Search results for: prediction capability
1045 Leadership in the Era of AI: Growing Organizational Intelligence
Authors: Mark Salisbury
Abstract:
The arrival of artificially intelligent avatars and the automation they bring is worrying many of us, not only for our livelihood but for the jobs that may be lost to our kids. We worry about what our place will be as human beings in this new economy where much of it will be conducted online in the metaverse – in a network of 3D virtual worlds – working with intelligent machines. The Future of Leadership was written to address these fears and show what our place will be – the right place – in this new economy of AI avatars, automation, and 3D virtual worlds. But to be successful in this new economy, our job will be to bring wisdom to our workplace and the marketplace. And we will use AI avatars and 3D virtual worlds to do it. However, this book is about more than AI and the avatars that we will work with in the metaverse. It’s about building Organizational intelligence (OI) -- the capability of an organization to comprehend and create knowledge relevant to its purpose; in other words, it is the intellectual capacity of the entire organization. To increase organizational intelligence requires a new kind of knowledge worker, a wisdom worker, that requires a new kind of leadership. This book begins your story for how to become a leader of wisdom workers and be successful in the emerging wisdom economy. After this presentation, conference participants will be able to do the following: Recognize the characteristics of the new generation of wisdom workers and how they differ from their predecessors. Recognize that new leadership methods and techniques are needed to lead this new generation of wisdom workers. Apply personal and professional values – personal integrity, belief in something larger than yourself, and keeping the best interest of others in mind – to improve your work performance and lead others. Exhibit an attitude of confidence, courage, and reciprocity of sharing knowledge to increase your productivity and influence others. Leverage artificial intelligence to accelerate your ability to learn, augment your decision-making, and influence others.Utilize new technologies to communicate with human colleagues and intelligent machines to develop better solutions more quickly.Keywords: metaverse, generative artificial intelligence, automation, leadership, organizational intelligence, wisdom worker
Procedia PDF Downloads 441044 NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine
Authors: Anas Rao, Hao Duan, Fanhua Ma
Abstract:
The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated.Keywords: quasi-dimensional combustion , thermal NO, prompt NO, NO packet
Procedia PDF Downloads 2511043 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns
Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan
Abstract:
The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)
Procedia PDF Downloads 761042 Prediction of Flow Around a NACA 0015 Profile
Authors: Boukhadia Karima
Abstract:
The fluid mechanics is the study of fluid motion laws and their interaction with solid bodies, this project leads to illustrate this interaction with depth studies and approved by experiments on the wind tunnel TE44, ensuring the efficiency, accuracy and reliability of these tests on a NACA0015 profile. A symmetric NACA0015 was placed in a subsonic wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of the velocity across the vortex trailing downstream from the tip of the wing. The aim of this work is to investigate experimentally the scattered pressure profile in a free airflow and the aerodynamic forces acting on this profile. The addition of around-lateral edge to the wing tip was found to eliminate the secondary vortex near the wing tip, but had little effect on the downstream characteristics of the trailing vortex. The increase in wing lift near the tip because of the presence of the trailing vortex was evident in the surface pressure, but was not captured by circulation-box measurements. The circumferential velocity within the vortex was found to reach free-stream values and produce core rotational speeds. Near the wing, the trailing vortex is asymmetric and contains definite zones where the stream wise velocity both exceeds and falls behind the free-stream value. When referenced to the free stream velocity, the maximum vertical velocity of the vortex is directly dependent on α and is independent of Re. A numerical study was conducted through a CFD code called FLUENT 6.0, and the results are compared with experimental.Keywords: CFD code, NACA Profile, detachment, angle of incidence, wind tunnel
Procedia PDF Downloads 4111041 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition
Authors: H. F. Shi, C. L. Zhang
Abstract:
Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4
Procedia PDF Downloads 1991040 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 971039 Improvement of the Quality Services of Social Robots by Understanding Requirements of People with Dementia
Authors: Konrad Rejdak, Agnieszka Korchut, Sebastian Szklener, Urszula Skrobas, Justyna Gerlowska, Katarzyna Grabowska-Aleksandrowicz, Dorota Szczesniak-Stanczyk
Abstract:
