Search results for: illumination techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6910

Search results for: illumination techniques

4480 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture

Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis

Abstract:

During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.

Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise

Procedia PDF Downloads 362
4479 Microstructure of AlCrFeNiMn High Entropy Alloy and Its Corrosion Behavior in Supercritical CO₂ Environment

Authors: Yang Wanhuan, Zou Jichun, LI Shen, Zhong Weihua, Yang Wen

Abstract:

High entropy alloys (HEAs) have aroused significant concern in high-temperature supercritical carbon dioxide (S-CO2) environments due to their unique microstructures and outstanding properties. However, the anti-corrosion ability and mechanism of these HEAs in the S-CO₂ remain unclear. Herein, we developed a new AlCrFeNiMn (AM)-HEA with double phases by vacuum arc melting furnace. The corrosion behavior of AM-HEA in the S-CO₂ at 500 ℃ under 25 MPa for 400 hours was deciphered by multiple characterization techniques. The results show that the discrepancy of corrosion between the matrix and boundary was accounted for by their microstructure and components. The role and mechanism of Mn contents for their oxide scales in boundary zones were emphasized. More importantly, the nano-precipitated second phase and numerous boundaries for the outstanding anti-corrosion ability of the matrix were proposed.

Keywords: high entropy alloy, microstructure, corrosion, supercritical carbon oxide, AlCrFeNiMn

Procedia PDF Downloads 146
4478 Design, Spectroscopic, Structural Characterization, and Biological Studies for New Complexes via Charge Transfer Interaction of Ciprofloxacin Drug With π Acceptors

Authors: Khaled Alshammari

Abstract:

Ciprofloxacin (CIP) is a common antibiotic drug used as a strudy electron donor that interacts with dynamic π -acceptors such as 2,3-dinitrosalsylic acid (HDNS) and Tetracyanoethylene (TCNE) for synthesizing a new model of charge transfer (CT) complexes. The synthesized complexes were identified using diverse analytical methods such as UV–vis spectra, photometric titration measurements, FT-IR, HNMR Spectroscopy, and thermogravimetric analysis techniques (TGA/DTA). The stoichiometries for all the formed complexes were found to be a 1:1 M ratio between the reactants. The characteristic spectroscopic properties such as transition dipole moment (µ), oscillator strength (f), formation constant (KCT), ionization potential (ID), standard free energy (∆G), and energy of interaction (ECT) for the CT-complexes were collected. The developed CT complexes were tested for their toxicity on main organs, antimicrobial activity, antioxidant activity, and biofilm formation.

Keywords: biological, biofilm, toxicity, thermal analysis, charge transfer, spectroscopy

Procedia PDF Downloads 57
4477 The Guidelines for Promoting Research Articles Publication in Faculty of Science and Technology, Suan Sunandha Rajabhat University Bangkok, Thailand

Authors: Tatsanawalai Utarasakul, Ch. Hirannukhrao

Abstract:

The purpose of this research was to investigate the appropriate guidelines for promoting manuscript publication of the academic staff in Faculty of Science and Technology, Suan Sunandha Rajabhat University (SciSSRU). Data were collected from 88 academic staff of SciSSRU. The qualitative approach and knowledge management were used to determine the guidelines for promoting manuscript publication. In addition, TUNA Model was applied in order to follow the process of knowledge management. Simplified techniques were presented and shared with academic staff in the Knowledge Management exhibition, brochure, and websites. The result of this study revealed that, the comparison of number of manuscript publication of academic staff between academic year 2012 and 2013 is rapidly increasing for 60 percentages.

Keywords: knowledge management, articles, publication, academic staff

Procedia PDF Downloads 410
4476 An Efficient Data Mining Technique for Online Stores

Authors: Mohammed Al-Shalabi, Alaa Obeidat

Abstract:

In any food stores, some items will be expired or destroyed because the demand on these items is infrequent, so we need a system that can help the decision maker to make an offer on such items to improve the demand on the items by putting them with some other frequent item and decrease the price to avoid losses. The system generates hundreds or thousands of patterns (offers) for each low demand item, then it uses the association rules (support, confidence) to find the interesting patterns (the best offer to achieve the lowest losses). In this paper, we propose a data mining method for determining the best offer by merging the data mining techniques with the e-commerce strategy. The task is to build a model to predict the best offer. The goal is to maximize the profits of a store and avoid the loss of products. The idea in this paper is the using of the association rules in marketing with a combination with e-commerce.

