat, the parasites are released in the intestine and undergo sexual reproduction producing infective sporocysts, which are excreted with the feces into the environment. The cycle is closed when a prey ingests sporocyst-contaminated water or pasture; the parasites gain access to the circulation, and eventually invade tissues and reproduce asexually yielding sarcocysts. Pig farming is a common practice in Nigeria as well as in many countries around the world. In addition to its importance as protein source, pork is also a source of several pathogens relevant to humans. In the case of Sarcocystis, three species have been described both in domestic and wild pigs, namely, S. miescheriana, S. porcifelis and S. suihominis. Humans can act both as final and aberrant intermediate hosts of S. suihominis, after ingesting undercooked sarcocyst-infested pork. Infections are usually asymptomatic but can be associated with inappetence, nausea, vomiting and diarrhea, or with muscle pain, fever, eosinophilia and bronchospasm, in humans acting as final or intermediate hosts, respectively. Moreover, excretion of infective forms with human feces leads to further dissemination of the infection. In this study, macroscopic sarcocysts of white color, oval shape and a size range of approximately 3-5 mm were observed in the skeletal muscle of a slaughtered pig in an abattoir in Makurdi, Benue State, Nigeria, destined to human consumption. Sarcocysts were excised and washed in distilled water, and genomic DNA was extracted using a commercial kit. The near-complete length of the 18S rRNA gene was analyzed after PCR amplification of two overlapping fragments, each of which were submitted to direct sequencing. In addition, the mitochondrial cytochrome oxidase (cox-1) gene was PCR-amplified and directly sequenced. Two phylogenetic trees containing the obtained sequences along with available relevant 18S rRNA and cox-1 sequences were constructed by neighbor joining after alignment, using the corresponding sequences of Toxoplasma gondii as outgroup. The results showed in both cases that the analyzed sequences grouped with S. suihominis with high bootstrap value, confirming the identity of this macroscopic sarcocyst-forming parasite as S. suihominis. To the best of our knowledge, these results represent the first demonstration of this parasite in pigs of Nigeria and the largest sarcocysts described so far for S. suihominis. The close proximity between pigs and humans in pig farms, and the frequent poor sanitary conditions in human dwellings strongly suggest that the parasite undergoes the sexual stages of its life cycle in humans as final hosts. These findings provide an important reference for the examination and control of Sarcocystis species in pigs of Nigeria.

Keywords: nigeria, pork, sarcocystis suihominis, zoonotic parasite

Procedia PDF Downloads 88
582 Effects of Macroprudential Policies on BankLending and Risks

Authors: Stefanie Behncke

Abstract:

This paper analyses the effects of different macroprudential policy measures that have recently been implemented in Switzerland. Among them is the activation and the increase of the countercyclical capital buffer (CCB) and a tightening of loan-to-value (LTV) requirements. These measures were introduced to limit systemic risks in the Swiss mortgage and real estate markets. They were meant to affect mortgage growth, mortgage risks, and banks’ capital buffers. Evaluation of their quantitative effects provides insights for Swiss policymakers when reassessing their policy. It is also informative for policymakers in other countries who plan to introduce macroprudential instruments. We estimate the effects of the different macroprudential measures with a Differences-in-Differences estimator. Banks differ with respect to the relative importance of mortgages in their portfolio, their riskiness, and their capital buffers. Thus, some of the banks were more affected than others by the CCB, while others were more affected by the LTV requirements. Our analysis is made possible by an unusually informative bank panel data set. It combines data on newly issued mortgage loans and quantitative risk indicators such as LTV and loan-to-income (LTI) ratios with supervisory information on banks’ capital and liquidity situation and balance sheets. Our results suggest that the LTV cap of 90% was most effective. The proportion of new mortgages with a high LTV ratio was significantly reduced. This result does not only apply to the 90% LTV, but also to other threshold values (e.g. 80%, 75%) suggesting that the entire upper part of the LTV distribution was affected. Other outcomes such as the LTI distribution, the growth rates of mortgages and other credits, however, were not significantly affected. Regarding the activation and the increase of the CCB, we do not find any significant effects: neither LTV/LTI risk parameters nor mortgage and other credit growth rates were significantly reduced. This result may reflect that the size of the CCB (1% of relevant residential real estate risk-weighted assets at activation, respectively 2% at the increase) was not sufficiently high enough to trigger a distinct reaction between the banks most likely to be affected by the CCB and those serving as controls. Still, it might be have been effective in increasing the resilience in the overall banking system. From a policy perspective, these results suggest that targeted macroprudential policy measures can contribute to financial stability. In line with findings by others, caps on LTV reduced risk taking in Switzerland. To fully assess the effectiveness of the CCB, further experience is needed.