Introduction: Neurodegenerative diseases are frequently accompanied by loss and unwanted change in functional independence, social relationships, and economic circumstances. Currently, the achievements of social robots to date is being projected to improve multidimensional quality of life among people with cognitive impairment and others. Objectives: Identification of particular human needs in context of the changes occurring in course of neurodegenerative diseases. Methods: Based on the 110 surveys performed in Medical University of Lublin from medical staff, patients, and caregivers we made prioritization of the users' needs as: high, medium, and low. The issues included in the surveys concerned four aspects: user acceptance, functional requirements, design of the robotic assistant and preferred types of human-robot interaction. Results: We received completed questionnaires: 50 from medical staff, 30 from caregivers and 30 from potential users. Above 90% of the respondents from each of the three groups, accepted robotic assistant as a potential caregiver. High priority functional capability of assistive technology was to handle emergencies in a private home like recognizing life-threatening situations and reminding about medication intake. With reference to design of the robotic assistant, the majority of the respondent would like to have an anthropomorphic appearance with positive emotionally expressive face. The most important type of human-robot interaction was voice-operated system and by touchscreen. Conclusion: The results from our study might contribute to a better understanding of the system and users’ requirements for the development of a service robot intended to support patients with dementia.Keywords: social robot, dementia, requirements, patients needs
Procedia PDF Downloads 2711038 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement
Authors: Sai Sankalp Vemavarapu
Abstract:
This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation
Procedia PDF Downloads 1641037 Finite Volume Method for Flow Prediction Using Unstructured Meshes
Authors: Juhee Lee, Yongjun Lee
Abstract:
In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.Keywords: finite volume method, fluid flow, laminar flow, unstructured grid
Procedia PDF Downloads 2861036 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce
Authors: Jiao Sun, Li Pan, Shijun Liu
Abstract:
Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.Keywords: collaborative filtering, recommendation, data normalization, mapreduce
Procedia PDF Downloads 2171035 Healthy Lifestyle and Risky Behaviors amongst Students of Physical Education High Schools
Authors: Amin Amani, Masomeh Reihany Shirvan, Mahla Nabizadeh Mashizi, Mohadese Khoshtinat, Mohammad Elyas Ansarinia
Abstract:
The purpose of this study is the relationship between a healthy lifestyle and risky behavior in physical education students of Bojnourd schools. The study sample consisted of teenagers studying in second and third grade of Bojnourd's high schools. According to level sampling, 604 students studying in the second grade, and 600 students studying in third grade were tested from physical education schools in Bojnourd. For sample selection, populations were divided into 4 area including north, East, West and South. Then according to the number of students of each area, sample size of each level was determined. Two questionnaires were used to collect data in this study which were consisted of three parts: The demographic data, Iranian teenagers' risk taking (IARS) and prevention methods with emphasize on the importance of family role were examined. The Central and dispersion indices, such as standard deviation, multiple variance analysis, and multivariate regression analysis were used. Results showed that the observed F is significant (P ≤ 0.01) and 21% of variance related to risky behavior is explained by the lack of awareness. Given the significance of the regression, the coefficients of risky behavior in teenagers in prediction equation showed that each of teenagers' risky behavior can have an impact on healthy lifestyle.Keywords: healthy lifestyle, high-risk behavior, students, physical education
Procedia PDF Downloads 1901034 The Relationship between First-Day Body Temperature and Mortality in Traumatic Patients
Authors: Neda Valizadeh, Mani Mofidi, Sama Haghighi, Ali Hashemaghaee, Soudabeh Shafiee Ardestani
Abstract:
Background: There are many systems and parameters to evaluate trauma patients in the emergency department. Most of these evaluations are to distinguish patients with worse conditions so that the care systems have a better prediction of condition for a better care-giving. The purpose of this study is to determine the relationship between axillary body temperature and mortality in patients hospitalized in the intensive care unit (ICU) with multiple traumas and with other clinical and para-clinical factors. Methods: All patients between 16 and 75 years old with multiple traumas who were admitted into Emergency Department then hospitalized in the ICU were included in our study. An axillary temperature in the first and the second day of admission, Glasgow cola scale (GCS), systolic blood pressure, Serum glucose levels, and white blood cell counts of all patients at the admission day were recorded and their relationship with mortality were analyzed by SPSS software with suitable statistical tests. Results: Axillary body temperatures in the first and second day were statistically lower in expired traumatic patients (p=0.001 and p<0,001 respectively). Patients with lower GCS had a significantly lower first-day temperature and a significantly higher mortality. (p=0.006 and p=0.006 respectively). Furthermore, the first-day axillary temperature was significantly lower in patients with a lower first-day systolic blood pressure (p=0.014). Conclusion: Our results showed that lower axillary body temperature in the first day is associated with higher mortality, lower GCS, and lower systolic blood pressure. Thus, this could be used as a predictor of mortality in evaluation of traumatic patients in emergency settings.Keywords: fever, trauma, mortality, emergency
