Search results for: inventory optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3869

Search results for: inventory optimization

1409 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical

Authors: Seyedmahdi Mousavihashemi

Abstract:

Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.

Keywords: biomedical engineering, nano composite, SEM, TEM

Procedia PDF Downloads 228
1408 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Keywords: apartment housing, machine learning, multi-objective optimization, performance prediction

Procedia PDF Downloads 467
1407 Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System

Authors: Ghazi Al Sukkar, Yazid Khattabi, Shifen Zhong

Abstract:

Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters.

Keywords: OFDM, Mach Zehnder bias voltage, switching voltage, radio-over-fiber, RF gain

Procedia PDF Downloads 459
1406 Strawberry Productivity of Peri-Urban and Urban Locations across Southeast Michigan, USA

Authors: Maria E. Laconi, Kyla D. Scherr, Mary A. Jamieson

Abstract:

Human populations in urban environments have rapidly grown in recent decades. Consequently, the intensity of land-use and development has also increased in many urban and peri-urban environments. Some cities, such as Detroit, Michigan, USA, have embraced urban agriculture and local food production. Little is known, however, about how the local and landscape scale environmental factors influence crop productivity on urban farms. Our study aims to evaluate factors influencing the productivity of strawberries on community farms and gardens in the Detroit metropolitan area. Strawberries are one of few fruits that can provide an abundant harvest just after the first season of being planted, which is ideal for urban gardeners in developed areas. In the spring of 2016, we planted six different strawberry cultivars (three everbearing and three June bearing varieties) at five farm sites in Wayne and Oakland County (six replicate plants per cultivar per site). We surveyed flower and fruit phenology and production for everbearing varieties weekly (flowers for June bearing varieties were removed to enhance productivity in the coming growing season). Additionally, we conducted one initial 36hr pollinator survey in mid-September during peak fruit production and characterized local and landscape scale land-cover data. Preliminary results and observations from this first year of our study revealed that strawberry production varied significantly by site. Specifically, productivity at our most northern site appeared to suffer from delayed phenology and early frost damage to ripening strawberries. Bee abundance and diversity also differed among farms, though further surveys are needed to adequately inventory the pollinator community. Finally, strawberry cultivars demonstrated significant differences in the number and size of fruits produced. We plan to continue this study in the coming years, increasing the number of sites surveyed and number of pollinator sampling events. Our study aims to inform strategies for enhancing crop productivity on urban and peri-urban farms.

Keywords: insect pollination, strawberry productivity, sustainable agriculture, urban gardening

Procedia PDF Downloads 266
1405 Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine

Authors: C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar

Abstract:

In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.

Keywords: customer friendly washing machine, drier design, quick cloth cleaning, variable tub volume washing machine, variable spinning speed washing machine

Procedia PDF Downloads 244
1404 Energy Consumption Optimization of Electric Vehicle by Using Machine Learning: A Comparative Literature Review and Lessons Learned

Authors: Sholeh Motaghian, Pekka Toivanen, Keiji Haataja

Abstract:

The swift expansion of the transportation industry and its associated emissions have captured the focus of policymakers who are dedicated to upholding ecological sustainability. As a result, understanding the key contributors to transportation emissions is of utmost significance. Amidst the escalating transportation emissions, the significance of electric vehicles cannot be overstated. Electric vehicles play a critical role in steering us towards a low-carbon economy and a sustainable ecological setting. The effective integration of electric vehicles hinges on the development of energy consumption models capable of accurately and efficiently predicting energy usage. Enhancing the energy efficiency of electric vehicles will play a pivotal role in reducing driver concerns and establishing a vital framework for the efficient operation, planning, and management of charging infrastructure. In this article, the works done in this field are reviewed, and the advantages and disadvantages of each are stated.

