Search results for: tensor deep stacking neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5453

Search results for: tensor deep stacking neural networks

2993 An Approach to Maximize the Influence Spread in the Social Networks

Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel

Abstract:

In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.

Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network

Procedia PDF Downloads 249
2992 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 456
2991 A Systematic Review and Meta-Analysis in Slow Gait Speed and Its Association with Worse Postoperative Outcomes in Cardiac Surgery

Authors: Vignesh Ratnaraj, Jaewon Chang

Abstract:

Background: Frailty is associated with poorer outcomes in cardiac surgery, but the heterogeneity in frailty assessment tools makes it difficult to ascertain its true impact in cardiac surgery. Slow gait speed is a simple, validated, and reliable marker of frailty. We performed a systematic review and meta-analysis to examine the effect of slow gait speed on postoperative cardiac surgical patients. Methods: PubMED, MEDLINE, and EMBASE databases were searched from January 2000 to August 2021 for studies comparing slow gait speed and “normal” gait speed. The primary outcome was in-hospital mortality. Secondary outcomes were composite mortality and major morbidity, AKI, stroke, deep sternal wound infection, prolonged ventilation, discharge to a healthcare facility, and ICU length of stay. Results: There were seven eligible studies with 36,697 patients. Slow gait speed was associated with an increased likelihood of in-hospital mortality (risk ratio [RR]: 2.32; 95% confidence interval [CI]: 1.87–2.87). Additionally, they were more likely to suffer from composite mortality and major morbidity (RR: 1.52; 95% CI: 1.38–1.66), AKI (RR: 2.81; 95% CI: 1.44–5.49), deep sternal wound infection (RR: 1.77; 95% CI: 1.59–1.98), prolonged ventilation >24 h (RR: 1.97; 95% CI: 1.48–2.63), reoperation (RR: 1.38; 95% CI: 1.05–1.82), institutional discharge (RR: 2.08; 95% CI: 1.61–2.69), and longer ICU length of stay (MD: 21.69; 95% CI: 17.32–26.05). Conclusion: Slow gait speed is associated with poorer outcomes in cardiac surgery. Frail patients are twofold more likely to die during hospital admission than non-frail counterparts and are at an increased risk of developing various perioperative complications.

Keywords: cardiac surgery, gait speed, recovery, frailty

Procedia PDF Downloads 73
2990 Seismic Reflection Highlights of New Miocene Deep Aquifers in Eastern Tunisia Basin (North Africa)

Authors: Mourad Bédir, Sami Khomsi, Hakim Gabtni, Hajer Azaiez, Ramzi Gharsalli, Riadh Chebbi

Abstract:

Eastern Tunisia is a semi-arid area; located in the northern Africa plate; southern Mediterranean side. It is facing water scarcity, overexploitation, and decreasing of water quality of phreatic water table. Water supply and storage will not respond to the demographic and economic growth and demand. In addition, only 5 109 m3 of rainwater from 35 109 m3 per year renewable rain water supply can be retained and remobilized. To remediate this water deficiency, researches had been focused to near new subsurface deep aquifers resources. Among them, Upper Miocene sandstone deposits of Béglia, Saouaf, and Somaa Formations. These sandstones are known for their proven Hydrogeologic and hydrocarbon reservoir characteristics in the Tunisian margin. They represent semi-confined to confined aquifers. This work is based on new integrated approaches of seismic stratigraphy, seismic tectonics, and hydrogeology, to highlight and characterize these reservoirs levels for aquifer exploitation in semi-arid area. As a result, five to six third order sequence deposits had been highlighted. They are composed of multi-layered extended sandstones reservoirs; separated by shales packages. These reservoir deposits represent lowstand and highstand system tracts of these sequences, which represent lowstand and highstand system tracts of these sequences. They constitute important strategic water resources volumes for the region.

Keywords: Tunisia, Hydrogeology, sandstones, basin, seismic, aquifers, modeling

Procedia PDF Downloads 178
2989 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV

Authors: Maria Pavlova

Abstract:

In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.

