Search results for: gravitational search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5313

Search results for: gravitational search algorithm

2853 Automatic Vowel and Consonant's Target Formant Frequency Detection

Authors: Othmane Bouferroum, Malika Boudraa

Abstract:

In this study, a dual exponential model for CV formant transition is derived from locus theory of speech perception. Then, an algorithm for automatic vowel and consonant’s target formant frequency detection is developed and tested on real speech. The results show that vowels and consonants are detected through transitions rather than their small stable portions. Also, vowel reduction is clearly observed in our data. These results are confirmed by the observations made in perceptual experiments in the literature.

Keywords: acoustic invariance, coarticulation, formant transition, locus equation

Procedia PDF Downloads 273
2852 Assessment of Mortgage Applications Using Fuzzy Logic

Authors: Swathi Sampath, V. Kalaichelvi

Abstract:

The assessment of the risk posed by a borrower to a lender is one of the common problems that financial institutions have to deal with. Consumers vying for a mortgage are generally compared to each other by the use of a number called the Credit Score, which is generated by applying a mathematical algorithm to information in the applicant’s credit report. The higher the credit score, the lower the risk posed by the candidate, and the better he is to be taken on by the lender. The objective of the present work is to use fuzzy logic and linguistic rules to create a model that generates Credit Scores.

Keywords: credit scoring, fuzzy logic, mortgage, risk assessment

Procedia PDF Downloads 408
2851 The Effectiveness of Prenatal Breastfeeding Education on Breastfeeding Uptake Postpartum: A Systematic Review.

Authors: Jennifer Kehinde, Claire O'donnell, Annmarie Grealish

Abstract:

Introduction: Breastfeeding has been shown to provide numerous health benefits for both infants and mothers. The decision to breastfeed is influenced by physiological, psychological, and emotional factors. However, the importance of equipping mothers with the necessary knowledge for successful breastfeeding practice cannot be ruled out. The decline in global breastfeeding rate can be linked to lack of adequate breastfeeding education during prenatal stage.This systematic review examined the effectiveness of prenatal breastfeeding education on breastfeeding uptake postpartum. Method: This review was undertaken and reported in conformity with the Preferred Reporting Items for Systemic Reviews and Meta-Analysis statement (PRISMA) and was registered on the international prospective register for systematic reviews (PROSPERO: CRD42020213853). A PICO analysis (population, intervention, comparison, outcome) was undertaken to inform the choice of keywords in the search strategy to formulate the review question which was aimed at determining the effectiveness of prenatal breastfeeding educational programs at improving breastfeeding uptake following birth. A systematic search of five databases (Cumulative Index to Nursing and Allied Health Literature, Medline, Psych INFO, and Applied Social Sciences Index and Abstracts) were searched between January 2014 until July 2021 to identify eligible studies. Quality assessment and narrative synthesis were subsequently undertaken. Results: Fourteen studies were included. All 14 studies used different types of breastfeeding programs; eight used a combination of curriculum based breastfeeding education program, group prenatal breastfeeding counselling and one-to-one breastfeeding educational programs which were all delivered in person; four studies used web-based learning platforms to deliver breastfeeding education prenatally which were both delivered online and face to face over a period of 3 weeks to 2 months with follow-up periods ranging from 3 weeks to 6 months; one study delivered breastfeeding educational intervention using mother-to-mother breastfeeding support groups in promoting exclusive breastfeeding and one study disseminated breastfeeding education to participants based on the theory of planned behaviour. The most effective interventions were those that included both theory and hands-on demonstrations. Results showed an increase in breastfeeding uptake, breastfeeding knowledge, increase in positive attitude to breastfeeding and an increase in maternal breastfeeding self-efficacy among mothers who participated in breastfeeding educational programs during prenatal care. Conclusion: Prenatal breastfeeding education increases women’s knowledge of breastfeeding. Mothers who are knowledgeable about breastfeeding and hold a positive approach towards breastfeeding have the tendency to initiate breastfeeding and continue for a lengthened period. Findings demonstrates a general correlation between prenatal breastfeeding education and increased breastfeeding uptake postpartum. The high level of positive breastfeeding outcome inherent in all the studies can be attributed to prenatal breastfeeding education. This review provides rigorous contemporary evidence that healthcare professionals and policymakers can apply when developing effective strategies to improve breastfeeding rates and ultimately improve the health outcomes of mothers and infants.