Keywords: deep learning, electrical vehicle, energy consumption, machine learning, smart grid

Procedia PDF Downloads 63
1403 Intervention Program for Emotional Management in Disruptive Situations Through Self-Compassion and Compassion

Authors: M. Bassas, J. Grané-Morcillo, J. Segura, J. M. Soldevila

Abstract:

Mental health prevention is key in a society where, according to the World Health Organization, the fourth leading cause of death worldwide is suicide. Compassion is closely linked to personal growth. It shows once again that therapies based on prevention remain an urgent and social need. In this sense, a growing body of research demonstrates how cultivating a compassionate mind can help alleviate and prevent a variety of psychological problems. In the early 21st century, there has been a boom in third-generation compassion-based therapies, although there is a lack of empirical evidence of their efficacy. This study proposes a psychotherapy method (‘Being Method’), whose central axis revolves around emotional management through the cultivation of compassion. Therefore, the objective of this research was to analyze the effectiveness of this method with regard to the emotional changes experienced when we focus on what we are concerned about through the filter of compassion. The Being Method was born from the influence of Buddhist philosophy and contemporary psychology based mainly on Western rationalist currents. A quantitative cross-sectional study has been carried out in a sample of women between 18 and 53 years old (n=47; Mage=36.02; SDage= 11.86) interested in personal growth in which the following 6 measuring instruments were administered: Peace of mind Scale (PoM), Rosenberg Self-Esteem Scale (RSES), Subjective Happiness Scale (SHS), 2 Sacles of the Compassionate Action and Engagement Scales (CAES), Coping Response Inventory for Adults (CRI-A) and Cognitive-Behavioral Strategies Evaluation Scale (MOLDES). Following an experimental method approach, participants were divided into an experimental and control group. Longitudinal analysis was also carried out through a pre-post program comparison. Pre-post comparison outcomes indicated significant differences (p<.05) between before and after the therapy in the variables Peace of Mind, Self-esteem, Happiness, Self-compassion (A-B), Compassion (A-B), in several mental molds, as well as in several coping strategies. Also, between-groups tests proved significantly higher means obtained in the experimental group. Thus, these outcomes highlighted the effectiveness of the therapy, improving all the analyzed dimensions. The social, clinical and research implications are discussed.

Keywords: being method, compassion, effectiveness, emotional management, intervention program, personal growth therapy

Procedia PDF Downloads 29
1402 Logistics and Supply Chain Management Using Smart Contracts on Blockchain

Authors: Armen Grigoryan, Milena Arakelyan

Abstract:

The idea of smart logistics is still quite a complicated one. It can be used to market products to a large number of customers or to acquire raw materials of the highest quality at the lowest cost in geographically dispersed areas. The use of smart contracts in logistics and supply chain management has the potential to revolutionize the way that goods are tracked, transported, and managed. Smart contracts are simply computer programs written in one of the blockchain programming languages (Solidity, Rust, Vyper), which are capable of self-execution once the predetermined conditions are met. They can be used to automate and streamline many of the traditional manual processes that are currently used in logistics and supply chain management, including the tracking and movement of goods, the management of inventory, and the facilitation of payments and settlements between different parties in the supply chain. Currently, logistics is a core area for companies which is concerned with transporting products between parties. Still, the problem of this sector is that its scale may lead to detainments and defaults in the delivery of goods, as well as other issues. Moreover, large distributors require a large number of workers to meet all the needs of their stores. All this may contribute to big detainments in order processing and increases the potentiality of losing orders. In an attempt to break this problem, companies have automated all their procedures, contributing to a significant augmentation in the number of businesses and distributors in the logistics sector. Hence, blockchain technology and smart contracted legal agreements seem to be suitable concepts to redesign and optimize collaborative business processes and supply chains. The main purpose of this paper is to examine the scope of blockchain technology and smart contracts in the field of logistics and supply chain management. This study discusses the research question of how and to which extent smart contracts and blockchain technology can facilitate and improve the implementation of collaborative business structures for sustainable entrepreneurial activities in smart supply chains. The intention is to provide a comprehensive overview of the existing research on the use of smart contracts in logistics and supply chain management and to identify any gaps or limitations in the current knowledge on this topic. This review aims to provide a summary and evaluation of the key findings and themes that emerge from the research, as well as to suggest potential directions for future research on the use of smart contracts in logistics and supply chain management.

Keywords: smart contracts, smart logistics, smart supply chain management, blockchain and smart contracts in logistics, smart contracts for controlling supply chain management

Procedia PDF Downloads 80
1401 Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations

Authors: Ali Pour Yazdanpanah, Farideh Foroozandeh Shahraki, Emma Regentova

Abstract:

The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 − L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction.

