Search results for: weather classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2948

Search results for: weather classification

548 Study of Parking Demand for Offices – Case Study: Kolkata

Authors: Sanghamitra Roy

Abstract:

In recent times, India has experienced the phenomenal rise in the number of registered vehicles and vehicular trips, particularly intra-city trips in most of its urban areas. The increase in vehicle ownership and use have increased parking demand immensely and accommodating the same is now a matter of big concern. Most cities do not have adequate off-street parking facilities thus forcing people to park on the streets. This has resulted in decreased carrying capacity, decreased traffic speed, increased congestion, and increased environmental problems. While integrated multi-modal transportation system is the answer to such problems, parking issues will continue to exist. In Kolkata, only 6.4% land is devoted for roads. The consequences of this huge crunch in road spaces coupled with increased parking demand are severe particularly in the CBD and major commercial areas, making the role of off-street parking facilities in Kolkata even more critical. To meaningfully address parking issues, it is important to identify the factors that influence parking demand so that it can be assessed and comprehensive parking policies and plans for the city can be formulated. This paper aims at identifying the factors that contribute towards parking demand for offices in Kolkata and their degree of correlation with parking demand. The study is limited to home-to-work trips located within Kolkata Municipal Corporation (KMC) where parking related issues are most pronounced. The data for the study is collected through personal interviews, questionnaires and direct observations from offices across the wards of KMC. SPSS is used for classification of the data and analyses of the same. The findings of this study will help in re-assessment of the parking requirements specified in The Kolkata Municipal Corporation Building Rules as a step towards alleviating parking related issues in the city.

Keywords: building rules, office spaces, parking demand, urbanization

Procedia PDF Downloads 317
547 Estimating Evapotranspiration Irrigated Maize in Brazil Using a Hybrid Modelling Approach and Satellite Image Inputs

Authors: Ivo Zution Goncalves, Christopher M. U. Neale, Hiran Medeiros, Everardo Mantovani, Natalia Souza

Abstract:

Multispectral and thermal infrared imagery from satellite sensors coupled with climate and soil datasets were used to estimate evapotranspiration and biomass in center pivots planted to maize in Brazil during the 2016 season. The hybrid remote sensing based model named Spatial EvapoTranspiration Modelling Interface (SETMI) was applied using multispectral and thermal infrared imagery from the Landsat Thematic Mapper instrument. Field data collected by the IRRIGER center pivot management company included daily weather information such as maximum and minimum temperature, precipitation, relative humidity for estimating reference evapotranspiration. In addition, soil water content data were obtained every 0.20 m in the soil profile down to 0.60 m depth throughout the season. Early season soil samples were used to obtain water-holding capacity, wilting point, saturated hydraulic conductivity, initial volumetric soil water content, layer thickness, and saturated volumetric water content. Crop canopy development parameters and irrigation application depths were also inputs of the model. The modeling approach is based on the reflectance-based crop coefficient approach contained within the SETMI hybrid ET model using relationships developed in Nebraska. The model was applied to several fields located in Minas Gerais State in Brazil with approximate latitude: -16.630434 and longitude: -47.192876. The model provides estimates of real crop evapotranspiration (ET), crop irrigation requirements and all soil water balance outputs, including biomass estimation using multi-temporal satellite image inputs. An interpolation scheme based on the growing degree-day concept was used to model the periods between satellite inputs, filling the gaps between image dates and obtaining daily data. Actual and accumulated ET, accumulated cold temperature and water stress and crop water requirements estimated by the model were compared with data measured at the experimental fields. Results indicate that the SETMI modeling approach using data assimilation, showed reliable daily ET and crop water requirements for maize, interpolated between remote sensing observations, confirming the applicability of the SETMI model using new relationships developed in Nebraska for estimating mainly ET and water requirements in Brazil under tropical conditions.

Keywords: basal crop coefficient, irrigation, remote sensing, SETMI

Procedia PDF Downloads 140
546 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 152
545 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example

Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang

Abstract:

Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.