Keywords: breastfeeding, breastfeeding programs, breastfeeding self-efficacy, prenatal breastfeedng education

Procedia PDF Downloads 69
2850 Reducing Road Traffic Accident: Rapid Evidence Synthesis for Low and Middle Income Countries

Authors: Tesfaye Dagne, Dagmawit Solomon, Firmaye Bogale, Yosef Gebreyohannes, Samson Mideksa, Mamuye Hadis, Desalegn Ararso, Ermias Woldie, Tsegaye Getachew, Sabit Ababor, Zelalem Kebede

Abstract:

Globally, road traffic accident (RTA) is causing millions of deaths and injuries every year. It is one of the leading causes of death among people of all age groups and the problem is worse among young reproductive age group. Moreover the problem is increasing with an increasing number of vehicles. The majority of the problem happen in low and middle income countries (LMIC), even if the number of vehicles in these countries is low compared to their population. So, the objective of this paper is to summarize the best available evidence on interventions that can reduce road traffic accidents in low and middle income countries (LMIC). Method: A rapid evidence synthesis approach adapted from the SURE Rapid Response Service was applied to search, appraise and summarize the best available evidence on effective intervention in reducing road traffic injury. To answer the question under review, we searched for relevant studies from databases including PubMed, the Cochrane Library, TRANSPORT, Health system evidence, Epistemonikos, and SUPPORT summary. The following key terms were used for searching: Road traffic accident, RTA, Injury, Reduc*, Prevent*, Minimiz*, “Low and middle-income country”, LMIC. We found 18 articles through a search of different databases mentioned above. After screening for the titles and abstracts of the articles, four of them which satisfy the inclusion criteria were included in the final review. Then we appraised and graded the methodological quality of systematic reviews that are deemed to be highly relevant using AMSTAR. Finding: The identified interventions to reduce road traffic accidents were legislation and enforcement, public awareness/education, speed control/ rumble strips, road improvement, mandatory motorcycle helmet, graduated driver license, street lighting. Legislation and Enforcement: Legislation focusing on mandatory motorcycle helmet usage, banning cellular phone usage when driving, seat belt laws, decreasing the legal blood alcohol content (BAC) level from 0.06 g/L to 0.02 g/L bring the best result where enforcement is there. Public Awareness/Education: focusing on seat belt use, child restraint use, educational training in health centers and schools/universities, and public awareness with media through the distribution of videos, posters/souvenirs, and pamphlets are effective in the short run. Speed Control: through traffic calming bumps, or speed bumps, rumbled strips are effective in reducing accidents and fatality. Mandatory Motorcycle Helmet: is associated with reduction in mortality. Graduated driver’s license (GDL): reduce road traffic injury by 19%. Street lighting: is a low-cost intervention which may reduce road traffic accidents.

Keywords: evidence synthesis, injury, rapid review, reducing, road traffic accident

Procedia PDF Downloads 166
2849 Limit-Cycles Method for the Navigation and Avoidance of Any Form of Obstacles for Mobile Robots in Cluttered Environment

Authors: F. Boufera, F. Debbat

Abstract:

This paper deals with an approach based on limit-cycles method for the problem of obstacle avoidance of mobile robots in unknown environments for any form of obstacles. The purpose of this approach is the improvement of limit-cycles method in order to obtain safe and flexible navigation. The proposed algorithm has been successfully tested in different configuration on simulation.

Keywords: mobile robot, navigation, avoidance of obstacles, limit-cycles method

Procedia PDF Downloads 430
2848 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 125
2847 Crustal Scale Seismic Surveys in Search for Gawler Craton Iron Oxide Cu-Au (IOCG) under Very Deep Cover

Authors: E. O. Okan, A. Kepic, P. Williams

Abstract:

Iron oxide copper gold (IOCG) deposits constitute important sources of copper and gold in Australia especially since the discovery of the supergiant Olympic Dam deposits in 1975. They are considered to be metasomatic expressions of large crustal-scale alteration events occasioned by intrusive actions and are associated with felsic igneous rocks in most cases, commonly potassic igneous magmatism, with the deposits ranging from ~2.2 –1.5 Ga in age. For the past two decades, geological, geochemical and potential methods have been used to identify the structures hosting these deposits follow up by drilling. Though these methods have largely been successful for shallow targets, at deeper depth due to low resolution they are limited to mapping only very large to gigantic deposits with sufficient contrast. As the search for ore-bodies under regolith cover continues due to depletion of the near surface deposits, there is a compelling need to develop new exploration technology to explore these deep seated ore-bodies within 1-4km which is the current mining depth range. Seismic reflection method represents this new technology as it offers a distinct advantage over all other geophysical techniques because of its great depth of penetration and superior spatial resolution maintained with depth. Further, in many different geological scenarios, it offers a greater ‘3D mapability’ of units within the stratigraphic boundary. Despite these superior attributes, no arguments for crustal scale seismic surveys have been proposed because there has not been a compelling argument of economic benefit to proceed with such work. For the seismic reflection method to be used at these scales (100’s to 1000’s of square km covered) the technical risks or the survey costs have to be reduced. In addition, as most IOCG deposits have large footprint due to its association with intrusions and large fault zones; we hypothesized that these deposits can be found by mainly looking for the seismic signatures of intrusions along prospective structures. In this study, we present two of such cases: - Olympic Dam and Vulcan iron-oxide copper-gold (IOCG) deposits all located in the Gawler craton, South Australia. Results from our 2D modelling experiments revealed that seismic reflection surveys using 20m geophones and 40m shot spacing as an exploration tool for locating IOCG deposit is possible even when hosted in very complex structures. The migrated sections were not only able to identify and trace various layers plus the complex structures but also show reflections around the edges of intrusive packages. The presences of such intrusions were clearly detected from 100m to 1000m depth range without losing its resolution. The modelled seismic images match the available real seismic data and have the hypothesized characteristics; thus, the seismic method seems to be a valid exploration tool to find IOCG deposits. We therefore propose that 2D seismic survey is viable for IOCG exploration as it can detect mineralised intrusive structures along known favourable corridors. This would help in reducing the exploration risk associated with locating undiscovered resources as well as conducting a life-of-mine study which will enable better development decisions at the very beginning.

Keywords: crustal scale, exploration, IOCG deposit, modelling, seismic surveys

Procedia PDF Downloads 326
2846 Increasing System Adequacy Using Integration of Pumped Storage: Renewable Energy to Reduce Thermal Power Generations Towards RE100 Target, Thailand

Authors: Mathuravech Thanaphon, Thephasit Nat

Abstract:

The Electricity Generating Authority of Thailand (EGAT) is focusing on expanding its pumped storage hydropower (PSH) capacity to increase the reliability of the system during peak demand and allow for greater integration of renewables. To achieve this requirement, Thailand will have to double its current renewable electricity production. To address the challenges of balancing supply and demand in the grid with increasing levels of RE penetration, as well as rising peak demand, EGAT has already been studying the potential for additional PSH capacity for several years to enable an increased share of RE and replace existing fossil fuel-fired generation. In addition, the role that pumped-storage hydropower would play in fulfilling multiple grid functions and renewable integration. The proposed sites for new PSH would help increase the reliability of power generation in Thailand. However, most of the electricity generation will come from RE, chiefly wind and photovoltaic, and significant additional Energy Storage capacity will be needed. In this paper, the impact of integrating the PSH system on the adequacy of renewable rich power generating systems to reduce the thermal power generating units is investigated. The variations of system adequacy indices are analyzed for different PSH-renewables capacities and storage levels. Power Development Plan 2018 rev.1 (PDP2018 rev.1), which is modified by integrating a six-new PSH system and RE planning and development aftermath in 2030, is the very challenge. The system adequacy indices through power generation are obtained using Multi-Objective Genetic Algorithm (MOGA) Optimization. MOGA is a probabilistic heuristic and stochastic algorithm that is able to find the global minima, which have the advantage that the fitness function does not necessarily require the gradient. In this sense, the method is more flexible in solving reliability optimization problems for a composite power system. The optimization with hourly time step takes years of planning horizon much larger than the weekly horizon that usually sets the scheduling studies. The objective function is to be optimized to maximize RE energy generation, minimize energy imbalances, and minimize thermal power generation using MATLAB. The PDP2018 rev.1 was set to be simulated based on its planned capacity stepping into 2030 and 2050. Therefore, the four main scenario analyses are conducted as the target of renewables share: 1) Business-As-Usual (BAU), 2) National Targets (30% RE in 2030), 3) Carbon Neutrality Targets (50% RE in 2050), and 5) 100% RE or full-decarbonization. According to the results, the generating system adequacy is significantly affected by both PSH-RE and Thermal units. When a PSH is integrated, it can provide hourly capacity to the power system as well as better allocate renewable energy generation to reduce thermal generations and improve system reliability. These results show that a significant level of reliability improvement can be obtained by PSH, especially in renewable-rich power systems.