Keywords: computed tomography, non-convex, sparse-view reconstruction, L1-L2 minimization, difference of convex functions

Procedia PDF Downloads 302
1400 Quality Management and Service Organization

Authors: Fatemeh Khalili Varnamkhasti

Abstract:

In recent times, there has been a notable shift in the application of Total Quality Management (TQM) from manufacturing to service organizations, prompting numerous studies on the subject. TQM has firmly established itself across various sectors, emerging as an approach to process improvement, waste reduction, business optimization, and quality performance. Many researchers and academics have recognized the relevance of TQM for sustainable competitive advantage, particularly in service organizations. In light of this, the purpose of this research study is to explore the applicability of TQM within the service framework. The study delves into existing literature on TQM in service organizations and examines the reasons for its occasional shortcomings. Ultimately, the paper provides systematic guidelines for the effective implementation of TQM in service organizations. The findings of this study offer a much-improved understanding of TQM and its practices, shedding light on the evolution of service organizations. Additionally, the study highlights key insights from recent research on TQM in service organizations and proposes a ten-step approach for the successful implementation of TQM in the service sector. This framework aims to provide service managers and professionals with a comprehensive understanding of TQM fundamentals and encourages a deeper exploration of TQM theory.

Keywords: quality, control, service, management, teamwork

Procedia PDF Downloads 40
1399 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal

Abstract:

The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: automotive industry, FMEA, control plan, automotive technology

Procedia PDF Downloads 399
1398 Leveraging Laser Cladding Technology for Eco-Friendly Solutions and Sustainability in Equipment Refurbishment

Authors: Rakan A. Ahmed, Raja S. Khan, Mohammed M. Qahtani

Abstract:

This paper explores the transformative impact of laser cladding technology on the circular economy, emphasizing its role in reducing environmental impact compared to traditional welding methods. Laser cladding, an innovative manufacturing process, optimizes resource efficiency and sustainability by significantly decreasing power consumption and minimizing material waste. The study explores how laser cladding operates within the framework of the circular economy, promoting energy efficiency, waste reduction, and emissions control. Through a comparative analysis of energy and material consumption between laser cladding and conventional welding methods, the paper highlights the significant strides in environmental conservation and resource optimization made possible by laser cladding. The findings highlight the potential for this technology to revolutionize industrial practices and propel a more sustainable and eco-friendly manufacturing landscape.

Keywords: laser cladding, circular economy, carbon emission, energy

Procedia PDF Downloads 66
1397 The Relationship Between Weight Gain, Cyclicality of Diabetologic Education and the Experienced Stress: A Study Involving Pregnant Women

Authors: Agnieszka Rolinska, Marta Makara-Studzinska

Abstract:

Introduction: In recent years, there has been an intensive development of research into the physiological relationships between the experienced stress and obesity. Moreover, strong chronic stress leads to the disorganization of a person’s activeness on various levels of functioning, including the behavioral and cognitive sphere (also in one’s diet). Aim: The present work addresses the following research questions: Is there a relationship between an increase in stress related to the disease and the need for the cyclicality of diabetologic education in gestational diabetes? Are there any differences in terms of the experienced stress during the last three months of pregnancy in women with gestational diabetes and in normal pregnancy between the patients with normal weight gains and those with abnormal weight gains? Are there any differences in terms of stress coping styles in women with gestational diabetes and in normal pregnancy between the patients with normal weight gains and those with abnormal weight gains? Method: The study involved pregnant women with gestational diabetes (treated with diet, without insulin therapy) and in normal pregnancy – 206 women in total. The following psychometric tools were employed: Perceived Stress Scale (PSS; Cohen, Kamarck, Mermelstein), Coping Inventory for Stressful Situations (CISS; Endler, Parker) and authors’ own questionnaire. Gestational diabetes mellitus was diagnosed on the basis of the results of fasting oral glucose tolerance test (75 g OGTT). Body weight measurements were confirmed in a diagnostic interview, taking into account medical data. Regularities in weight gains in pregnancy were determined according to the recommendations of the Polish Gynecological Society and American norms determined by the Institute of Medicine (IOM). Conclusions: An increase in stress related to the disease varies in patients with differing requirements for the cyclical nature of diabetologic education (i.e. education which is systematically repeated). There are no differences in terms of recently experienced stress and stress coping styles between women with gestational diabetes and those in normal pregnancy. There is a relationship between weight gains in pregnancy and the stress experienced in life as well as stress coping styles – both in pregnancy complicated by diabetes and in physiological pregnancy. In the discussion of the obtained results, the authors refer to scientific reports from English-language magazines of international range.