Keywords: camera, object recognition, OpenCV, Raspberry

Procedia PDF Downloads 218
2988 Losing Benefits from Social Network Sites Usage: An Approach to Estimate the Relationship between Social Network Sites Usage and Social Capital

Authors: Maoxin Ye

Abstract:

This study examines the relationship between social network sites (SNS) usage and social capital. Because SNS usage can expand the users’ networks, and people who are connected in this networks may become resources to SNS users and lead them to advantage in some situation, it is important to estimate the relationship between SNS usage and ‘who’ is connected or what resources the SNS users can get. Additionally, ‘who’ can be divided in two aspects – people who possess high position and people who are different, hence, it is important to estimate the relationship between SNS usage and high position people and different people. This study adapts Lin’s definition of social capital and the measurement of position generator which tells us who was connected, and can be divided into the same two aspects as well. A national data of America (N = 2,255) collected by Pew Research Center is utilized to do a general regression analysis about SNS usage and social capital. The results indicate that SNS usage is negatively associated with each factor of social capital, and it suggests that, in fact, comparing with non-users, although SNS users can get more connections, the variety and resources of these connections are fewer. For this reason, we could lose benefits through SNS usage.

Keywords: social network sites, social capital, position generator, general regression

Procedia PDF Downloads 262
2987 Hippocampus Proteomic of Major Depression and Antidepressant Treatment: Involvement of Cell Proliferation, Differentiation, and Connectivity

Authors: Dhruv J. Limaye, Hanga Galfalvy, Cheick A. Sissoko, Yung-yu Huang, Chunanning Tang, Ying Liu, Shu-Chi Hsiung, Andrew J. Dwork, Gorazd B. Rosoklija, Victoria Arango, Lewis Brown, J. John Mann, Maura Boldrini

Abstract:

Memory and emotion require hippocampal cell viability and connectivity and are disrupted in major depressive disorder (MDD). Applying shotgun proteomics and stereological quantification of neural progenitor cells (NPCs), intermediate neural progenitors (INPs), and mature granule neurons (GNs), to postmortem human hippocampus, identified differentially expressed proteins (DEPs), and fewer NPCs, INPs and GNs, in untreated MDD (uMDD) compared with non-psychiatric controls (CTRL) and antidepressant-treated MDD (MDDT). DEPs lower in uMDD vs. CTRL promote mitosis, differentiation, and prevent apoptosis. DEPs higher in uMDD vs. CTRL inhibit the cell cycle, and regulate cell adhesion, neurite outgrowth, and DNA repair. DEPs lower in MDDT vs. uMDD block cell proliferation. We observe group-specific correlations between numbers of NPCs, INPs, and GNs and an abundance of proteins regulating mitosis, differentiation, and apoptosis. Altered protein expression underlies hippocampus cellular and volume loss in uMDD, supports a trophic effect of antidepressants, and offers new treatment targets.

Keywords: proteomics, hippocampus, depression, mitosis, migration, differentiation, mitochondria, apoptosis, antidepressants, human brain

Procedia PDF Downloads 100
2986 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting

Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi

Abstract:

An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.

Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power

Procedia PDF Downloads 411
2985 Symbol Synchronization and Resource Reuse Schemes for Layered Video Multicast Service in Long Term Evolution Networks

Authors: Chung-Nan Lee, Sheng-Wei Chu, You-Chiun Wang

Abstract:

LTE (Long Term Evolution) employs the eMBMS (evolved Multimedia Broadcast/Multicast Service) protocol to deliver video streams to a multicast group of users. However, it requires all multicast members to receive a video stream in the same transmission rate, which would degrade the overall service quality when some users encounter bad channel conditions. To overcome this problem, this paper provides two efficient resource allocation schemes in such LTE network: The symbol synchronization (S2) scheme assumes that the macro and pico eNodeBs use the same frequency channel to deliver the video stream to all users. It then adopts a multicast transmission index to guarantee the fairness among users. On the other hand, the resource reuse (R2) scheme allows eNodeBs to transmit data on different frequency channels. Then, by introducing the concept of frequency reuse, it can further improve the overall service quality. Extensive simulation results show that the S2 and R2 schemes can respectively improve around 50% of fairness and 14% of video quality as compared with the common maximum throughput method.

Keywords: LTE networks, multicast, resource allocation, layered video

Procedia PDF Downloads 389
2984 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 274
2983 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results

Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj

Abstract:

Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.

Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters

Procedia PDF Downloads 217
2982 Effectiveness of Interactive Integrated Tutorial in Teaching Medical Subjects to Dental Students: A Pilot Study

Authors: Mohammad Saleem, Neeta Kumar, Anita Sharma, Sazina Muzammil

Abstract:

It is observed that some of the dental students in our setting take less interest in medical subjects. Various teaching methods are focus of research interest currently and being tried to generate interest among students. An approach of interactive integrated tutorial was used to assess its feasibility in teaching medical subjects to dental undergraduates. The aim was to generate interest and promote active self-learning among students. The objectives were to (1) introduce the integrated interactive learning method through two departments, (2) get feedback from the students and faculty on feasibility and effectiveness of this method. Second-year students in Bachelor of Dental Surgery course were divided into two groups. Each group was asked to study physiology and pathology of a common and important condition (anemia and hypertension) in a week’s time. During the tutorial, students asked questions on physiology and pathology of that condition from each other in the presence of teachers of both physiology and pathology departments. The teachers acted only as facilitators. After the session, the feedback from students and faculty on this alternative learning method was obtained. Results: Majority of the students felt that this method of learning is enjoyable, helped to develop reasoning skills and ability to correlate and integrate the knowledge from two related fields. Majority of the students felt that this kind of learning led to better understanding of the topic and motivated them towards deep learning. Teachers observed that the study promoted interdepartmental cross-discipline collaboration and better students’ linkages. Conclusion: Interactive integrated tutorial is effective in motivating dental students for better and deep learning of medical subjects.

Keywords: active learning, education, integrated, interactive, self-learning, tutorials

Procedia PDF Downloads 315
2981 Feasibility Study on the Application of Waste Materials for Production of Sustainable Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are expanding all over the world during the past few decades to meet the increasing freight volumes created by the population growth and industrial development. At the same time, the rate of generation of solid wastes in the society is increasing with the population growth, technological development, and changes in the lifestyle of people. Thus, the management of solid wastes has become an acute problem. Accordingly, there is a need for greater efficiency in the construction and maintenance of road networks, in reducing the overall cost, especially the utilization of natural materials such as aggregates. An efficient means to reduce construction and maintenance costs of road networks is to replace natural (virgin) materials by secondary, recycled materials. Recycling will also help to reduce pressure on landfills and demand for extraction of natural virgin materials thus ensuring sustainability. Application of solid wastes in asphalt layer reduces not only environmental issues associated with waste disposal but also the demand for virgin materials which will subsequently result in sustainability. Therefore, this research aims to investigate the feasibility of the application of some of the waste materials such as glass, construction and demolition wastes, etc. as alternative materials in pavement construction, particularly flexible pavements. To this end, various combination of different waste materials in certain percentages is considered in designing the asphalt mixture. One of the goals of this research is to determine the optimum percentage of all these materials in the mixture. This is done through a series of tests to evaluate the volumetric properties and resilient modulus of the mixture. The information and data collected from these tests are used to select the adequate samples for further assessment through advanced tests such as triaxial dynamic test and fatigue test, in order to investigate the asphalt mixture resistance to permanent deformation and also cracking. This paper presents the results of these investigations on the application of waste materials in asphalt mixture for production of a sustainable asphalt mix.

Keywords: asphalt, glass, pavement, recycled aggregate, sustainability

Procedia PDF Downloads 236
2980 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 105
2979 Harnessing Deep-Level Metagenomics to Explore the Three Dynamic One Health Areas: Healthcare, Domiciliary and Veterinary

Authors: Christina Killian, Katie Wall, Séamus Fanning, Guerrino Macori

Abstract:

Deep-level metagenomics offers a useful technical approach to explore the three dynamic One Health axes: healthcare, domiciliary and veterinary. There is currently limited understanding of the composition of complex biofilms, natural abundance of AMR genes and gene transfer occurrence in these ecological niches. By using a newly established small-scale complex biofilm model, COMBAT has the potential to provide new information on microbial diversity, antimicrobial resistance (AMR)-encoding gene abundance, and their transfer in complex biofilms of importance to these three One Health axes. Shotgun metagenomics has been used to sample the genomes of all microbes comprising the complex communities found in each biofilm source. A comparative analysis between untreated and biocide-treated biofilms is described. The basic steps include the purification of genomic DNA, followed by library preparation, sequencing, and finally, data analysis. The use of long-read sequencing facilitates the completion of metagenome-assembled genomes (MAG). Samples were sequenced using a PromethION platform, and following quality checks, binning methods, and bespoke bioinformatics pipelines, we describe the recovery of individual MAGs to identify mobile gene elements (MGE) and the corresponding AMR genotypes that map to these structures. High-throughput sequencing strategies have been deployed to characterize these communities. Accurately defining the profiles of these niches is an essential step towards elucidating the impact of the microbiota on each niche biofilm environment and their evolution.

Keywords: COMBAT, biofilm, metagenomics, high-throughput sequencing

Procedia PDF Downloads 56
2978 Economic Life of Iranians on Instagram and the Disturbance in Politics

Authors: Mohammad Zaeimzade

Abstract:

The development of communication technologies is clearly and rapidly moving towards reducing the distance between the virtual and real worlds. Of course, living in a two-spatial or two-globalized world or any other interpretation that means mixing real and virtual life is still relevant and debatable. In the present age of communication, where social networks have transformed the message equation and turned the audience out of passivity and turned into a user. Platforms have penetrated widely in various aspects of human life, from culture and education and economy. Among the messengers, Instagram, which is one of the most extensive image-based interactive networks, plays a significant role in the new economic life. It doesn't need much explanation that the era of thinking of every messenger as a non-insulating conductor that is just a neutral load has passed. Every messenger has its own economic, political and of course security background, Instagram is no exception to this rule and of course it leaves its effects in bio-economics as well. Iran, as the 19th largest economy in the world, has not been unaffected by new platforms, including Instagram, and their consequences in the economy. Generally, in the policy-making space, there are two simple and inflexible pessimistic or optimistic views on this issue, and each of the holders of these views usually have their own one-dimensional policy recommendations regarding how to deal with Instagram. Prescriptions that are usually very different and sometimes contradictory. In this article, we show that this confusion of policymakers is the result of not accurately describing the reality of its effect, and the reason for this inaccurate description is the existence of a conflict of interests in the eyes of describers and researchers. In this article, we first take a look at the main indicators of the Iranian economy, estimate the role of the digital economy in Iran's economic growth, then study the conflicting descriptions of the Instagram-based digital economy, the statistics that show the tolerance of economic users of Instagram in Iran. 300 thousand to 9 million have been estimated. Finally, we take a look at the government's actions in this matter, especially in the context of street riots in October and November 2022. And we suggest an intermediate idea.

Keywords: digital economy, instagram, conflict of interest, social networks

Procedia PDF Downloads 76
2977 High Pressure Torsion Deformation Behavior of a Low-SFE FCC Ternary Medium Entropy Alloy

Authors: Saumya R. Jha, Krishanu Biswas, Nilesh P. Gurao

Abstract:

Several recent investigations have revealed medium entropy alloys exhibiting better mechanical properties than their high entropy counterparts. This clearly establishes that although a higher entropy plays a vital role in stabilization of particular phase over complex intermetallic phases, configurational entropy is not the primary factor responsible for the high inherent strengthening in these systems. Above and beyond a high contribution from friction stresses and solid solution strengthening, strain hardening is an important contributor to the strengthening in these systems. In this regard, researchers have developed severe plastic deformation (SPD) techniques like High Pressure Torsion (HPT) to incorporate very high shear strain in the material, thereby leading to ultrafine grained (UFG) microstructures, which cause manifold increase in the strength. The presented work demonstrates a meticulous study of the variation in mechanical properties at different radial displacements from the center of HPT tested equiatomic ternary FeMnNi synthesized by casting route, which is a low stacking fault energy FCC alloy that shows significantly higher toughness than its high entropy counterparts like Cantor alloy. The gradient in grain sizes along the radial direction of these specimens has been modeled using microstructure entropy for predicting the mechanical properties, which has also been validated by indentation tests. The dislocation density is computed by FEM simulations for varying strains and validated by analyzing synchrotron diffraction data. Thus, the proposed model can be utilized to predict the strengthening behavior of similar systems deformed by HPT subjected to varying loading conditions.