Keywords: pumped storage hydropower, renewable energy integration, system adequacy, power development planning, RE100, multi-objective genetic algorithm

Procedia PDF Downloads 59
2845 Parametric Study of a Washing Machine to Develop an Energy Efficient Program Regarding the Enhanced Washing Efficiency Index and Micro Organism Removal Performance

Authors: Peli̇n Yilmaz, Gi̇zemnur Yildiz Uysal, Emi̇ne Bi̇rci̇, Berk Özcan, Burak Koca, Ehsan Tuzcuoğlu, Fati̇h Kasap

Abstract:

Development of Energy Efficient Programs (EEP) is one of the most significant trends in the wet appliance industry of the recent years. Thanks to the EEP, the energy consumption of a washing machine as one of the most energy-consuming home appliances can shrink considerably, while its washing performance and the textile hygiene should remain almost unchanged. Here in, the goal of the present study is to achieve an optimum EEP algorithm providing excellent textile hygiene results as well as cleaning performance in a domestic washing machine. In this regard, steam-pretreated cold wash approach with a combination of innovative algorithm solution in a relatively short washing cycle duration was implemented. For the parametric study, steam exposure time, washing load, total water consumption, main-washing time, and spinning rpm as the significant parameters affecting the textile hygiene and cleaning performance were investigated within a Design of Experiment study using Minitab 2021 statistical program. For the textile hygiene studies, specific loads containing the contaminated cotton carriers with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria were washed. Then, the microbial removal performance of the designed programs was expressed as log reduction calculated as a difference of microbial count per ml of the liquids in which the cotton carriers before and after washing. For the cleaning performance studies, tests were carried out with various types of detergents and EMPA Standard Stain Strip. According to the results, the optimum EEP program provided an excellent hygiene performance of more than 2 log reduction of microorganism and a perfect Washing Efficiency Index (Iw) of 1.035, which is greater than the value specified by EU ecodesign regulation 2019/2023.

Keywords: washing machine, energy efficient programs, hygiene, washing efficiency index, microorganism, escherichia coli, staphylococcus aureus, pseudomonas aeruginosa, laundry

Procedia PDF Downloads 138
2844 The Search of New Laws for a Gluten Kingdom

Authors: Mohammed Saleem Tariq

Abstract:

The enthusiasm for gluten avoidance in a growing market is met by improvements in sensitive detection methods for analysing gluten content. Paradoxically, manufacturers employ no such systems in the production process but continue to market their product as gluten free, a significant risk posed to an undetermined coeliac population. The paper resonates with an immunological response that causes gastrointestinal scarring and villous atrophy with the conventional description of personal injury. The current developing regime in the UK however, it is discussed, has avoided creating specific rules to provide an adequate level of protection for this type of vulnerable ‘characteristic’. Due to the struggle involved with identifying an appropriate cause of action, this paper analyses whether a claim brought in misrepresentation, negligence and/or under the Consumer Protect Act 1987 could be sustained. A necessary comparison is then made with the approach adopted by the Americans with Disability Act 1990 which recognises this chronic disease as a disability. The ongoing failure to introduce a level of protection which matches that afforded to those who fall into any one of the ‘protected characteristics’ under the Equality Act 2010, is inconceivable given the outstanding level of legal vulnerability.