Keywords: banks, financial stability, macroprudential policy, mortgages

Procedia PDF Downloads 362
581 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon

Authors: Nadine Yehya, Chantal Maatouk

Abstract:

Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.

Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach

Procedia PDF Downloads 221
580 Presenting a Model Of Empowering New Knowledge-based Companies In Iran Insurance Industry

Authors: Pedram Saadati, Zahra Nazari

Abstract:

In the last decade, the role and importance of knowledge-based technological businesses in the insurance industry has greatly increased, and due to the weakness of previous studies in Iran, the current research deals with the design of the InsurTech empowerment model. In order to obtain the conceptual model of the research, a hybrid framework has been used. The statistical population of the research in the qualitative part were experts, and in the quantitative part, the InsurTech activists. The tools of data collection in the qualitative part were in-depth and semi-structured interviews and structured self-interaction matrix, and in the quantitative part, a researcher-made questionnaire. In the qualitative part, 55 indicators, 20 components and 8 concepts (dimensions) were obtained by the content analysis method, then the relationships of the concepts with each other and the levels of the components were investigated. In the quantitative part, the information was analyzed using the descriptive analytical method in the way of path analysis and confirmatory factor analysis. The proposed model consists of eight dimensions of supporter capability, supervisor of insurance innovation ecosystem, managerial, financial, technological, marketing, opportunity identification, innovative InsurTech capabilities. The results of statistical tests in identifying the relationships of the concepts with each other have been examined in detail and suggestions have been presented in the conclusion section.

Keywords: insurTech, knowledge-base, empowerment model, factor analysis, insurance

Procedia PDF Downloads 46
579 Static Analysis of Security Issues of the Python Packages Ecosystem

Authors: Adam Gorine, Faten Spondon

Abstract:

Python is considered the most popular programming language and offers its own ecosystem for archiving and maintaining open-source software packages. This system is called the python package index (PyPI), the repository of this programming language. Unfortunately, one-third of these software packages have vulnerabilities that allow attackers to execute code automatically when a vulnerable or malicious package is installed. This paper contributes to large-scale empirical studies investigating security issues in the python ecosystem by evaluating package vulnerabilities. These provide a series of implications that can help the security of software ecosystems by improving the process of discovering, fixing, and managing package vulnerabilities. The vulnerable dataset is generated using the NVD, the national vulnerability database, and the Snyk vulnerability dataset. In addition, we evaluated 807 vulnerability reports in the NVD and 3900 publicly known security vulnerabilities in Python Package Manager (pip) from the Snyk database from 2002 to 2022. As a result, many Python vulnerabilities appear in high severity, followed by medium severity. The most problematic areas have been improper input validation and denial of service attacks. A hybrid scanning tool that combines the three scanners bandit, snyk and dlint, which provide a clear report of the code vulnerability, is also described.

Keywords: Python vulnerabilities, bandit, Snyk, Dlint, Python package index, ecosystem, static analysis, malicious attacks

Procedia PDF Downloads 140
578 Discovering New Organic Materials through Computational Methods

Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner

Abstract:

Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.

Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings

Procedia PDF Downloads 253
577 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 195
576 Vehicular Speed Detection Camera System Using Video Stream

Authors: C. A. Anser Pasha

Abstract:

In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.

Keywords: radar, image processing, detection, tracking, segmentation

Procedia PDF Downloads 467
575 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells

Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser

Abstract:

Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.