Procedia PDF Downloads 3761033 Evaluation of Deformation for Deep Excavations in the Greater Vancouver Area Through Case Studies
Authors: Boris Kolev, Matt Kokan, Mohammad Deriszadeh, Farshid Bateni
Abstract:
Due to the increasing demand for real estate and the need for efficient land utilization in Greater Vancouver, developers have been increasingly considering the construction of high-rise structures with multiple below-grade parking. The temporary excavations required to allow for the construction of underground levels have recently reached up to 40 meters in depth. One of the challenges with deep excavations is the prediction of wall displacements and ground settlements due to their effect on the integrity of City utilities, infrastructure, and adjacent buildings. A large database of survey monitoring data has been collected for deep excavations in various soil conditions and shoring systems. The majority of the data collected is for tie-back anchors and shotcrete lagging systems. The data were categorized, analyzed and the results were evaluated to find a relationship between the most dominant parameters controlling the displacement, such as depth of excavation, soil properties, and the tie-back anchor loading and arrangement. For a select number of deep excavations, finite element modeling was considered for analyses. The lateral displacements from the simulation results were compared to the recorded survey monitoring data. The study concludes with a discussion and comparison of the available empirical and numerical modeling methodologies for evaluating lateral displacements in deep excavations.Keywords: deep excavations, lateral displacements, numerical modeling, shoring walls, tieback anchors
Procedia PDF Downloads 1821032 Probabilistic Slope Stability Analysis of Excavation Induced Landslides Using Hermite Polynomial Chaos
Authors: Schadrack Mwizerwa
Abstract:
The characterization and prediction of landslides are crucial for assessing geological hazards and mitigating risks to infrastructure and communities. This research aims to develop a probabilistic framework for analyzing excavation-induced landslides, which is fundamental for assessing geological hazards and mitigating risks to infrastructure and communities. The study uses Hermite polynomial chaos, a non-stationary random process, to analyze the stability of a slope and characterize the failure probability of a real landslide induced by highway construction excavation. The correlation within the data is captured using the Karhunen-Loève (KL) expansion theory, and the finite element method is used to analyze the slope's stability. The research contributes to the field of landslide characterization by employing advanced random field approaches, providing valuable insights into the complex nature of landslide behavior and the effectiveness of advanced probabilistic models for risk assessment and management. The data collected from the Baiyuzui landslide, induced by highway construction, is used as an illustrative example. The findings highlight the importance of considering the probabilistic nature of landslides and provide valuable insights into the complex behavior of such hazards.Keywords: Hermite polynomial chaos, Karhunen-Loeve, slope stability, probabilistic analysis
Procedia PDF Downloads 761031 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling
Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani
Abstract:
In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment
Procedia PDF Downloads 1681030 Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth , velocity distribution
Procedia PDF Downloads 1221029 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning
Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker
Abstract:
Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning
Procedia PDF Downloads 1481028 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness
Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan
Abstract:
Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.Keywords: combat effectiveness, emerging technologies, human factors, systems safety analysis
Procedia PDF Downloads 1421027 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: classifier ensemble, breast cancer survivability, data mining, SEER
Procedia PDF Downloads 3281026 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms
Authors: Eman Ayman, Gehan Nagy
Abstract:
The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.Keywords: flexibility, learning space, immersive technology, learning environment, interior design
Procedia PDF Downloads 941025 The Analysis of Defects Prediction in Injection Molding
Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian
Abstract:
This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.Keywords: injection molding, plastic defects, short shot, Taguchi method
Procedia PDF Downloads 2181024 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia
Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.