Keywords: coeliac, litigation, misrepresentation, negligence

Procedia PDF Downloads 365
2843 Nature as a Human Health Asset: An Extensive Review

Authors: C. Sancho Salvatierra, J. M. Martinez Nieto, R. García Gonzalez-Gordon, M. I. Martinez Bellido

Abstract:

Introduction: Nature could act as an asset for human health protecting against possible diseases and promoting the state of both physical and mental health. Goals: This paper aims to determine which natural elements present evidence that show positive influence on human health, on which particular aspects and how. It also aims to determine the best biomarkers to measure such influence. Method: A systematic literature review was carried out. First, a general free text search was performed in databases, such as Scopus, PubMed or PsychInfo. Secondly, a specific search was performed combining keywords in order of increasing complexity. Also the Snowballing technique was used and it was consulted in the CSIC’s (The Spanish National Research Council). Databases: Of the 130 articles obtained and reviewed, 80 referred to natural elements that influenced health. These 80 articles were classified and tabulated according to the nature elements found, the health aspects studied, the health measurement parameters used and the measurement techniques used. In this classification the results of the studies were codified according to whether they were positive, negative or neutral both for the elements of nature and for the aspects of health studied. Finally, the results of the 80 selected studies were summarized and categorized according to the elements of nature that showed the greatest positive influence on health and the biomarkers that had shown greater reliability to measure said influence. Results: Of the 80 articles studied, 24 (30.0%) were reviews and 56 (70.0%) were original research articles. Among the 24 reviews, 18 (75%) found positive results of natural elements on health, and 6 (25%) both positive and negative effects. Of the 56 original articles, 47 (83.9%) showed positive results, 3 (5.4%) both positive and negative, 4 (7.1%) negative effects, and 2 (3.6%) found no effects. The results reflect positive effects of different elements of nature on the following pathologies: diabetes, high blood pressure, stress, attention deficit hyperactivity disorder, psychotic, anxiety and affective disorders. They also show positive effects on the following areas: immune system, social interaction, recovery after illness, mood, decreased aggressiveness, concentrated attention, cognitive performance, restful sleep, vitality and sense of well-being. Among the elements of nature studied, those that show the greatest positive influence on health are forest immersion, natural views, daylight, outdoor physical activity, active transport, vegetation biodiversity, natural sounds and the green residences. As for the biomarkers used that show greater reliability to measure the effects of natural elements are the levels of cortisol (both in blood and saliva), vitamin D levels, serotonin and melatonin, blood pressure, heart rate, muscle tension and skin conductance. Conclusions: Nature is an asset for health, well-being and quality of life. Awareness programs, education and health promotion are needed based on the elements that nature brings us, which in turn generate proactive attitudes in the population towards the protection and conservation of nature. The studies related to this subject in Spain are very scarce. Aknowledgements. This study has been promoted and partially financed by the Environmental Foundation Jaime González-Gordon.

Keywords: health, green areas, nature, well-being

Procedia PDF Downloads 279
2842 Tool for Fast Detection of Java Code Snippets

Authors: Tomáš Bublík, Miroslav Virius

Abstract:

This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and sub graph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.

Keywords: AST, Java, tree matching, scripthon source code recognition

Procedia PDF Downloads 426
2841 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging

Authors: Chang Liu, John Nash, Stephen D. Prior

Abstract:

This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, the aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infrared video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.

Keywords: unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video

Procedia PDF Downloads 331
2840 Paucity of Trauma Literature from a Highly Burdened Developing Country

Authors: Rizwan Sultan, Hasnain Zafar

Abstract:

Trauma is the leading cause of death among young population not only in USA but Pakistan as well. The high prevalence of disease should result in larger amount of data and larger number of publications resulting in exploring room for improvement in the field. We aimed to review trauma literature generated from Pakistan in journals indexed with PubMed from January 2010 to December 2014. Search using term “Trauma AND Pakistan” filtering for relevant dates and species human was done on Pubmed. The abstracts and articles were reviewed by the authors to collect data on a preformed performa. 114 articles were published from Pakistan during these 5 years. 64% articles were published in international journals. 63% articles were published in journals with impact factor less than 1. 54% articles were published from one of the four provinces of Pakistan. 64% of articles provided level 4 while 14% articles provided level 5 evidence on the topic. 55% articles discussed epidemiology in non-representative populations. Trauma literature from Pakistan is not only lacking significantly but is also of poor quality and is unable to offer conclusions on this particular subject. There is a lot of space for improvement in the upcoming years.