Keywords: data mining, association rules, confidence, online stores

Procedia PDF Downloads 410
4475 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 56
4474 Enhancing Building Performance Simulation Through Artificial Intelligence

Authors: Thamer Mahmmoud Muhammad Al Jbarat

Abstract:

Building Performance Simulation plays a crucial role in optimizing energy efficiency, comfort, and sustainability in buildings. This paper explores the integration of Artificial Intelligence techniques into Building Performance Simulation to enhance accuracy, efficiency, and adaptability. The synthesis of Artificial Intelligence and Building Performance Simulation offers promising avenues for addressing complex building dynamics, optimizing energy consumption, and improving occupants' comfort. This paper examines various Artificial Intelligence methodologies and their applications in Building Performance Simulation, highlighting their potential benefits and challenges. Through a comprehensive review of existing literature and case studies, this paper presents insights into the current state, future directions, and implications of Artificial Intelligence driven Building Performance Simulation on the built environment

Keywords: artificial intelligence, building performance, energy efficiency, building performance simulation, buildings sustainability, built environment.

Procedia PDF Downloads 26
4473 The Effects of Key Factors in Traffic-Oriented Road Alignment Adjustment for Low Emissions Profile: A Case Study in Norway

Authors: Gaylord K. Booto, Marinelli Giuseppe, Helge Brattebø, Rolf A. Bohne

Abstract:

Emissions reduction has emerged among the principal targets in the process of planning and designing road alignments today. Intelligent road design methods that can result in optimized alignment constitute concrete and innovative responses towards better alternatives and more sustainable road infrastructures. As the largest amount of emissions of road infrastructures occur in the operation stage, it becomes very important to consider traffic weight and distribution in alignment design process. This study analyzes the effects of four traffic factors (i.e. operating speed, vehicle category, technology and fuel type) on adjusting the vertical alignment of a given road, using optimization techniques. Further, factors’ effects are assessed qualitatively and quantitatively, and the emission profiles of resulting alignment alternatives are compared.

Keywords: alignment adjustment, emissions reduction, optimization, traffic-oriented

Procedia PDF Downloads 370
4472 Viable Use of Natural Extract Solutions from Tuberous and Cereals to Enhance the Synthesis of Activated Carbon-Graphene Composite

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

Enhancing the properties of activated carbon is very imperative for various applications. Indeed, the activated carbon has promising physicochemical properties desired for a considerable number of applications. In this regard, we are proposing an enhanced and green technology for increasing the efficiency and performance of the activated carbon to various applications. The technique poses on the use of natural extracts from tuberous and cereals based-solutions. These solutions showed high potentiality to be used in the synthesis of activated carbon-graphene composite with only 3 mL. The extracted liquid from tuberous sourcing was enough to induce precipitation within a fraction of a minute in contrast to that from cereal sourced. Using these extracts, a synthesis of activated carbon-graphene composite was successful. Different characterization techniques such as XRD, SEM, FTIR, BET, and Raman spectroscopy were performed to investigate the composite materials. The results confirmed a conjugation between activated carbon and graphene material.

Keywords: activated carbon, cereals, extract solution, graphene, tuberous

Procedia PDF Downloads 146
4471 Mechanical Properties of Sugar Palm Fibre Reinforced Thermoplastic Polyurethane Composites

Authors: Dandi Bachtiar, Mohammed Ausama Abbas, Januar Parlaungan Siregar, Mohd Ruzaimi Bin Mat Rejab

Abstract:

Short sugar palm fibre and thermoplastic polyurethane were combined to produce new composites by using the extrude method. Two techniques used to prepare a new composite material, firstly, extrusion of the base material with short fibre, secondly hot pressing them. The size of sugar palm fibre was fixed at 250µm. Different weight percent (10 wt%, 20 wt% and 30 wt%) were used in order to optimise preparation process. The optimization of process depended on the characterization mechanical properties such as impact, tensile, and flexural of the new (TPU/SPF) composite material. The results proved that best tensile and impact properties of weight additive fibre applied 10 wt%. There was an increasing trend recorded of flexural properties during increased the fibre loading. Meanwhile, the maximum tensile strength was 14.0 MPa at 10 wt% of the fibre. Moreover, there was no significant effect for additions more than 30 wt% of the fibre.