Abstract:
Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy
Procedia PDF Downloads 1351023 Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair
Authors: J. S. Rudas, J. M. Gutiérrez Cabeza, A. Corz Rodríguez, L. M. Gómez, A. O. Toro
Abstract:
The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid.Keywords: degradation, dissipative mechanism, dry sliding, entropy, friction, wear
Procedia PDF Downloads 5021022 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets
Authors: K. R. Sultana, K. Pope, Y. S. Muzychka
Abstract:
In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.Keywords: droplets, CFD, thermos-physical properties, solidification
Procedia PDF Downloads 2431021 Species Distribution Modelling for Assessing the Effect of Land Use Changes on the Habitat of Endangered Proboscis Monkey (Nasalis larvatus) in Kalimantan, Indonesia
Authors: Wardatutthoyyibah, Satyawan Pudyatmoko, Sena Adi Subrata, Muhammad Ali Imron
Abstract:
The proboscis monkey is an endemic species to the island of Borneo with conservation status IUCN (The International Union for Conservation of Nature) of endangered. The population of the monkey has a specific habitat and sensitive to habitat disturbances. As a consequence of increasing rates of land-use change in the last four decades, its population was reported significantly decreased. We quantified the effect of land use change on the proboscis monkey’s habitat through the species distribution modeling (SDM) approach with Maxent Software. We collected presence data and environmental variables, i.e., land cover, topography, bioclimate, distance to the river, distance to the road, and distance to the anthropogenic disturbance to generate predictive distribution maps of the monkeys. We compared two prediction maps for 2000 and 2015 data to represent the current habitat of the monkey. We overlaid the monkey’s predictive distribution map with the existing protected areas to investigate whether the habitat of the monkey is protected under the protected areas networks. The results showed that almost 50% of the monkey’s habitat reduced as the effect of land use change. And only 9% of the current proboscis monkey’s habitat within protected areas. These results are important for the master plan of conservation of the endangered proboscis monkey and provide scientific guidance for the future development incorporating biodiversity issue.Keywords: endemic species, land use change, maximum entropy, spatial distribution
Procedia PDF Downloads 1581020 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 761019 Predicting Dose Level and Length of Time for Radiation Exposure Using Gene Expression
Authors: Chao Sima, Shanaz Ghandhi, Sally A. Amundson, Michael L. Bittner, David J. Brenner
Abstract:
In a large-scale radiologic emergency, potentially affected population need to be triaged efficiently using various biomarkers where personal dosimeters are not likely worn by the individuals. It has long been established that radiation injury can be estimated effectively using panels of genetic biomarkers. Furthermore, the rate of radiation, in addition to dose of radiation, plays a major role in determining biological responses. Therefore, a better and more accurate triage involves estimating both the dose level of the exposure and the length of time of that exposure. To that end, a large in vivo study was carried out on mice with internal emitter caesium-137 (¹³⁷Cs). Four different injection doses of ¹³⁷Cs were used: 157.5 μCi, 191 μCi, 214.5μCi, and 259 μCi. Cohorts of 6~7 mice from the control arm and each of the dose levels were sacrificed, and blood was collected 2, 3, 5, 7 and 14 days after injection for microarray RNA gene expression analysis. Using a generalized linear model with penalized maximum likelihood, a panel of 244 genes was established and both the doses of injection and the number of days after injection were accurately predicted for all 155 subjects using this panel. This has proven that microarray gene expression can be used effectively in radiation biodosimetry in predicting both the dose levels and the length of exposure time, which provides a more holistic view on radiation exposure and helps improving radiation damage assessment and treatment.Keywords: caesium-137, gene expression microarray, multivariate responses prediction, radiation biodosimetry
Procedia PDF Downloads 1981018 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue
Procedia PDF Downloads 1881017 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling
Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad
Abstract:
One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis
Procedia PDF Downloads 4141016 Factors That Influence Choice of Walking Mode in Work Trips: Case Study of Rasht, Iran
Authors: Nima Safaei, Arezoo Masoud, Babak Safaei
Abstract:
In recent years, there has been a growing emphasis on the role of urban planning in walking capability and the effects of individual and socioeconomic factors on the physical activity levels of city dwellers. Although considerable number of studies are conducted about walkability and for identifying the effective factors in walking mode choice in developed countries, to our best knowledge, literature lacks in the study of factors affecting choice of walking mode in developing countries. Due to the high importance of health aspects of human societies and in order to make insights and incentives for reducing traffic during rush hours, many researchers and policy makers in the field of transportation planning have devoted much attention to walkability studies; they have tried to improve the effective factors in the choice of walking mode in city neighborhoods. In this study, effective factors in walkability that have proven to have significant impact on the choice of walking mode, are studied at the same time in work trips. The data for the study is collected from the employees in their workplaces by well-instructed people using questionnaires; the statistical population of the study consists of 117 employed people who commute daily from work to home in Rasht city of Iran during the beginning of spring 2015. Results of the study which are found through the linear regression modeling, show that people who do not have freedom of choice for choosing their living locations and need to be present at their workplaces in certain hours have lower levels of walking. Additionally, unlike some of the previous studies which were conducted in developed countries, coincidental effects of Body Mass Index (BMI) and the income level of employees, do not have a significant effect on the walking level in work travels.Keywords: BMI, linear regression, transportation, walking, work trips
Procedia PDF Downloads 196