Keywords: trauma, literature, Pakistan, level of evidence

Procedia PDF Downloads 331
2839 A New Criterion Using Pose and Shape of Objects for Collision Risk Estimation

Authors: DoHyeung Kim, DaeHee Seo, ByungDoo Kim, ByungGil Lee

Abstract:

As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.

Keywords: collision risk, pose, shape, fuzzy logic

Procedia PDF Downloads 531
2838 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 122
2837 A Survey on Important Factors of the Ethereum Network Performance

Authors: Ali Mohammad Mobaser Azad, Alireza Akhlaghinia

Abstract:

Blockchain is changing our world and launching a new generation of decentralized networks. Meanwhile, Blockchain-based networks like Ethereum have been created and they will facilitate these processes using tools like smart contracts. The Ethereum has fundamental structures, each of which affects the activity of the nodes. Our purpose in this paper is to review similar research and examine various components to demonstrate the performance of the Ethereum network and to do this, and we used the data published by the Ethereum Foundation in different time spots to examine the number of changes that determine the status of network performance. This will help other researchers understand better Ethereum in different situations.

Keywords: blockchain, ethereum, smart contract, decentralization consensus algorithm

Procedia PDF Downloads 230
2836 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 151
2835 Establishing Feedback Partnerships in Higher Education: A Discussion of Conceptual Framework and Implementation Strategies

Authors: Jessica To

Abstract:

Feedback is one of the powerful levers for enhancing students’ performance. However, some students are under-engaged with feedback because they lack responsibility for feedback uptake. To resolve this conundrum, recent literature proposes feedback partnerships in which students and teachers share the power and responsibilities to co-construct feedback. During feedback co-construction, students express feedback needs to teachers, and teachers respond to individuals’ needs in return. Though this approach can increase students’ feedback ownership, its application is lagging as the field lacks conceptual clarity and implementation guide. This presentation aims to discuss the conceptual framework of feedback partnerships and feedback co-construction strategies. It identifies the components of feedback partnerships and strategies which could facilitate feedback co-construction. A systematic literature review was conducted to answer the questions. The literature search was performed using ERIC, PsycINFO, and Google Scholar with the keywords “assessment partnership”, “student as partner,” and “feedback engagement”. No time limit was set for the search. The inclusion criteria encompassed (i) student-teacher partnerships in feedback, (ii) feedback engagement in higher education, (iii) peer-reviewed publications, and (iv) English as the language of publication. Those without addressing conceptual understanding and implementation strategies were excluded. Finally, 65 publications were identified and analysed using thematic analysis. For the procedure, the texts relating to the questions were first extracted. Then, codes were assigned to summarise the ideas of the texts. Upon subsuming similar codes into themes, four themes emerged: students’ responsibilities, teachers’ responsibilities, conditions for partnerships development, and strategies. Their interrelationships were examined iteratively for framework development. Establishing feedback partnerships required different responsibilities of students and teachers during feedback co-construction. Students needed to self-evaluate performance against task criteria, identify inadequacies and communicate their needs to teachers. During feedback exchanges, they interpreted teachers’ comments, generated self-feedback through reflection, and co-developed improvement plans with teachers. Teachers had to increase students’ understanding of criteria and evaluation skills and create opportunities for students’ expression of feedback needs. In feedback dialogue, teachers responded to students’ needs and advised on the improvement plans. Feedback partnerships would be best grounded in an environment with trust and psychological safety. Four strategies could facilitate feedback co-construction. First, students’ understanding of task criteria could be increased by rubrics explanation and exemplar analysis. Second, students could sharpen evaluation skills if they participated in peer review and received teacher feedback on the quality of peer feedback. Third, provision of self-evaluation checklists and prompts and teacher modeling of self-assessment process could aid students in articulating feedback needs. Fourth, the trust could be fostered when teachers explained the benefits of feedback co-construction, showed empathy, and provided personalised comments in dialogue. Some strategies were applied in interactive cover sheets in which students performed self-evaluation and made feedback requests on a cover sheet during assignment submission, followed by teachers’ response to individuals’ requests. The significance of this presentation lies in unpacking the conceptual framework of feedback partnerships and outlining feedback co-construction strategies. With a solid foundation in theory and practice, researchers and teachers could better enhance students’ engagement with feedback.