Keywords: cancer, visualization, database, functional annotation

Procedia PDF Downloads 619
544 Mapping Intertidal Changes Using Polarimetry and Interferometry Techniques

Authors: Khalid Omari, Rene Chenier, Enrique Blondel, Ryan Ahola

Abstract:

Northern Canadian coasts have vulnerable and very dynamic intertidal zones with very high tides occurring in several areas. The impact of climate change presents challenges not only for maintaining this biodiversity but also for navigation safety adaptation due to the high sediment mobility in these coastal areas. Thus, frequent mapping of shorelines and intertidal changes is of high importance. To help in quantifying the changes in these fragile ecosystems, remote sensing provides practical monitoring tools at local and regional scales. Traditional methods based on high-resolution optical sensors are often used to map intertidal areas by benefiting of the spectral response contrast of intertidal classes in visible, near and mid-infrared bands. Tidal areas are highly reflective in visible bands mainly because of the presence of fine sand deposits. However, getting a cloud-free optical data that coincide with low tides in intertidal zones in northern regions is very difficult. Alternatively, the all-weather capability and daylight-independence of the microwave remote sensing using synthetic aperture radar (SAR) can offer valuable geophysical parameters with a high frequency revisit over intertidal zones. Multi-polarization SAR parameters have been used successfully in mapping intertidal zones using incoherence target decomposition. Moreover, the crustal displacements caused by ocean tide loading may reach several centimeters that can be detected and quantified across differential interferometric synthetic aperture radar (DInSAR). Soil moisture change has a significant impact on both the coherence and the backscatter. For instance, increases in the backscatter intensity associated with low coherence is an indicator for abrupt surface changes. In this research, we present primary results obtained following our investigation of the potential of the fully polarimetric Radarsat-2 data for mapping an inter-tidal zone located on Tasiujaq on the south-west shore of Ungava Bay, Quebec. Using the repeat pass cycle of Radarsat-2, multiple seasonal fine quad (FQ14W) images are acquired over the site between 2016 and 2018. Only 8 images corresponding to low tide conditions are selected and used to build an interferometric stack of data. The observed displacements along the line of sight generated using HH and VV polarization are compared with the changes noticed using the Freeman Durden polarimetric decomposition and Touzi degree of polarization extrema. Results show the consistency of both approaches in their ability to monitor the changes in intertidal zones.

Keywords: SAR, degree of polarization, DInSAR, Freeman-Durden, polarimetry, Radarsat-2

Procedia PDF Downloads 137
543 Managing Pseudoangiomatous Stromal Hyperplasia Appropriately and Safely: A Retrospective Case Series Review

Authors: C. M. Williams, R. English, P. King, I. M. Brown

Abstract:

Introduction: Pseudoangiomatous Stromal Hyperplasia (PASH) is a benign fibrous proliferation of breast stroma affecting predominantly premenopausal women with no significant increased risk of breast cancer. Informal recommendations for management have continued to evolve over recent years from surgical excision to observation, although there are no specific national guidelines. This study assesses the safety of a non-surgical approach to PASH management by review of cases at a single centre. Methods: Retrospective case series review (January 2011 – August 2016) was conducted on consecutive PASH cases. Diagnostic classification (clinical, radiological and histological), management outcomes, and breast cancer incidence were recorded. Results: 43 patients were followed up for median of 25 months (3-64) with 75% symptomatic at presentation. 12% of cases (n=5) had a radiological score (BIRADS MMG or US) ≥ 4 of which 3 were confirmed malignant. One further malignancy was detected and proven radiologically occult and contralateral. No patients were diagnosed with a malignancy during follow-up. Treatment evolved from 67% surgical in 2011 to 33% in 2016. Conclusions: The management of PASH has transitioned in line with other published experience. The preliminary findings suggest this appears safe with no evidence of missed malignancies; however, longer follow up is required to confirm long-term safety. Recommendations: PASH with suspicious radiological findings ( ≥ U4/R4) warrants multidisciplinary discussion for excision. In the absence of histological or radiological suspicion of malignancy, PASH can be safely managed without surgery.

Keywords: benign breast disease, conservative management, malignancy, pseudoangiomatous stromal hyperplasia, surgical excision

Procedia PDF Downloads 132
542 Techno Economic Analysis for Solar PV and Hydro Power for Kafue Gorge Power Station

Authors: Elvis Nyirenda

Abstract:

This research study work was done to evaluate and propose an optimum measure to enhance the uptake of clean energy technologies such as solar photovoltaics, the study also aims at enhancing the country’s energy mix from the overdependence on hydro power which is susceptible to droughts and climate change challenges The country in the years 2015 - 2016 and 2018 - 2019 had received rainfall below average due to climate change and a shift in the weather pattern; this resulted in prolonged power outages and load shedding for more than 10 hours per day. ZESCO Limited, the utility company that owns infrastructure in the generation, transmission, and distribution of electricity (state-owned), is seeking alternative sources of energy in order to reduce the over-dependence on hydropower stations. One of the alternative sources of energy is Solar Energy from the sun. However, solar power is intermittent in nature and to smoothen the load curve, investment in robust energy storage facilities is of great importance to enhance security and reliability of electricity supply in the country. The methodology of the study looked at the historical performance of the Kafue gorge upper power station and utilised the hourly generation figures as input data for generation modelling in Homer software. The average yearly demand was derived from the available data on the system SCADA. The two dams were modelled as natural battery with the absolute state of charging and discharging determined by the available water resource and the peak electricity demand. The software Homer Energy System is used to simulate the scheme incorporating a pumped storage facility and Solar photovoltaic systems. The pumped hydro scheme works like a natural battery for the conservation of water, with the only losses being evaporation and water leakages from the dams and the turbines. To address the problem of intermittency on the solar resource and the non-availability of water for hydropower generation, the study concluded that utilising the existing Hydro power stations, Kafue Gorge upper and Kafue Gorge Lower to work conjunctively with Solar energy will reduce power deficits and increase the security of supply for the country. An optimum capacity of 350MW of solar PV can be integrated while operating Kafue Gorge power station in both generating and pumping mode to enable efficient utilisation of water at Kafue Gorge upper Dam and Kafue Gorge Lower dam.