Keywords: composites, natural fibre, polyurethane, sugar palm

Procedia PDF Downloads 384
4470 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement: A Case Study

Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák

Abstract:

Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.

Keywords: failure, pavement, probability, reliability index, simulation, tensile crack

Procedia PDF Downloads 546
4469 Recovery of Boron as Homogeneous Perborate Particles from Synthetic Wastewater by Integrating Chemical Oxo-Precipitation with Fluidized-Bed Homogeneous Granulation

Authors: Chiung-Chin Huang, Jui-Yen Lin, Yao-Hui Huang

Abstract:

Among current techniques of boron removal from wastewater with high boron concentration, chemical oxo-precipitation (COP) is one of the promising methods due to its milder condition. COP uses H2O2 to transform boric acid to perborates which can easily precipitate with barium ions at room temperature. However, the generation of the waste sludge that requires sludge/water separation and sludge dewatering is troublesome. This work presents an innovative technology which integrates chemical oxo-precipitation (COP) with fluidized-bed homogeneous granulation (FBHG) to reclaim boron as homogeneous perborate particles. By conducting COP in a fluidized-bed reactor, the barium perborate can be granulated to form homogeneous particles (>1.0 mm) with low water content (< 10%). Under the suitable condition, more than 70% of boron can be recovered from 600 ppm of boron solution and the residual boron is lower than 100 ppm.

Keywords: barium, perborate, chemical oxo-precipitation, boron removal, fluidized-bed, granulation

Procedia PDF Downloads 322
4468 Rodriguez Diego, Del Valle Martin, Hargreaves Matias, Riveros Jose Luis

Authors: Nathainail Bashir, Neil Anderson

Abstract:

The objective of this study site was to investigate the current state of the practice with regards to karst detection methods and recommend the best method and pattern of arrays to acquire the desire results. Proper site investigation in karst prone regions is extremely valuable in determining the location of possible voids. Two geophysical techniques were employed: multichannel analysis of surface waves (MASW) and electric resistivity tomography (ERT).The MASW data was acquired at each test location using different array lengths and different array orientations (to increase the probability of getting interpretable data in karst terrain). The ERT data were acquired using a dipole-dipole array consisting of 168 electrodes. The MASW data was interpreted (re: estimated depth to physical top of rock) and used to constrain and verify the interpretation of the ERT data. The ERT data indicates poorer quality MASW data were acquired in areas where there was significant local variation in the depth to top of rock.

Keywords: dipole-dipole, ERT, Karst terrains, MASW

Procedia PDF Downloads 315
4467 Nanofluid based on Zinc Oxide/Ferric Oxide Nanocomposite as Additive for Geothermal Drilling Fluids

Authors: Anwaar O. Ali, Mahmoud Fathy Mubarak, Mahmoud Ibrahim Abdou, Hector Cano Esteban, Amany A. Aboulrous

Abstract:

Corrosion resistance and lubrication are crucial characteristics required for geothermal drilling fluids. In this study, a ZnO/Fe₂O₃ nanocomposite was fabricated and incorporated into the structure of Cetyltrimethylammonium bromide (CTAB). Several physicochemical techniques were utilized to analyze and describe the synthesized nanomaterials. The surface morphology of the composite was assessed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX). The corrosion inhibition capabilities of these materials were explored across various corrosive environments. The weight loss and electrochemical methods were utilized to determine the corrosion inhibition activity of the prepared nanomaterials. The results demonstrate a high level of protection achieved by the composite. Additionally, the lubricant coefficient and extreme pressure properties were evaluated.