Keywords: diabetologic education, gestational diabetes, stress, weight gain in pregnancy

Procedia PDF Downloads 303
1396 Strip Size Optimization for Spiral Type Actuator Coil Used in Electromagnetic Flat Sheet Forming Experiment

Authors: M. A. Aleem, M. S. Awan

Abstract:

Flat spiral coil for electromagnetic forming system has been modelled in FEMM 4.2 software. Copper strip was chosen as the material for designing the actuator coil. Relationship between height to width ratio (S-factor) of the copper strip and coil’s performance has been studied. Magnetic field intensities, eddy currents, and Lorentz force were calculated for the coils that were designed using six different 'S-factor' values (0.65, 0.75, 1.05, 1.25, 1.54 and 1.75), keeping the cross-sectional area of strip the same. Results obtained through simulation suggest that actuator coil with S-factor ~ 1 shows optimum forming performance as it exerts maximum Lorentz force (84 kN) on work piece. The same coils were fabricated and used for electromagnetic sheet forming experiments. Aluminum 6061 sheets of thickness 1.5 mm have been formed using different voltage levels of capacitor bank. Smooth forming profiles were obtained with dome heights 28, 35 and 40 mm in work piece at 800, 1150 and 1250 V respectively.

Keywords: FEM modelling, electromagnetic forming, spiral coil, Lorentz force

Procedia PDF Downloads 274
1395 Inferential Reasoning for Heterogeneous Multi-Agent Mission

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.

Keywords: distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 133
1394 Formulation and Optimization of Self Nanoemulsifying Drug Delivery System of Rutin for Enhancement of Oral Bioavailability Using QbD Approach

Authors: Shrestha Sharma, Jasjeet K. Sahni, Javed Ali, Sanjula Baboota

Abstract:

Introduction: Rutin is a naturally occurring strong antioxidant molecule belonging to bioflavonoid category. Due to its free radical scavenging properties, it has been found to be beneficial in the treatment of various diseases including inflammation, cancer, diabetes, allergy, cardiovascular disorders and various types of microbial infections. Despite its beneficial effects, it suffers from the problem of low aqueous solubility which is responsible for low oral bioavailability. The aim of our study was to optimize and characterize self-nanoemulsifying drug delivery system (SNEDDS) of rutin using Box-Behnken design (BBD) combined with a desirability function. Further various antioxidant, pharmacokinetic and pharmacodynamic studies were performed for the optimized rutin SNEDDS formulation. Methodologies: Selection of oil, surfactant and co-surfactant was done on the basis of solubility/miscibility studies. Sefsol+ Vitamin E, Solutol HS 15 and Transcutol P were selected as oil phase, surfactant and co-surfactant respectively. Optimization of SNEDDS formulations was done by a three-factor, three-level (33)BBD. The independent factors were Sefsol+ Vitamin E, Solutol HS15, and Transcutol P. The dependent variables were globule size, self emulsification time (SEF), % transmittance and cumulative percentage drug released. Various response surface graphs and contour plots were constructed to understand the effect of different factor, their levels and combinations on the responses. The optimized Rutin SNEDDS formulation was characterized for various parameters such as globule size, zeta potential, viscosity, refractive index , % Transmittance and in vitro drug release. Ex vivo permeation studies and pharmacokinetic studies were performed for optimized formulation. Antioxidant activity was determined by DPPH and reducing power assays. Anti-inflammatory activity was determined by using carrageenan induced rat paw oedema method. Permeation of rutin across small intestine was assessed using confocal laser scanning microscopy (CLSM). Major findings:The optimized SNEDDS formulation consisting of Sefsol+ Vitamin E - Solutol HS15 -Transcutol HP at proportions of 25:35:17.5 (w/w) was prepared and a comparison of the predicted values and experimental values were found to be in close agreement. The globule size and PDI of optimized SNEDDS formulation was found to be 16.08 ± 0.02 nm and 0.124±0.01 respectively. Significant (p˂0.05) increase in percentage drug release was achieved in the case of optimized SNEDDS formulation (98.8 %) as compared to rutin suspension. Furthermore, pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability compared with that of the suspension. Antioxidant assay results indicated better efficacy of the developed formulation than the pure drug and it was found to be comparable with ascorbic acid. The results of anti-inflammatory studies showed 72.93 % inhibition for the SNEDDS formulation which was significantly higher than the drug suspension 46.56%. The results of CLSM indicated that the absorption of SNEDDS formulation was considerably higher than that from rutin suspension. Conclusion: Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing oral bioavailability and efficacy of Rutin.