Keywords: cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security

Procedia PDF Downloads 326
574 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 316
573 Transforming Breast Density Measurement with Artificial Intelligence: Population-Level Insights from BreastScreen NSW

Authors: Douglas Dunn, Ricahrd Walton, Matthew Warner-Smith, Chirag Mistry, Kan Ren, David Roder

Abstract:

Introduction: Breast density is a risk factor for breast cancer, both due to increased fibro glandular tissue that can harbor malignancy and the masking of lesions on mammography. Therefore, evaluation of breast density measurement is useful for risk stratification on an individual and population level. This study investigates the performance of Lunit INSIGHT MMG for automated breast density measurement. We analyze the reliability of Lunit compared to breast radiologists, explore density variations across the BreastScreen NSW population, and examine the impact of breast implants on density measurements. Methods: 15,518 mammograms were utilized for a comparative analysis of intra- and inter-reader reliability between Lunit INSIGHT MMG and breast radiologists. Subsequently, Lunit was used to evaluate 624,113 mammograms for investigation of density variations according to age and birth country, providing insights into diverse population subgroups. Finally, we compared breast density in 4,047 clients with implants to clients without implants, controlling for age and birth country. Results: Inter-reader variability between Lunit and Breast Radiologists weighted kappa coefficient was 0.72 (95%CI 0.71-0.73). Highest breast densities were seen in women with a North-East Asia background, whilst those of Aboriginal background had the lowest density. Across all backgrounds, density was demonstrated to reduce with age, though at different rates according to country of birth. Clients with implants had higher density relative to the age-matched no-implant strata. Conclusion: Lunit INSIGHT MMG demonstrates reasonable inter- and intra-observer reliability for automated breast density measurement. The scale of this study is significantly larger than any previous study assessing breast density due to the ability to process large volumes of data using AI. As a result, it provides valuable insights into population-level density variations. Our findings highlight the influence of age, birth country, and breast implants on density, emphasizing the need for personalized risk assessment and screening approaches. The large-scale and diverse nature of this study enhances the generalisability of our results, offering valuable information for breast cancer screening programs internationally.

Keywords: breast cancer, screening, breast density, artificial intelligence, mammography

Procedia PDF Downloads 3
572 On Flexible Preferences for Standard Taxis, Electric Taxis, and Peer-to-Peer Ridesharing

Authors: Ricardo Daziano

Abstract:

In the analysis and planning of the mobility ecosystem, preferences for ride-hailing over incumbent street-hailing services need better understanding. In this paper, a seminonparametric discrete choice model that allows for flexible preference heterogeneity is fitted with data from a discrete choice experiment among adult commuters in Montreal, Canada (N=760). Participants chose among Uber, Teo (a local electric ride-hailing service that was in operation when data was collected in 2018), and a standard taxi when presented with information about cost, time (on-trip, waiting, walking), powertrain of the car (gasoline/hybrid) for Uber and taxi, and whether the available electric Teo was a Tesla (which was one of the actual features of the Teo fleet). The fitted flexible model offers several behavioral insights. Waiting time for ride-hailing services is associated with a statistically significant but low marginal disutility. For other time components, including on-ride, and street-hailing waiting and walking the estimates of the value of time show an interesting pattern: whereas in a conditional logit on-ride time reductions are valued higher, in the flexible LML specification means of the value of time follow the expected pattern of waiting and walking creating a higher disutility. At the same time, the LML estimates show the presence of important, multimodal unobserved preference heterogeneity.

Keywords: discrete choice, electric taxis, ridehailing, semiparametrics

Procedia PDF Downloads 162
571 FisherONE: Employing Distinct Pedagogy through Technology Integration in Senior Secondary Education

Authors: J. Kontoleon, D.Gall, M.Pidskalny

Abstract:

FisherONE offers a distinct pedagogic model for senior secondary education that integrates advanced technology to meet the learning needs of Year 11 and 12 students across Catholic schools in Queensland. As a fully online platform, FisherONE employs pedagogy that combines flexibility with personalized, data-driven learning. The model leverages tools like the MaxHub hybrid interactive system and AI-powered learning assistants to create tailored learning pathways that promote student autonomy and engagement. This paper examines FisherONE’s success in employing pedagogic strategies through technology. Initial findings suggest that students benefit from the blended approach of virtual assessments and real-time support, even as AI-assisted tools remain in the proof-of-concept phase. The study outlines how FisherONE plans to continue refining its educational methods to better serve students in distance learning environments, specifically in challenging subjects like physics. The integration of technology in FisherONE enhances the effectiveness of teaching and learning, addressing common challenges in online education by offering scalable, individualized learning experiences. This approach demonstrates the future potential of technology in education and the role it can play in fostering meaningful student outcomes.