Keywords: hydropower, solar power systems, energy storage, photovoltaics, solar irradiation, pumped hydro storage system, supervisory control and data acquisition, Homer energy

Procedia PDF Downloads 117
541 A Comparative Study of Dengue Fever in Taiwan and Singapore Based on Open Data

Authors: Wei Wen Yang, Emily Chia Yu Su

Abstract:

Dengue fever is a mosquito-borne tropical infectious disease caused by the dengue virus. After infection, symptoms usually start from three to fourteen days. Dengue virus may cause a high fever and at least two of the following symptoms, severe headache, severe eye pain, joint pains, muscle or bone pain, vomiting, feature skin rash, and mild bleeding manifestation. In addition, recovery will take at least two to seven days. Dengue fever has rapidly spread in tropical and subtropical areas in recent years. Several phenomena around the world such as global warming, urbanization, and international travel are the main reasons in boosting the spread of dengue. In Taiwan, epidemics occur annually, especially during summer and fall seasons. On the other side, Singapore government also has announced the amounts number of dengue cases spreading in Singapore. As the serious epidemic of dengue fever outbreaks in Taiwan and Singapore, countries around the Asia-Pacific region are becoming high risks of susceptible to the outbreaks and local hub of spreading the virus. To improve public safety and public health issues, firstly, we are going to use Microsoft Excel and SAS EG to do data preprocessing. Secondly, using support vector machines and decision trees builds predict model, and analyzes the infectious cases between Taiwan and Singapore. By comparing different factors causing vector mosquito from model classification and regression, we can find similar spreading patterns where the disease occurred most frequently. The result can provide sufficient information to predict the future dengue infection outbreaks and control the diffusion of dengue fever among countries.

Keywords: dengue fever, Taiwan, Singapore, Aedes aegypti

Procedia PDF Downloads 234
540 An Extensive Review of Drought Indices

Authors: Shamsulhaq Amin

Abstract:

Drought can arise from several hydrometeorological phenomena that result in insufficient precipitation, soil moisture, and surface and groundwater flow, leading to conditions that are considerably drier than the usual water content or availability. Drought is often assessed using indices that are associated with meteorological, agricultural, and hydrological phenomena. In order to effectively handle drought disasters, it is essential to accurately determine the kind, intensity, and extent of the drought using drought characterization. This information is critical for managing the drought before, during, and after the rehabilitation process. Over a hundred drought assessments have been created in literature to evaluate drought disasters, encompassing a range of factors and variables. Some models utilise solely hydrometeorological drivers, while others employ remote sensing technology, and some incorporate a combination of both. Comprehending the entire notion of drought and taking into account drought indices along with their calculation processes are crucial for researchers in this discipline. Examining several drought metrics in different studies requires additional time and concentration. Hence, it is crucial to conduct a thorough examination of approaches used in drought indices in order to identify the most straightforward approach to avoid any discrepancies in numerous scientific studies. In case of practical application in real-world, categorizing indices relative to their usage in meteorological, agricultural, and hydrological phenomena might help researchers maximize their efficiency. Users have the ability to explore different indexes at the same time, allowing them to compare the convenience of use and evaluate the benefits and drawbacks of each. Moreover, certain indices exhibit interdependence, which enhances comprehension of their connections and assists in making informed decisions about their suitability in various scenarios. This study provides a comprehensive assessment of various drought indices, analysing their types and computation methodologies in a detailed and systematic manner.