Keywords: nanofluid, corrosion, geothermal drilling fluids, ZnO/Fe2O3

Procedia PDF Downloads 70
4466 Synthesis of Silver Nanoparticles by Different Types of Plants

Authors: Khamael Abualnaja, Hala M. Abo-Dief

Abstract:

Silver nanoparticles (AgNPs) are the subject of important recent interest, present in a large range of applications such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, we describe an effective and environmental-friendly technique of green synthesis of silver nanoparticles. Silver nanoparticles (AgNPs) synthesized using silver nitrate solution and the extract of mint, basil, orange peel and Tangerines peel which used as reducing agents. Silver Nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV–Vis absorption spectroscopy. SEM analysis showed the average particle size of mint, basil, orange peel, Tangerines peel are 30, 20, 12, 10 nm respectively. This is for the first time that any plant extract was used for the synthesis of nanoparticles.

Keywords: silver nanoparticles, green synthesis, scanning electron microscopy, plants

Procedia PDF Downloads 258
4465 Diagnostic Evaluation of Urinary Angiogenin (ANG) and Clusterin (CLU) as Biomarker for Bladder Cancer

Authors: Marwa I. Shabayek, Ola A. Said, Hanan A. Attaia, Heba A. Awida

Abstract:

Bladder carcinoma is an important worldwide health problem. Both cystoscopy and urine cytology used in detecting bladder cancer suffer from drawbacks where cystoscopy is an invasive method and urine cytology shows low sensitivity in low grade tumors. This study validates easier and less time-consuming techniques to evaluate the value of combined use of angiogenin and clusterin in comparison and combination with voided urine cytology in the detection of bladder cancer patients. This study includes malignant (bladder cancer patients, n= 50), benign (n=20), and healthy (n=20) groups. The studied groups were subjected to cystoscopic examination, detection of bilharzial antibodies, urine cytology, and estimation of urinary angiogenin and clusterin by ELISA. The overall sensitivity and specifcity were 66% and 75% for angiogenin, 70% and 82.5% for clusterin and 46% and 80% for voided urine cytology. Combined sensitivity of angiogenin and clusterin with urine cytology increased from 82 to 88%.

Keywords: angiogenin, bladder cancer, clusterin, cytology

Procedia PDF Downloads 297
4464 Rooting Out Breast Cancer by Repressing ER Gene Expression: Correlating Bioactivity of Pomegranate Rind with Chemical Constituents Identified by HPLC-MS/MS

Authors: Alaa M. M. Badr Eldin, Marwa I. Ezzat, Mohammed S. Sedeek, Manal S. Afifi, Omar M. Sabry

Abstract:

Cytotoxic activity of the total methanol extract against breast cancer cell line MCF-7 was amazing IC50 at 54 ug/ml. 130 polyphenolic compounds were tentatively identified in pomegranate peel (Punica granatum L.) methanol extract using HPLC-MS/MS technique. The antiestrogenic activity of the polyphenolic constituents found in pomegranate extract was confirmed experimentally in-vitro and by the in-silico molecular docking using gallagic acid, ellagic acid, and Punicalagin as these are considered model compounds confirmed in pomegranate peel extract. The methanolic extract was found to suppress ER, TGF-β, and NF-kB in-vitro gene expression strongly, and that was verified by qPCR and Western Blot gel electrophoresis techniques.

Keywords: HPLC-MS/MS, pomegranate, breast cancer, ovarian cancer, ER, TGF-β, NF-kB

Procedia PDF Downloads 102
4463 Using Photogrammetry to Survey the Côa Valley Iron Age Rock Art Motifs: Vermelhosa Panel 3 Case Study

Authors: Natália Botica, Luís Luís, Paulo Bernardes

Abstract:

The Côa Valley, listed World Heritage since 1998, presents more than 1300 open-air engraved rock panels. The Archaeological Park of the Côa Valley recorded the rock art motifs, testing various techniques based on direct tracing processes on the rock, using natural and artificial lighting. In this work, integrated in the "Open Access Rock Art Repository" (RARAA) project, we present the methodology adopted for the vectorial drawing of the rock art motifs based on orthophotos taken from the photogrammetric survey and 3D models of the rocks. We also present the information system designed to integrate the vector drawing and the characterization data of the motifs, as well as the open access sharing, in order to promote their reuse in multiple areas. The 3D models themselves constitute a very detailed record, ensuring the digital preservation of the rock and iconography. Thus, even if a rock or motif disappears, it can continue to be studied and even recreated.