Keywords: rutin, oral bioavilability, pharamacokinetics, pharmacodynamics

Procedia PDF Downloads 492
1393 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium

Authors: Binbin Chen, Dennis Y. C. Leung

Abstract:

Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.

Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge

Procedia PDF Downloads 270
1392 Dynamic Store Procedures in Database

Authors: Muhammet Dursun Kaya, Hasan Asil

Abstract:

In recent years, different methods have been proposed to optimize question processing in database. Although different methods have been proposed to optimize the query, but the problem which exists here is that most of these methods destroy the query execution plan after executing the query. This research attempts to solve the above problem by using a combination of methods of communicating with the database (the present questions in the programming code and using store procedures) and making query processing adaptive in database, and proposing a new approach for optimization of query processing by introducing the idea of dynamic store procedures. This research creates dynamic store procedures in the database according to the proposed algorithm. This method has been tested on applied software and results shows a significant improvement in reducing the query processing time and also reducing the workload of DBMS. Other advantages of this algorithm include: making the programming environment a single environment, eliminating the parametric limitations of the stored procedures in the database, making the stored procedures in the database dynamic, etc.

Keywords: relational database, agent, query processing, adaptable, communication with the database

Procedia PDF Downloads 361
1391 Taguchi Approach for the Optimization of the Stitching Defects of Knitted Garments

Authors: Adel El-Hadidy

Abstract:

For any industry, the production and quality management or wastages reductions have major impingement on overall factory economy. This work discusses the quality improvement of garment industry by applying Pareto analysis, cause and effect diagram and Taguchi experimental design. The main purpose of the work is to reduce the stitching defects, which will also minimize the rejection and reworks rate. Application of Pareto chart, fish bone diagram and Process Sigma Level/and or Performance Level tools helps solving those problems on priority basis. Among all, only sewing, defects are responsible form 69.3% to 97.3 % of total defects. Process Sigma level has been improved from 0.79 to 1.3 and performance rate improved, from F to D level. The results showed that the new set of sewing parameters was superior to the original one. It can be seen that fabric size has the largest effect on the sewing defects and that needle size has the smallest effect on the stitching defects.

Keywords: garment, sewing defects, cost of rework, DMAIC, sigma level, cause and effect diagram, Pareto analysis

Procedia PDF Downloads 157
1390 Piezoelectric Approach on Harvesting Acoustic Energy

Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap

Abstract:

An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.

Keywords: piezoelectric, acoustic, energy harvester

Procedia PDF Downloads 273
1389 Zero Valent Iron Algal Biocomposite for the Removal of Crystal Violet from Aqueous Solution: Box-Behnken Optimization and Fixed Bed Column Studies

Authors: M. Jerold, V. Sivasubramanian

Abstract:

In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite a marine algal based biosorbent was used for the removal of simulated crystal violet (CV) in batch and continuous fixed bed operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. The effect of various column parameters like bed depth (3, 6 and 9 cm), flow rate (5, 10 and 15 mL/min) and influent CV concentration (5, 10 and 15 mg/L) were investigated. The exhaustion time increased with increase of bed depth, influent CV concentration and decrease of flow rate. Adam-Bohart, Thomas and Yoon-Nelson models were used to predict the breakthrough curve and to evaluate the model parameters. Out of these models, Thomas and Yoon-Nelson models well described the experimental data. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.