Keywords: drought classification, drought severity, drought indices, agriculture, hydrological

Procedia PDF Downloads 41
539 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 161
538 The Relationship of Socioeconomic Status and Levels of Delinquency among Senior High School Students with Secured Attachment to Their Mothers

Authors: Aldrin Avergas, Quennie Mariel Peñaranda, Niña Karen San Miguel, Alexis Katrina Agustin, Peralta Xusha Mae, Maria Luisa Sison

Abstract:

The research is entitled “The Relationship of Socioeconomic Status and Levels of Delinquency among Senior High School Students with Secured Attachment to their Mothers”. The researchers had explored the relationship between socioeconomic status and delinquent tendencies among grade 11 students. The objective of the research is to discover if delinquent behavior will have a relationship with the current socio-economic status of an adolescent student having a warm relationship with their mothers. The researchers utilized three questionnaires that would measure the three variables of the study, namely: (1) 1SEC 2012: The New Philippines Socioeconomic Classification System was used to show the current socioeconomic status of the respondents, (2) Self-Reported Delinquency – Problem Behavior Frequency Scale was utilized to determine the individual's frequency in engaging to delinquent behavior, and (3) Inventory of Parent and Peer Attachment Revised (IPPA-R) was used to determine the attachment style of the respondents. The researchers utilized a quantitative research design, specifically correlation research. The study concluded that there is no significant relationship between socioeconomic status and academic delinquency despite the fact that these participants had secured attachment to their mother hence this research implies that delinquency is not just a problem for students belonging in the lower socio-economic status and that even having a warm and close relationship with their mothers is not sufficient enough for these students to completely be free from engaging in delinquent acts. There must be other factors (such as peer pressure, emotional quotient, self-esteem or etc.) that are might be contributing to delinquent behaviors.

Keywords: adolescents, delinquency, high school students, secured attachment style, socioeconomic status

Procedia PDF Downloads 186
537 Unlocking the Genetic Code: Exploring the Potential of DNA Barcoding for Biodiversity Assessment

Authors: Mohammed Ahmed Ahmed Odah

Abstract:

DNA barcoding is a crucial method for assessing and monitoring species diversity amidst escalating threats to global biodiversity. The author explores DNA barcoding's potential as a robust and reliable tool for biodiversity assessment. It begins with a comprehensive review of existing literature, delving into the theoretical foundations, methodologies and applications of DNA barcoding. The suitability of various DNA regions, like the COI gene, as universal barcodes is extensively investigated. Additionally, the advantages and limitations of different DNA sequencing technologies and bioinformatics tools are evaluated within the context of DNA barcoding. To evaluate the efficacy of DNA barcoding, diverse ecosystems, including terrestrial, freshwater and marine habitats, are sampled. Extracted DNA from collected specimens undergoes amplification and sequencing of the target barcode region. Comparison of the obtained DNA sequences with reference databases allows for the identification and classification of the sampled organisms. Findings demonstrate that DNA barcoding accurately identifies species, even in cases where morphological identification proves challenging. Moreover, it sheds light on cryptic and endangered species, aiding conservation efforts. The author also investigates patterns of genetic diversity and evolutionary relationships among different taxa through the analysis of genetic data. This research contributes to the growing knowledge of DNA barcoding and its applicability for biodiversity assessment. The advantages of this approach, such as speed, accuracy and cost-effectiveness, are highlighted, along with areas for improvement. By unlocking the genetic code, DNA barcoding enhances our understanding of biodiversity, supports conservation initiatives and informs evidence-based decision-making for the sustainable management of ecosystems.

Keywords: DNA barcoding, biodiversity assessment, genetic code, species identification, taxonomic resolution, next-generation sequencing

Procedia PDF Downloads 24
536 Management of Interdependence in Manufacturing Networks

Authors: Atour Taghipour

Abstract:

In the real world each manufacturing company is an independent business unit. These business units are linked to each other through upstream and downstream linkages. The management of these linkages is called coordination which, could be considered as a difficult engineering task. The degree of difficulty of coordination depends on the type and the nature of information exchanged between partners as well as the structure of relationship from mutual to the network structure. The literature of manufacturing systems comprises a wide range of varieties of methods and approaches of coordination. In fact, two main streams of research can be distinguished: central coordination versus decentralized coordination. In the centralized systems a high degree of information exchanges is required. The high degree of information exchanges sometimes leads to difficulties when independent members do not want to share information. In order to address these difficulties, decentralized approaches of coordination of operations planning decisions based on some minimal information sharing have been proposed in many academic disciplines. This paper first proposes a framework of analysis in order to analyze the proposed approaches in the literature, based on this framework which includes the similarities between approaches we categorize the existing approaches. This classification can be used as a research map for future researches. The result of our paper highlights several opportunities for future research. First, it is proposed to develop more dynamic and stochastic mechanisms of planning coordination of manufacturing units. Second, in order to exploit the complementarities of approaches proposed by diverse science discipline, we propose to integrate the techniques of coordination. Finally, based on our approach we proposed to develop coordination standards to guaranty both the complementarity of these approaches as well as the freedom of companies to adopt any planning tools.