Keywords: high pressure torsion, severe plastic deformation, configurational entropy, dislocation density, FEM simulation

Procedia PDF Downloads 153
2976 Free and Open Source Licences, Software Programmers, and the Social Norm of Reciprocity

Authors: Luke McDonagh

Abstract:

Over the past three decades, free and open source software (FOSS) programmers have developed new, innovative and legally binding licences that have in turn enabled the creation of innumerable pieces of everyday software, including Linux, Mozilla Firefox and Open Office. That FOSS has been highly successful in competing with 'closed source software' (e.g. Microsoft Office) is now undeniable, but in noting this success, it is important to examine in detail why this system of FOSS has been so successful. One key reason is the existence of networks or communities of programmers, who are bound together by a key shared social norm of 'reciprocity'. At the same time, these FOSS networks are not unitary – they are highly diverse and there are large divergences of opinion between members regarding which licences are generally preferable: some members favour the flexible ‘free’ or 'no copyleft' licences, such as BSD and MIT, while other members favour the ‘strong open’ or 'strong copyleft' licences such as GPL. This paper argues that without both the existence of the shared norm of reciprocity and the diversity of licences, it is unlikely that the innovative legal framework provided by FOSS would have succeeded to the extent that it has.

Keywords: open source, copyright, licensing, copyleft

Procedia PDF Downloads 373
2975 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column

Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan

Abstract:

Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.

Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill

Procedia PDF Downloads 75
2974 Human Performance Evaluating of Advanced Cardiac Life Support Procedure Using Fault Tree and Bayesian Network

Authors: Shokoufeh Abrisham, Seyed Mahmoud Hossieni, Elham Pishbin

Abstract:

In this paper, a hybrid method based on the fault tree analysis (FTA) and Bayesian networks (BNs) are employed to evaluate the team performance quality of advanced cardiac life support (ACLS) procedures in emergency department. According to American Heart Association (AHA) guidelines, a category relying on staff action leading to clinical incidents and also some discussions with emergency medicine experts, a fault tree model for ACLS procedure is obtained based on the human performance. The obtained FTA model is converted into BNs, and some different scenarios are defined to demonstrate the efficiency and flexibility of the presented model of BNs. Also, a sensitivity analysis is conducted to indicate the effects of team leader presence and uncertainty knowledge of experts on the quality of ACLS. The proposed model based on BNs shows that how the results of risk analysis can be closed to reality comparing to the obtained results based on only FTA in medical procedures.

Keywords: advanced cardiac life support, fault tree analysis, Bayesian belief networks, numan performance, healthcare systems

Procedia PDF Downloads 147
2973 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience

Authors: Amanda Kavner, Richard Lamb

Abstract:

Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.

Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience

Procedia PDF Downloads 119
2972 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study

Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh

Abstract:

Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.

Keywords: education, smartphone, social networks, teenagers

Procedia PDF Downloads 453
2971 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 17
2970 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: multi-agent system, safety analysis, safety model, integration map

Procedia PDF Downloads 417
2969 [Keynote Talk]: Knowledge Codification and Innovation Success within Digital Platforms

Authors: Wissal Ben Arfi, Lubica Hikkerova, Jean-Michel Sahut

Abstract:

This study examines interfirm networks in the digital transformation era, and in particular, how tacit knowledge codification affects innovation success within digital platforms. Hence, one of the most important features of digital transformation and innovation process outcomes is the emergence of digital platforms, as an interfirm network, at the heart of open innovation. This research aims to illuminate how digital platforms influence inter-organizational innovation through virtual team interactions and knowledge sharing practices within an interfirm network. Consequently, it contributes to the respective strategic management literature on new product development (NPD), open innovation, industrial management, and its emerging interfirm networks’ management. The empirical findings show, on the one hand, that knowledge conversion may be enhanced, especially by the socialization which seems to be the most important phase as it has played a crucial role to hold the virtual team members together. On the other hand, in the process of socialization, the tacit knowledge codification is crucial because it provides the structure needed for the interfirm network actors to interact and act to reach common goals which favor the emergence of open innovation. Finally, our results offer several conditions necessary, but not always sufficient, for interfirm managers involved in NPD and innovation concerning strategies to increasingly shape interconnected and borderless markets and business collaborations. In the digital transformation era, the need for adaptive and innovative business models as well as new and flexible network forms is becoming more significant than ever. Supported by technological advancements and digital platforms, companies could benefit from increased market opportunities and creating new markets for their innovations through alliances and collaborative strategies, as a mode of reducing or eliminating uncertainty environments or entry barriers. Consequently, an efficient and well-structured interfirm network is essential to create network capabilities, to ensure tacit knowledge sharing, to enhance organizational learning and to foster open innovation success within digital platforms.