Keywords: conceptual framework, feedback co-construction, feedback partnerships, implementation strategies

Procedia PDF Downloads 91
2834 Semantic Textual Similarity on Contracts: Exploring Multiple Negative Ranking Losses for Sentence Transformers

Authors: Yogendra Sisodia

Abstract:

Researchers are becoming more interested in extracting useful information from legal documents thanks to the development of large-scale language models in natural language processing (NLP), and deep learning has accelerated the creation of powerful text mining models. Legal fields like contracts benefit greatly from semantic text search since it makes it quick and easy to find related clauses. After collecting sentence embeddings, it is relatively simple to locate sentences with a comparable meaning throughout the entire legal corpus. The author of this research investigated two pre-trained language models for this task: MiniLM and Roberta, and further fine-tuned them on Legal Contracts. The author used Multiple Negative Ranking Loss for the creation of sentence transformers. The fine-tuned language models and sentence transformers showed promising results.

Keywords: legal contracts, multiple negative ranking loss, natural language inference, sentence transformers, semantic textual similarity

Procedia PDF Downloads 110
2833 Classic Training of a Neural Observer for Estimation Purposes

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

This paper investigates the training of multilayer neural network using the classic approach. Then, for estimation purposes, we suggest the use of a specific neural observer that we study its training algorithm which is the back-propagation one in the case of the disponibility of the state and in the case of an unmeasurable state. A MATLAB simulation example will be studied to highlight the usefulness of this kind of observer.

Keywords: training, estimation purposes, neural observer, back-propagation, unmeasurable state

Procedia PDF Downloads 576
2832 An Object-Based Image Resizing Approach

Authors: Chin-Chen Chang, I-Ta Lee, Tsung-Ta Ke, Wen-Kai Tai

Abstract:

Common methods for resizing image size include scaling and cropping. However, these two approaches have some quality problems for reduced images. In this paper, we propose an image resizing algorithm by separating the main objects and the background. First, we extract two feature maps, namely, an enhanced visual saliency map and an improved gradient map from an input image. After that, we integrate these two feature maps to an importance map. Finally, we generate the target image using the importance map. The proposed approach can obtain desired results for a wide range of images.

Keywords: energy map, visual saliency, gradient map, seam carving

Procedia PDF Downloads 477
2831 Adaptive CFAR Analysis for Non-Gaussian Distribution

Authors: Bouchemha Amel, Chachoui Takieddine, H. Maalem

Abstract:

Automatic detection of targets in a modern communication system RADAR is based primarily on the concept of adaptive CFAR detector. To have an effective detection, we must minimize the influence of disturbances due to the clutter. The detection algorithm adapts the CFAR detection threshold which is proportional to the average power of the clutter, maintaining a constant probability of false alarm. In this article, we analyze the performance of two variants of adaptive algorithms CA-CFAR and OS-CFAR and we compare the thresholds of these detectors in the marine environment (no-Gaussian) with a Weibull distribution.

Keywords: CFAR, threshold, clutter, distribution, Weibull, detection

Procedia PDF Downloads 589
2830 Analysis of the Inverse Kinematics for 5 DOF Robot Arm Using D-H Parameters

Authors: Apurva Patil, Maithilee Kulkarni, Ashay Aswale

Abstract:

This paper proposes an algorithm to develop the kinematic model of a 5 DOF robot arm. The formulation of the problem is based on finding the D-H parameters of the arm. Brute Force iterative method is employed to solve the system of non linear equations. The focus of the paper is to obtain the accurate solutions by reducing the root mean square error. The result obtained will be implemented to grip the objects. The trajectories followed by the end effector for the required workspace coordinates are plotted. The methodology used here can be used in solving the problem for any other kinematic chain of up to six DOF.