Keywords: network coordination, manufacturing, operations planning, supply chain

Procedia PDF Downloads 281
535 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 181
534 An Introduction to Giulia Annalinda Neglia Viewpoint on Morphology of the Islamic City Using Written Content Analysis Approach

Authors: Mohammad Saber Eslamlou

Abstract:

Morphology of Islamic cities has been extensively studied by researchers of Islamic cities and different theories could be found about it. In this regard, there exist much difference in method of analysis, classification, recognition, confrontation and comparative method of urban morphology. The present paper aims to examine the previous methods, approaches and insights and that how Dr. Giulia Annalinda Neglia dealt with the analysis of morphology of Islamic cities. Neglia is assistant professor in University of Bari, Italy (UNIBA) who has published numerous papers and books on Islamic cities. I introduce her works in the field of morphology of Islamic cities. And then, her thoughts, insights and research methodologies are presented and analyzed in critical perspective. This is a qualitative research on her written works, which have been classified in three major categories. The first category consists mainly of her works on morphology and physical shape of Islamic cities. The results of her works’ review suggest that she has used Moratoria typology in investigating morphology of Islamic cities. Moreover, overall structure of the cities under investigation is often described linear; however, she’s against to define a single framework for the recognition of morphology in Islamic cities. She states that ‘to understand the physical complexity and irregularities in Islamic cities, it is necessary to study the urban fabric by typology method, focusing on transformation processes of the buildings’ form and their surrounding open spaces’ and she believes that fabric of each region in the city follows from the principles of an specific period or urban pattern, in particular, Hellenistic and Roman structures. Furthermore, she believes that it is impossible to understand the morphology of a city without taking into account the obvious and hidden developments associated with it, because form of building and their surrounding open spaces are written history of the city.

Keywords: city, Islamic city, Giulia Annalinda Neglia, morphology

Procedia PDF Downloads 97
533 An Integrated Label Propagation Network for Structural Condition Assessment

Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong

Abstract:

Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.

Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation

Procedia PDF Downloads 97
532 Architectural Adaptation for Road Humps Detection in Adverse Light Scenario

Authors: Padmini S. Navalgund, Manasi Naik, Ujwala Patil

Abstract:

Road hump is a semi-cylindrical elevation on the road made across specific locations of the road. The vehicle needs to maneuver the hump by reducing the speed to avoid car damage and pass over the road hump safely. Road Humps on road surfaces, if identified in advance, help to maintain the security and stability of vehicles, especially in adverse visibility conditions, viz. night scenarios. We have proposed a deep learning architecture adaptation by implementing the MISH activation function and developing a new classification loss function called "Effective Focal Loss" for Indian road humps detection in adverse light scenarios. We captured images comprising of marked and unmarked road humps from two different types of cameras across South India to build a heterogeneous dataset. A heterogeneous dataset enabled the algorithm to train and improve the accuracy of detection. The images were pre-processed, annotated for two classes viz, marked hump and unmarked hump. The dataset from these images was used to train the single-stage object detection algorithm. We utilised an algorithm to synthetically generate reduced visible road humps scenarios. We observed that our proposed framework effectively detected the marked and unmarked hump in the images in clear and ad-verse light environments. This architectural adaptation sets up an option for early detection of Indian road humps in reduced visibility conditions, thereby enhancing the autonomous driving technology to handle a wider range of real-world scenarios.

Keywords: Indian road hump, reduced visibility condition, low light condition, adverse light condition, marked hump, unmarked hump, YOLOv9

Procedia PDF Downloads 24
531 Identification of Clay Mineral for Determining Reservoir Maturity Levels Based on Petrographic Analysis, X-Ray Diffraction and Porosity Test on Penosogan Formation Karangsambung Sub-District Kebumen Regency Central Java

Authors: Ayu Dwi Hardiyanti, Bernardus Anggit Winahyu, I. Gusti Agung Ayu Sugita Sari, Lestari Sutra Simamora, I. Wayan Warmada

Abstract:

The Penosogan Formation sandstone, that has Middle Miosen age, has been deemed as a reservoir potential based on sample data from sandstone outcrop in Kebakalan and Kedawung villages, Karangsambung sub-district, Kebumen Regency, Central Java. This research employs the following analytical methods; petrography, X-ray diffraction (XRD), and porosity test. Based on the presence of micritic sandstone, muddy micrite, and muddy sandstone, the Penosogan Formation sandstone has a fine-coarse granular size and middle-to-fine sorting. The composition of the sandstone is mostly made up of plagioclase, skeletal grain, and traces of micrite. The percentage of clay minerals based on petrographic analysis is 10% and appears to envelop grain, resulting enveloping grain which reduces the porosity of rocks. The porosity types as follows: interparticle, vuggy, channel, and shelter, with an equant form of cement. Moreover, the diagenesis process involves compaction, cementation, authigenic mineral growth, and dissolving due to feldspar alteration. The maturity of the reservoir can be seen through the X-ray diffraction analysis results, using ethylene glycol solution for clay minerals fraction transformed from smectite–illite. Porosity test analysis showed that the Penosogan Formation sandstones has a porosity value of 22% based on the Koeseomadinata classification, 1980. That shows high maturity is very influential for the quality of reservoirs sandstone of the Penosogan Formation.

Keywords: sandstone reservoir, Penosogan Formation, smectite, XRD

Procedia PDF Downloads 174
530 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature

Authors: Kibrom Hadush

Abstract:

Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.

Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature

Procedia PDF Downloads 141
529 Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test

Authors: S. Abdi Goudazri, R. Ziaie Moayed, A. Nazeri

Abstract:

Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.

Keywords: geosynthetics, geogrid, geotextile, CBR test, increasing bearing capacity

Procedia PDF Downloads 110
528 Carbon Based Classification of Aquaporin Proteins: A New Proposal

Authors: Parul Johri, Mala Trivedi

Abstract:

Major Intrinsic proteins (MIPs), actively involved in the passive transport of small polar molecules across the membranes of almost all living organisms. MIPs that specifically transport water molecules are named aquaporins (AQPs). The permeability of membranes is actively controlled by the regulation of the amount of different MIPs present but also in some cases by phosphorylation and dephosphorylation of the channel. Based on sequence similarity, MIPs have been classified into many categories. All of the proteins are made up of the 20 amino acids, the only difference is there in their orientations. Again all the 20 amino acids are made up of the basic five elements namely: carbon, hydrogen, oxygen, sulphur and nitrogen. These elements are responsible for giving the amino acids the properties of hydrophilicity/hydrophobicity which play an important role in protein interactions. The hydrophobic amino acids characteristically have greater number of carbon atoms as carbon is the main element which contributes to hydrophobic interactions in proteins. It is observed that the carbon level of proteins in different species is different. In the present work, we have taken a sample set of 150 aquaporins proteins from Uniprot database and a dynamic programming code was written to calculate the carbon percentage for each sequence. This carbon percentage was further used to barcode the aqauporins of animals and plants. The protein taken from Oryza sativa, Zea mays and Arabidopsis thaliana preferred to have carbon percentage of 31.8 to 35, whereas on the other hand sequences taken from Mus musculus, Saccharomyces cerevisiae, Homo sapiens, Bos Taurus, and Rattus norvegicus preferred to have carbon percentage of 31 to 33.7. This clearly demarks the carbon range in the aquaporin proteins from plant and animal origin. Hence the atom level analysis of protein sequences can provide us with better results as compared to the residue level comparison.

Keywords: aquaporins, carbon, dynamic prgramming, MIPs

Procedia PDF Downloads 369
527 Efficiency of Different Types of Addition onto the Hydration Kinetics of Portland Cement

Authors: Marine Regnier, Pascal Bost, Matthieu Horgnies

Abstract:

Some of the problems to be solved for the concrete industry are linked to the use of low-reactivity cement, the hardening of concrete under cold-weather and the manufacture of pre-casted concrete without costly heating step. The development of these applications needs to accelerate the hydration kinetics, in order to decrease the setting time and to obtain significant compressive strengths as soon as possible. The mechanisms enhancing the hydration kinetics of alite or Portland cement (e.g. the creation of nucleation sites) were already studied in literature (e.g. by using distinct additions such as titanium dioxide nanoparticles, calcium carbonate fillers, water-soluble polymers, C-S-H, etc.). However, the goal of this study was to establish a clear ranking of the efficiency of several types of additions by using a robust and reproducible methodology based on isothermal calorimetry (performed at 20°C). The cement was a CEM I 52.5N PM-ES (Blaine fineness of 455 m²/kg). To ensure the reproducibility of the experiments and avoid any decrease of the reactivity before use, the cement was stored in waterproof and sealed bags to avoid any contact with moisture and carbon dioxide. The experiments were performed on Portland cement pastes by using a water-to-cement ratio of 0.45, and incorporating different compounds (industrially available or laboratory-synthesized) that were selected according to their main composition and their specific surface area (SSA, calculated using the Brunauer-Emmett-Teller (BET) model and nitrogen adsorption isotherms performed at 77K). The intrinsic effects of (i) dry powders (e.g. fumed silica, activated charcoal, nano-precipitates of calcium carbonate, afwillite germs, nanoparticles of iron and iron oxides , etc.), and (ii) aqueous solutions (e.g. containing calcium chloride, hydrated Portland cement or Master X-SEED 100, etc.) were investigated. The influence of the amount of addition, calculated relatively to the dry extract of each addition compared to cement (and by conserving the same water-to-cement ratio) was also studied. The results demonstrated that the X-SEED®, the hydrated calcium nitrate, the calcium chloride (and, at a minor level, a solution of hydrated Portland cement) were able to accelerate the hydration kinetics of Portland cement, even at low concentration (e.g. 1%wt. of dry extract compared to cement). By using higher rates of additions, the fumed silica, the precipitated calcium carbonate and the titanium dioxide can also accelerate the hydration. In the case of the nano-precipitates of calcium carbonate, a correlation was established between the SSA and the accelerating effect. On the contrary, the nanoparticles of iron or iron oxides, the activated charcoal and the dried crystallised hydrates did not show any accelerating effect. Future experiments will be scheduled to establish the ranking of these additions, in terms of accelerating effect, by using low-reactivity cements and other water to cement ratios.