Keywords: rock art, archaeology, iron age, 3D models

Procedia PDF Downloads 83
4462 Investigating Problems and Social Support for Mothers of Poor Households

Authors: Niken Hartati

Abstract:

This study provides a description of the problem and sources of social support that given to 90 mothers from poor households. Data were collected using structured interviews with the three main questions: 1) what kind of problem in mothers daily life, 2) to whom mothers ask for help to overcome it and 3) the form of the assistances that provided. Furthermore, the data were analyzed using content analysis techniques were then coded and categorized. The results of the study illustrate the problems experienced by mothers of poor households in the form of: subsistence (37%), child care (27%), management of money and time (20%), housework (5%), bad place of living (5%), the main breadwinner (3%), and extra costs (3%). While the sources of social support that obtained by mothers were; neighbors (10%), extended family (8%), children (8%), husband (7%), parents (7%), and siblings (5%). Unfortunately, more mothers who admitted not getting any social support when having problems (55%). The form of social support that given to mother from poor household were: instrumental support (91%), emotional support (5%) and informational support (2%). Implications for further intervention also discussed in this study.

Keywords: household problems, social support, mothers, poor households

Procedia PDF Downloads 365
4461 Observer-based Robust Diagnosis for Wind Turbine System

Authors: Sarah Odofin, Zhiwei Gao

Abstract:

Operations and maintenance of wind turbine have received much attention by researcher due to rapid expansion of wind farms. This paper explores a novel fault diagnosis that is designed and optimized to be very sensitive to faults and robust to disturbances. The faults considered are the sensor faults of which the augmented observer is considered to enlarge faults and to be robust to disturbance. A qualitative model based analysis is proposed for early fault diagnosis to minimize downtime mostly caused by components breakdown and exploit productivity. Simulation results are computed validating the models provided which demonstrates system performance using practical application of fault type examples. The results demonstrate the effectiveness of the developed techniques investigated in a Matlab/Simulink environment.

Keywords: wind turbine, condition monitoring, genetic algorithm, fault diagnosis, augmented observer, disturbance robustness, fault estimation, sensor monitoring

Procedia PDF Downloads 497
4460 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 137
4459 Cloud Computing Security for Multi-Cloud Service Providers: Controls and Techniques in Our Modern Threat Landscape

Authors: Sandesh Achar

Abstract:

Cloud computing security is a broad term that covers a variety of security concerns for organizations that use cloud services. Multi-cloud service providers must consider several factors when addressing security for their customers, including identity and access management, data at rest and in transit, egress and ingress traffic control, vulnerability and threat management, and auditing. This paper explores each of these aspects of cloud security in detail and provides recommendations for best practices for multi-cloud service providers. It also discusses the challenges inherent in securing a multi-cloud environment and offers solutions for overcoming these challenges. By the end of this paper, readers should have a good understanding of the various security concerns associated with multi-cloud environments in the context of today’s modern cyber threats and how to address them.

Keywords: multi-cloud service, system organization control, data loss prevention, identity and access management

Procedia PDF Downloads 98
4458 Immunostimulant from Biodiversity to Enhance Shrimp Survival against Vibriosis

Authors: Frank Alexis, Jenny Antonia Rodriguez Leon, Cristobal Leonardo Dominguez Borbor, Mery Rosario Ramirez Munoz

Abstract:

The shrimp industry has increased in the last years to the point of becoming one of the most dynamic industries. However, the appearance of diseases that significantly affect the production of shrimps has been an obstacle for the shrimp industry. We hypothesized that natural fibers from biodiversity can stimulate the immune system to prevent shrimp diseases like vibriosis. In this project, we extracted the fibers from vegetal sources in Ecuador and characterized them using common techniques like XRD, SEM, and then we tested the effect of fibers as immunostimulants for shrimps in-vitro and in-vivo using small aquarium and large pools. Our results demonstrate that vegetal fibers can significantly increase the survival of shrimps. Moreover, the production of shrimps in a large pool was significantly increased. Lastly, the test of color and taste successfully surpass the control group of shrimps not treated with fiber food supplements.