Keywords: 5 DOF robot arm, D-H parameters, inverse kinematics, iterative method, trajectories

Procedia PDF Downloads 204
2829 The Relationship between Transcendence and Psychological Well-Being: A Systematic Scientific Literature Review

Authors: Monir Ahmed

Abstract:

The main purpose of this literature review was to investigate the existing quantitative clinical studies on the relationship between transcendence and psychological well-being. The primary objective of the literature review is to determine whether the existing studies adequately demonstrate the relationship between transcendence and psychological well-being, including spiritual well-being. A further objective of this literature review is to see if the ‘creatio ex nihilo’ doctrine is necessary to understand transcendence and its relationship with psychological well-being. Systematic literature review methods including studies identified from search engines, extracting data from the studies and assessing their quality for the planned review were used. The outcome of this literature review indicates that self-transcendence (STa), spiritual transcendence (STb) are positively related to psychological well-being. However, such positive relationships present limited scope for understanding transcendence and its relationship with well-being. The findings of this review support the need for further research in the area of transcendence and well-being. This literature review reveals the importance of developing a new transcendence tool for determining an individual’s ability to transcend and the relationship between his/her ability for transcendence and psychological well-being. The author of this paper proposes that the inclusion of the theological doctrine (‘creatio ex nihilo’) in understanding transcendence and psychological well-being is crucial, necessary and unavoidable.

Keywords: transcendence, psychological well-being, self-transcendence, spiritual transcendence, ‘creatio ex nihilo’

Procedia PDF Downloads 136
2828 Benchmarking of Pentesting Tools

Authors: Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

The benchmarking of tools for dynamic analysis of vulnerabilities in web applications is something that is done periodically, because these tools from time to time update their knowledge base and search algorithms, in order to improve their accuracy. Unfortunately, the vast majority of these evaluations are made by software enthusiasts who publish their results on blogs or on non-academic websites and always with the same evaluation methodology. Similarly, academics who have carried out this type of analysis from a scientific approach, the majority, make their analysis within the same methodology as well the empirical authors. This paper is based on the interest of finding answers to questions that many users of this type of tools have been asking over the years, such as, to know if the tool truly test and evaluate every vulnerability that it ensures do, or if the tool, really, deliver a real report of all the vulnerabilities tested and exploited. This kind of questions have also motivated previous work but without real answers. The aim of this paper is to show results that truly answer, at least on the tested tools, all those unanswered questions. All the results have been obtained by changing the common model of benchmarking used for all those previous works.

Keywords: cybersecurity, IDS, security, web scanners, web vulnerabilities

Procedia PDF Downloads 319
2827 Nonlinear Observer Canonical Form for Genetic Regulation Process

Authors: Bououden Soraya

Abstract:

This paper aims to study the existence of the change of coordinates which permits to transform a class of nonlinear dynamical systems into the so-called nonlinear observer canonical form (NOCF). Moreover, an algorithm to construct such a change of coordinates is given. Based on this form, we can design an observer with a linear error dynamic. This enables us to estimate the state of a nonlinear dynamical system. A concrete example (biological model) is provided to illustrate the feasibility of the proposed results.

Keywords: nonlinear observer canonical form, observer, design, gene regulation, gene expression

Procedia PDF Downloads 433
2826 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 107
2825 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging

Authors: Mohammad Esmaeilpour

Abstract:

One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.

Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions

Procedia PDF Downloads 476
2824 The Pro-Active Public Relations of Faculty of Management Science, Suan Sunandha Rajabhat University

Authors: Kanyakorn Sujarittnetikarn, Surangkana Pipatchokchaiyo

Abstract:

The objective of this research was to study the pro-active public relations of according to the characteristic of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample group for this research report was students from 4 year curriculum and continued / extended curriculum, made a random distribution proportion as follows: a group of 400 students who are working while studying and a group of non – working students. The tools used in this research were questionnaires, asking about the acknowledgement of public relations information of Faculty of Management Science in the academic year 2007. The result found that friends were the most influential in choosing the education institute. The differences of method to receive information of non-working student and working student were the entertainment magazine which was interested mostly by working students and they preferred to search the information on the website after 24:00 O’clock. However, the non-working students preferred 21:00-24:00 O’clock the most.

Keywords: development guidelines systems, faculty of management science, public relation planning, proactive public relations

Procedia PDF Downloads 291