Keywords: acceleration, hydration kinetics, isothermal calorimetry, Portland cement

Procedia PDF Downloads 257
526 Accessibility Analysis of Urban Green Space in Zadar Settlement, Croatia

Authors: Silvija Šiljeg, Ivan Marić, Ante Šiljeg

Abstract:

The accessibility of urban green spaces (UGS) is an integral element in the quality of life. Due to rapid urbanization, UGS studies have become a key element in urban planning. The potential benefits of space for its inhabitants are frequently analysed. A functional transport network system and the optimal spatial distribution of urban green surfaces are the prerequisites for maintaining the environmental equilibrium of the urban landscape. An accessibility analysis was conducted as part of the Urban Green Belts Project (UGB). The development of a GIS database for Zadar was the first step in generating the UGS accessibility indicator. Data were collected using the supervised classification method of multispectral LANDSAT images and manual vectorization of digital orthophoto images (DOF). An analysis of UGS accessibility according to the ANGst standard was conducted in the first phase of research. The accessibility indicator was generated on the basis of seven objective measurements, which included average UGS surface per capita and accessibility according to six functional levels of green surfaces. The generated indicator was compared with subjective measurements obtained by conducting a survey (718 respondents) within statistical units. The collected data reflected individual assessments and subjective evaluations of UGS accessibility. This study highlighted the importance of using objective and subjective measures in the process of understanding the accessibility of urban green surfaces. It may be concluded that when evaluating UGS accessibility, residents emphasize the immediate residential environment, ignoring higher UGS functional levels. It was also concluded that large areas of UGS within a city do not necessarily generate similar satisfaction with accessibility. The heterogeneity of output results may serve as guidelines for the further development of a functional UGS city network.

Keywords: urban green spaces (UGS), accessibility indicator, subjective and objective measurements, Zadar

Procedia PDF Downloads 259
525 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 100
524 Aerosol Characterization in a Coastal Urban Area in Rimini, Italy

Authors: Dimitri Bacco, Arianna Trentini, Fabiana Scotto, Flavio Rovere, Daniele Foscoli, Cinzia Para, Paolo Veronesi, Silvia Sandrini, Claudia Zigola, Michela Comandini, Marilena Montalti, Marco Zamagni, Vanes Poluzzi

Abstract:

The Po Valley, in the north of Italy, is one of the most polluted areas in Europe. The air quality of the area is linked not only to anthropic activities but also to its geographical characteristics and stagnant weather conditions with frequent inversions, especially in the cold season. Even the coastal areas present high values of particulate matter (PM10 and PM2.5) because the area closed between the Adriatic Sea and the Apennines does not favor the dispersion of air pollutants. The aim of the present work was to identify the main sources of particulate matter in Rimini, a tourist city in northern Italy. Two sampling campaigns were carried out in 2018, one in winter (60 days) and one in summer (30 days), in 4 sites: an urban background, a city hotspot, a suburban background, and a rural background. The samples are characterized by the concentration of the ionic composition of the particulates and of the main a hydro-sugars, in particular levoglucosan, a marker of the biomass burning, because one of the most important anthropogenic sources in the area, both in the winter and surprisingly even in the summer, is the biomass burning. Furthermore, three sampling points were chosen in order to maximize the contribution of a specific biomass source: a point in a residential area (domestic cooking and domestic heating), a point in the agricultural area (weed fires), and a point in the tourist area (restaurant cooking). In these sites, the analyzes were enriched with the quantification of the carbonaceous component (organic and elemental carbon) and with measurement of the particle number concentration and aerosol size distribution (6 - 600 nm). The results showed a very significant impact of the combustion of biomass due to domestic heating in the winter period, even though many intense peaks were found attributable to episodic wood fires. In the summer season, however, an appreciable signal was measured linked to the combustion of biomass, although much less intense than in winter, attributable to domestic cooking activities. Further interesting results were the verification of the total absence of sea salt's contribution in the particulate with the lower diameter (PM2.5), and while in the PM10, the contribution becomes appreciable only in particular wind conditions (high wind from north, north-east). Finally, it is interesting to note that in a small town, like Rimini, in summer, the traffic source seems to be even more relevant than that measured in a much larger city (Bologna) due to tourism.