Keywords: algae, biosorption, zero-valent, dye, wastewater

Procedia PDF Downloads 182
1388 The Safety Related Functions of The Engineered Barriers of the IAEA Borehole Disposal System: The Ghana Pilot Project

Authors: Paul Essel, Eric T. Glover, Gustav Gbeddy, Yaw Adjei-Kyereme, Abdallah M. A. Dawood, Evans M. Ameho, Emmanuel A. Aberikae

Abstract:

Radioactive materials mainly in the form of Sealed Radioactive Sources are being used in various sectors (medicine, agriculture, industry, research, and teaching) for the socio-economic development of Ghana. The use of these beneficial radioactive materials has resulted in an inventory of Disused Sealed Radioactive Sources (DSRS) in storage. Most of the DSRS are legacy/historic sources which cannot be returned to their manufacturer or country of origin. Though small in volume, DSRS can be intensively radioactive and create a significant safety and security liability. They need to be managed in a safe and secure manner in accordance with the fundamental safety objective. The Radioactive Waste Management Center (RWMC) of the Ghana Atomic Energy Commission (GAEC) is currently storing a significant volume of DSRS. The initial activities of the DSRS range from 7.4E+5 Bq to 6.85E+14 Bq. If not managed properly, such DSRS can represent a potential hazard to human health and the environment. Storage is an important interim step, especially for DSRS containing very short-lived radionuclides, which can decay to exemption levels within a few years. Long-term storage, however, is considered an unsustainable option for DSRS with long half-lives hence the need for a disposal facility. The GAEC intends to use the International Atomic Energy Agency’s (IAEA’s) Borehole Disposal System (BDS) to provide a safe, secure, and cost-effective disposal option to dispose of its DSRS in storage. The proposed site for implementation of the BDS is on the GAEC premises at Kwabenya. The site has been characterized to gain a general understanding in terms of its regional setting, its past evolution and likely future natural evolution over the assessment time frame. Due to the long half-lives of some of the radionuclides to be disposed of (Ra-226 with half-life of 1600 years), the engineered barriers of the system must be robust to contain these radionuclides for this long period before they decay to harmless levels. There is the need to assess the safety related functions of the engineered barriers of this disposal system.

Keywords: radionuclides, disposal, radioactive waste, engineered barrier

Procedia PDF Downloads 59
1387 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm

Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj

Abstract:

In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.

Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation

Procedia PDF Downloads 416
1386 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data

Authors: Adrian Priceputu, Elena Mihaela Stan

Abstract:

Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.

Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations

Procedia PDF Downloads 34
1385 A New Family of Flying Wing Low Reynolds Number Airfoils

Authors: Ciro Sobrinho Campolina Martins, Halison da Silva Pereira, Vitor Mainenti Leal Lopes

Abstract:

Unmanned Aerial vehicles (UAVs) has been used in a wide range of applications, from precise agriculture monitoring for irrigation and fertilization to military attack missions. Long range performance is required for many of these applications. Tailless aircrafts are commonly used as long-range configurations and, due to its small amount of stability, the airfoil shape design of its wings plays a central role on the performance of the airplane. In this work, a new family of flying wing airfoils is designed for low Reynolds number flows, typical of small-middle UAVs. Camber, thickness and their maximum positions in the chord are variables used for the airfoil geometry optimization. Aerodynamic non-dimensional coefficients were obtained by the well-established Panel Method. High efficient airfoils with small pitch moment coefficient are obtained from the analysis described and its aerodynamic polars are plotted.

Keywords: airfoil design, flying wing, low Reynolds number, tailless aircraft, UAV

Procedia PDF Downloads 616
1384 The Investigation of Work Stress and Burnout in Nurse Anesthetists: A Cross-Sectional Study

Authors: Yen Ling Liu, Shu-Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Chia-Yu Chen

Abstract:

Purpose: Nurse anesthetists are confronting extraordinarily high job stress in their daily practice, deriving from the fast-track anesthesia care, risk of perioperative complications, routine rotating shifts, teaching programs and interactions with the surgical team in the operating room. This study investigated the influence of work stress on the burnout and turnover intention of nurse anesthetists in a regional general hospital in Southern Taiwan. Methods: This was a descriptive correlational study carried out in 66 full-time nurse anesthetists. Data was collected from March 2017 to June 2017 by in-person interview, and a self-administered structured questionnaire was completed by the interviewee. Outcome measurements included the Practice Environment Scale of the Nursing Work Index (PES-NWI), Maslach Burnout Inventory (MBI) and nursing staff turnover intention. Numerical data were analyzed by descriptive statistics, independent t test, or one-way ANOVA. Categorical data were compared using the chi-square test (x²). Datasets were computed with Pearson product-moment correlation and linear regression. Data were analyzed by using SPSS 20.0 software. Results: The average score for job burnout was 68.7916.67 (out of 100). The three major components of burnout, including emotional depletion (mean score of 26.32), depersonalization (mean score of 13.65), and personal(mean score of 24.48). These average scores suggested that these nurse anesthetists were at high risk of burnout and inversely correlated with turnover intention (t = -4.048, P < 0.05). Using linear regression model, emotional exhaustion and depersonalization were the two independent factors that predicted turnover intention in the nurse anesthetists (19.1% in total variance). Conclusion/Implications for Practice: The study identifies that the high risk of job burnout in the nurse anesthetists is not simply derived from physical overload, but most likely resulted from the additional emotional and psychological stress. The occurrence of job burnout may affect the quality of nursing work, and also influence family harmony, in turn, may increase the turnover rate. Multimodal approach is warranted to reduce work stress and job burnout in nurse anesthetists to enhance their willingness to contribute in anesthesia care.

Keywords: anesthesia nurses, burnout, job, turnover intention

Procedia PDF Downloads 284
1383 Battery Replacement Strategy for Electric AGVs in an Automated Container Terminal

Authors: Jiheon Park, Taekwang Kim, Kwang Ryel Ryu

Abstract:

Electric automated guided vehicles (AGVs) are becoming popular in many automated container terminals nowadays because they are pollution-free and environmentally friendly vehicles for transporting the containers within the terminal. Since efficient operation of AGVs is critical for the productivity of the container terminal, the replacement of batteries of the AGVs must be conducted in a strategic way to minimize undesirable transportation interruptions. While a too frequent replacement may lead to a loss of terminal productivity by delaying container deliveries, missing the right timing of battery replacement can result in a dead AGV that causes a severer productivity loss due to the extra efforts required to finish post treatment. In this paper, we propose a strategy for battery replacement based on a scoring function of multiple criteria taking into account the current battery level, the distances to different battery stations, and the progress of the terminal job operations. The strategy is optimized using a genetic algorithm with the objectives of minimizing the total time spent for battery replacement as well as maximizing the terminal productivity.

Keywords: AGV operation, automated container terminal, battery replacement, electric AGV, strategy optimization

Procedia PDF Downloads 382
1382 Digital Watermarking Using Fractional Transform and (k,n) Halftone Visual Cryptography (HVC)

Authors: R. Rama Kishore, Sunesh Malik

Abstract:

Development in the usage of internet for different purposes in recent times creates great threat for the copy right protection of the digital images. Digital watermarking is the best way to rescue from the said problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field and categorized like spatial and transform domain, blind and non-blind methods, visible and non visible techniques etc. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (k.n) shares of halftone visual cryptography (HVC) instead of (2, 2) share cryptography. (k,n) shares visual cryptography improves the security of the watermark. As halftone is a method of reprographic, it helps in improving the visual quality of watermark image. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method.

Keywords: digital watermarking, fractional transform, halftone, visual cryptography

Procedia PDF Downloads 343
1381 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network

Authors: E. Behmanesh, J. Pannek

Abstract:

The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.

Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm

Procedia PDF Downloads 367
1380 Optimization of Friction Stir Spot Welding Process Parameters for Joining 6061 Aluminum Alloy Using Taguchi Method

Authors: Mohammed A. Tashkandi, Jawdat A. Al-Jarrah, Masoud Ibrahim

Abstract:

This paper investigates the shear strength of the joints produced by friction stir spot welding process (FSSW). FSSW parameters such as tool rotational speed, plunge depth, shoulder diameter of the welding tool and dwell time play the major role in determining the shear strength of the joints. The effect of these four parameters on FSSW process as well as the shear strength of the welded joints was studied via five levels of each parameter. Taguchi method was used to minimize the number of experiments required to determine the fracture load of the friction stir spot-welded joints by incorporating independently controllable FSSW parameters. Taguchi analysis was applied to optimize the FSSW parameters to attain the maximum shear strength of the spot weld for this type of aluminum alloy.

Keywords: Friction Stir Spot Welding, Al6061 alloy, Shear Strength, FSSW process parameters

Procedia PDF Downloads 417