Keywords: interfirm networks, digital platform, virtual teams, open innovation, knowledge sharing

Procedia PDF Downloads 130
2968 Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border

Authors: Fengqing Li, Petra Schneider

Abstract:

Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF.

Keywords: Central Asia, contaminant transport modelling, radioactive residue, transboundary conflict

Procedia PDF Downloads 118
2967 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: graph computation, graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia PDF Downloads 147
2966 Sandstone Petrology of the Kolhan Basin, Eastern India: Implications for the Tectonic Evolution of a Half-Graben

Authors: Rohini Das, Subhasish Das, Smruti Rekha Sahoo, Shagupta Yesmin

Abstract:

The Paleoproterozoic Kolhan Group (Purana) ensemble constitutes the youngest lithostratigraphic 'outlier' in the Singhbhum Archaean craton. The Kolhan unconformably overlies both the Singhbhum granite and the Iron Ore Group (IOG). Representing a typical sandstone-shale ( +/- carbonates) sequence, the Kolhan is characterized by the development of thin and discontinuous patches of basal conglomerates draped by sandstone beds. The IOG-fault limits the western 'distal' margin of the Kolhan basin showing evidence of passive subsidence subsequent to the initial rifting stage. The basin evolved as a half-graben under the influence of an extensional stress regime. The assumption of a tectonic setting for the NE-SW trending Kolhan basin possibly relates to the basin opening to the E-W extensional stress system that prevailed during the development of the Newer Dolerite dyke. The Paleoproterozoic age of the Kolhan basin is based on the consideration of the conformable stress pattern responsible both for the basin opening and the development of the conjugate fracture system along which the Newer Dolerite dykes intruded the Singhbhum Archaean craton. The Kolhan sandstones show progressive change towards greater textural and mineralogical maturity in its upbuilding. The trend of variations in different mineralogical and textural attributes, however, exhibits inflections at different lithological levels. Petrological studies collectively indicate that the sandstones were dominantly derived from a weathered granitic crust under a humid climatic condition. Provenance-derived variations in sandstone compositions are therefore a key in unraveling regional tectonic histories. The basin axis controlled the progradation direction which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the basinal deep. Temporal association of the Kolhan with tectonic structures in the belt indicates that syn-tectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz. The sedimentation pattern in the Kolhan reflects a change from braided fluvial-ephemeral pattern to a fan-delta-lacustrine type. The channel geometries and the climate exerted a major control on the processes of sediment transfer. Repeated fault controlled uplift of the source followed by subsidence and forced regression, generated multiple sediment cyclicity that led to the fluvial-fan delta sedimentation pattern. Intermittent uplift of the faulted blocks exposed fresh bedrock to mechanical weathering that generated a large amount of detritus and resulted to forced regressions, repeatedly disrupting the cycles which may reflect a stratigraphic response of connected rift basins at the early stage of extension. The marked variations in the thickness of the fan delta succession and the stacking pattern in different measured profiles reflect the overriding tectonic controls on fan delta evolution. The accumulated fault displacement created higher accommodation and thicker delta sequences. Intermittent uplift of fault blocks exposed fresh bedrock to mechanical weathering, generated a large amount of detritus, and resulted in forced closure of the land-locked basin, repeatedly disrupting the fining upward pattern. The control of source rock lithology or climate was of secondary importance to tectonic effects. Such a retrograding fan delta could be a stratigraphic response of connected rift basins at the early stage of extension.

Keywords: Kolhan basin, petrology, sandstone, tectonics

Procedia PDF Downloads 504
2965 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 74
2964 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 353