Keywords: aerosol, biomass burning, seacoast, urban area

Procedia PDF Downloads 128
523 Mental Disorders and Physical Illness in Geriatric Population

Authors: Vinay Kumar, M. Kishor, Sathyanarayana Rao Ts

Abstract:

Background: Growth of elderly people in the general population in recent years is termed as ‘greying of the world’ where there is a shift from high mortality & fertility to low mortality and fertility, resulting in an increased proportion of older people as seen in India. Improved health care promises longevity but socio-economic factors like poverty, joint families and poor services pose a psychological threat. Epidemiological data regarding the prevalence of mental disorders in geriatric population with physical illness is required for proper health planning. Methods: Sixty consecutive elderly patients aged 60 years or above of both sexes, reporting with physical illness to general outpatient registration counter of JSS Medical College and Hospital, Mysore, India, were considered for the Study. With informed consent, they were screened with General Health Questionnaire (GHQ-12) and were further evaluated for diagnosing mental disorders according to WHO International Classification of Diseases (ICD-10) criteria. Results: Mental disorders were detected in 48.3%, predominantly depressive disorders, nicotine dependence, generalized anxiety disorder, alcohol dependence and least was dementia. Most common physical illness was cardiovascular disease followed by metabolic, respiratory and other diseases. Depressive disorders, substance dependence and dementia were more associated with cardiovascular disease compared to metabolic disease and respiratory diseases were more associated with nicotine dependence. Conclusions: Depression and Substance use disorders among elderly population is of concern, which needs to be further studied with larger population. Psychiatric morbidity will adversely have an impact on physical illness which needs proper assessment and management. This will enhance our understanding and prioritize our planning for future.

Keywords: Geriatric, mental disorders, physical illness, psychiatry

Procedia PDF Downloads 286
522 Using ANN in Emergency Reconstruction Projects Post Disaster

Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir

Abstract:

Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.

Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management

Procedia PDF Downloads 165
521 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation

Procedia PDF Downloads 348
520 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma

Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren

Abstract:

We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.

Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values

Procedia PDF Downloads 154
519 Crude Glycerol Affects Canine Spermatoa Motility: Computer Assister Semen Analysis in Vitro

Authors: P. Massanyi, L. Kichi, T. Slanina, E. Kolesar, J. Danko, N. Lukac, E. Tvrda, R. Stawarz, A. Kolesarova

Abstract:

Target of this study was the analysis of the impact of crude glycerol on canine spermatozoa motility, morphology, viability, and membrane integrity. Experiments were realized in vitro. In the study, semen from 5 large dog breeds was used. They were typical representatives of large breeds, coming from healthy rearing, regularly vaccinated and integrated to the further breeding. Semen collections were realized at the owners of animals and in the veterinary clinic. Subsequently the experiments were realized at the Department of Animal Physiology of the SUA in Nitra. The spermatozoa motility was evaluated using CASA analyzer (SpermVisionTM, Minitub, Germany) at the temperature 5 and 37°C for 5 hours. In the study, 13 motility parameters were evaluated. Generally, crude glycerol has generally negative effect on spermatozoa motility. Morphological analysis was realized using Hancock staining and the preparations were evaluated at magnification 1000x using classification tables of morphologically changed spermatozoa. Data clearly detected the highest number of morphologically changed spermatozoa in the experimental groups (know twisted tails, tail torso and tail coiling). For acrosome alterations swelled acrosomes, removed acrosomes and acrosomes with undulated membrane were detected. In this study also the effect of crude glycerol on spermatozoa membrane integrity were analyzed. The highest crude glycerol concentration significantly affects spermatozoa integrity. Results of this study show that crude glycerol has effect of spermatozoa motility, viability, and membrane integrity. Detected changes are related to crude glycerol concentration, temperature, as well as time of incubation.

Keywords: dog, semen, spermatozoa, acrosome, glycerol, CASA, viability

Procedia PDF Downloads 319