Keywords: AI-assisted learning, innovative pedagogy, personalized learning, senior education, technology in education

Procedia PDF Downloads 18
570 The Neuroscience Dimension of Juvenile Law Effectuates a Comprehensive Treatment of Youth in the Criminal System

Authors: Khushboo Shah

Abstract:

Categorical bans on the death penalty and life-without-parole sentences for juvenile offenders in a growing number of countries have established a new era in juvenile jurisprudence. This has been brought about by integration of the growing knowledge in cognitive neuroscience and appreciation of the inherent differences between adults and adolescents over the last ten years. This evolving understanding of being a child in the criminal system can be aptly reflected through policies that incorporate the mitigating traits of youth. First, the presentation will delineate the structures in cognitive neuroscience and in particular, focus on the prefrontal cortex, the amygdala, and the basal ganglia. These key anatomical structures in the brain are linked to three mitigating adolescent traits—an underdeveloped sense of responsibility, an increased vulnerability to negative influences, and transitory personality traits—that establish why juveniles have a lessened culpability. The discussion will delve into the details depicting how an underdeveloped prefrontal cortex results in the heightened emotional angst, high-energy and risky behavior characteristic of the adolescent time period or how the amygdala, the emotional center of the brain, governs different emotional expression resulting in why teens are susceptible to negative influences. Based on this greater understanding, it is incumbent that policies adequately reflect the adolescent physiology and psychology in the criminal system. However, it is important to ensure that these views are appropriately weighted while considering the jurisprudence for the treatment of children in the law. To ensure this balance is appropriately stricken, policies must incorporate the distinctive traits of youth in sentencing and legal considerations and yet refrain from the potential fallacies of absolving a juvenile offender of guilt and culpability. Accordingly, three policies will demonstrate how these results can be achieved: (1) eliminate housing of juvenile offenders in the adult prison system, (2) mandate fitness hearings for all transfers of juveniles to adult criminal court, and (3) use the post-disposition review as a type of rehabilitation method for juvenile offenders. Ultimately, this interdisciplinary approach of science and law allows for a better understanding of adolescent psychological and social functioning and can effectuate better legal outcomes for juveniles tried as adults.

Keywords: criminal law, Juvenile Justice, interdisciplinary, neuroscience

Procedia PDF Downloads 327
569 Chemical and Biomolecular Detection at a Polarizable Electrical Interface

Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon

Abstract:

Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquid

Keywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface

Procedia PDF Downloads 446
568 Identifying of Hybrid Lines for Lpx-B1 Gene in Durum Wheat

Authors: Özlem Ateş Sönmezoğlu, Begüm Terzi, Ahmet Yıldırım, Ramazan Özbey

Abstract:

The basic criteria which determine durum wheat quality is its suitability for pasta processing that is pasta making quality. Bright yellow color is a desired property in pasta products. Durum wheat pasta making quality is affected by grain pigment content and oxidative enzymes which affect adversely bright yellow color. Of the oxidative enzymes, lipoxygenase LOX is the most effective one on oxidative bleaching of yellow pigments in durum wheat products. Thus, wheat cultivars that are high in yellow pigments but low in LOX enzyme activity should be preferred for the production of pasta with high color quality. The aim of this study was to reduce lipoxygenase activities of the backcross durum wheat lines that were previously improved for their protein quality. For this purpose, two advanced lines with different parents (TMB2 and TMB3) were used recurrent parents. Also, Gediz-75 wheat with low LOX enzyme activity was used as the gene source. In all of the generations, backcrossed plants carrying the targeted gene region (Lpx-B1.1) were selected using SSR markers by marker assisted selection method. As a result, the study will be completed in three years instead of six years required in a classical backcross breeding study, leading to the development of high-quality candidate varieties. This research has been financially supported by TÜBİTAK (Project No: 112T910).