Keywords: fibers, immunostimulant, shrimp, vibriosis

Procedia PDF Downloads 157
4457 Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data

Authors: Nasser A. Al-Azri

Abstract:

The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world.

Keywords: bioclimatic charts, passive cooling, TMY, weather data

Procedia PDF Downloads 240
4456 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic

Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin

Abstract:

In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.

Keywords: binary cat swarm optimization, binarization methods, metaheuristic, set covering problem

Procedia PDF Downloads 396
4455 Characterization and Geographical Differentiation of Yellow Prickly Pear Produced in Different Mediterranean Countries

Authors: Artemis Louppis, Michalis Constantinou, Ioanna Kosma, Federica Blando, Michael Kontominas, Anastasia Badeka

Abstract:

The aim of the present study was to differentiate yellow prickly pear according to geographical origin based on the combination of mineral content, physicochemical parameters, vitamins and antioxidants. A total of 240 yellow prickly pear samples from Cyprus, Spain, Italy and Greece were analyzed for pH, titratable acidity, electrical conductivity, protein, moisture, ash, fat, antioxidant activity, individual antioxidants, sugars and vitamins by UPLC-MS/MS as well as minerals by ICP-MS. Statistical treatment of the data included multivariate analysis of variance followed by linear discriminant analysis. Based on results, a correct classification of 66.7% was achieved using the cross validation by mineral content while 86.1% was achieved using the cross validation method by combination of all analytical parameters.

Keywords: geographical differentiation, prickly pear, chemometrics, analytical techniques

Procedia PDF Downloads 143
4454 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 176
4453 Synthesis and Characterization of Chromenoformimidate

Authors: Houcine Ammar

Abstract:

Chromenederivatives are an important class of heterocycles that are found in a wide range of natural products. Chromenes are commonly used as cosmetics, food additives, and possibly biodegradable agrochemicals. Recently, the synthesis of chromene derivatives has drawn more attention due to their pharmacological and biological applications. In the present work, we are interested in the synthesis and characterization of chromeno [2,3-b] pyridin-4-yl) formimidate, carried out in 4 steps: (i) the synthesis of 3-cyanoiminocoumarins is realized first by Knœvenagel reaction by reacting malonitrile with variously substituted o-phenolic benzaldehydes. In order to undergo reduction by sodium tetraborohydride NaBH4 to lead to new 2-amino-3-cyano-4H-chromenes, these compounds were easily transformed by the action of malonitrile leading to 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile under microwave activation. For the final step, the action of triethylorthoformate on 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile leads to new chromeno [2,3-b] pyridinheterocycles. -4-yl) formimidate. The synthesized compounds have been characterized by different spectroscopic techniques 1 H-NMR, 13 C-NMR, and IRTF.

Keywords: chromene, microwave, knovenagel condensation, chromeno [2, 3-b] pyridine

Procedia PDF Downloads 92
4452 Understanding the Polygon with the Eyes of Blinds

Authors: Tuğba Horzum, Ahmet Arikan

Abstract:

This paper was part of a broader study that investigated what blind students (BSs) understood and how they used concept definitions (CDs) and concept images (CIs) for some mathematical concepts. This paper focused on the polygon concept. For this purpose, four open-ended questions were asked to five blind middle school students. During the interviews, BSs were presented with raised-line materials and were given opportunities to construct geometric shapes with magnetic sticks and micro-balls. Qualitative research techniques applied in grounded theory were used for analyzing documents pictures which were taken from magnetic geometric shapes that BSs constructed, raised-line materials and researcher’s observation notes and interviews. At the end of the analysis, it was observed that BSs used mostly their CIs and never took into account the CDs. Besides, BSs encountered with the difficulties associated with the combination of polygon edges’ endpoints consecutively. Additionally, they focused on the interior of the polygon and the angles which have smaller a size. Lastly, BSs were often conflicted about triangle, rectangle, square and circle whether or not a polygon.

Keywords: blind students, concept definition, concept image, polygon

Procedia PDF Downloads 297
4451 Investigation of New Gait Representations for Improving Gait Recognition

Authors: Chirawat Wattanapanich, Hong Wei

Abstract:

This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.

Keywords: convolutional image, lower knee, gait

Procedia PDF Downloads 202