Keywords: durum wheat, lipoxygenase, LOX, Lpx-B1.1, MAS, Triticum durum

Procedia PDF Downloads 308
567 The Relationship between Risk and Capital: Evidence from Indian Commercial Banks

Authors: Seba Mohanty, Jitendra Mahakud

Abstract:

Capital ratio is one of the major indicators of the stability of the commercial banks. Pertinent to its pervasive importance, over the years the regulators, policy makers focus on the maintenance of the particular level of capital ratio to minimize the solvency and liquidation risk. In this context, it is very much important to identify the relationship between capital and risk and find out the factors which determine the capital ratios of commercial banks. The study examines the relationship between capital and risk of the commercial banks operating in India. Other bank specific variables like bank size, deposit, profitability, non-performing assets, bank liquidity, net interest margin, loan loss reserves, deposits variability and regulatory pressure are also considered for the analysis. The period of study is 1997-2015 i.e. the period of post liberalization. To identify the impact of financial crisis and implementation of Basel II on capital ratio, we have divided the whole period into two sub-periods i.e. 1997-2008 and 2008-2015. This study considers all the three types of commercial banks, i.e. public sector, the private sector and foreign banks, which have continuous data for the whole period. The main sources of data are Prowess data base maintained by centre for monitoring Indian economy (CMIE) and Reserve Bank of India publications. We use simultaneous equation model and more specifically Two Stage Least Square method to find out the relationship between capital and risk. From the econometric analysis, we find that capital and risk affect each other simultaneously, and this is consistent across the time period and across the type of banks. Moreover, regulation has a positive significant impact on the ratio of capital to risk-weighted assets, but no significant impact on the banks risk taking behaviour. Our empirical findings also suggest that size has a negative impact on capital and risk, indicating that larger banks increase their capital less than the other banks supported by the too-big-to-fail hypothesis. This study contributes to the existing body of literature by predicting a strong relationship between capital and risk in an emerging economy, where banking sector plays a majority role for financial development. Further this study may be considered as a primary study to find out the macro economic factors which affecting risk and capital in India.

Keywords: capital, commercial bank, risk, simultaneous equation model

Procedia PDF Downloads 327
566 Resilient Manufacturing in Times of Mass Customisation: Using Augmented Reality to Improve Training and Operating Practices of EV’s Battery Assembly

Authors: Lorena Caires Moreira, Marcos Kauffman

Abstract:

This paper outlines the results of experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance of highly customized and high-risk manual operations. The focus is on operators’ training capabilities and the aim is to test if such technologies can support achieving higher levels of knowledge retention and accuracy of task execution to improve health and safety (H and S) levels. The proposed solution is tested and validated using a real-world case study of electric vehicles’ battery module assembly. The experimental results revealed that the proposed AR method improved the training practices by increasing the knowledge retention levels from 40% to 84% and improved the accuracy of task execution from 20% to 71%, compared to the traditional paper-based method. The results of this research can be used as a demonstration of how emerging technologies are advancing the choice of manual, hybrid, or fully automated processes by promoting the connected worker (Industry 5.0) and supporting manufacturing in becoming more resilient in times of constant market changes.

Keywords: augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly, industry 5.0, smart training, battery assembly

Procedia PDF Downloads 128
565 Designing a Legal Framework for Social Innovation

Authors: Prapin Nuchpiam

Abstract:

The importance of social innovation has become increasingly significant as the process of developing effective solutions to social problems and being a force of change for people’s better quality of life. In order to promote social innovation, active collaboration between government, business organizations, and the civil society sector is needed. A proper legal framework also plays an important role in building the social innovation ecosystem. Currently, there is no specific law designed for social innovation or a so-called “social innovation law”. One of the legal frameworks for social innovation is the development of hybrid legal forms for social enterprises such as the UK’s Community Interest Company (CIC), the US’s Low-Profit Limited Liability Company (L3C) and the US’s Benefit Corporation (B-Corp), among others. This is because social enterprise is recognized as an organizational form of social innovation with its aim for social benefit goals and the achievement of financial sustainability. Nonetheless, there has been a debate over the differences and similarities between social innovation and social enterprise. Thus, social enterprise law might not fit well with social innovation, resulting in a search for a legal framework specially designed for social innovation. This paper aims to study the interrelationship between social innovation, social enterprise, and the role of law to see whether we need a specific law for social innovation. If so, what should such a legal framework look like? The paper will provide a critical analysis of innovative legal forms for social enterprise as a type of social innovation law. A proper legal framework for social innovation could help promote the sector, which could result in finding new solutions to social problems. It will also bring about a greater common understanding of the exciting development of legal scholarship in this way, which will, in turn, serve as a productive basis or direction for further research on this increasingly important topic.

Keywords: social innovation, social enterprise, legal framework, regulation

Procedia PDF Downloads 95