Search results for: tightly coupled memory
331 Optimization of Artisanal Fishing Waste Fermentation for Volatile Fatty Acids Production
Authors: Luz Stella Cadavid-Rodriguez, Viviana E. Castro-Lopez
Abstract:
Fish waste (FW) has a high content of potentially biodegradable components, so it is amenable to be digested anaerobically. In this line, anaerobic digestion (AD) of FW has been studied for biogas production. Nevertheless, intermediate products such as volatile fatty acids (VFA), generated during the acidogenic stage, have been scarce investigated, even though they have a high potential as a renewable source of carbon. In the literature, there are few studies about the Inoculum-Substrate (I/S) ratio on acidogenesis. On the other hand, it is well known that pH is a critical factor in the production of VFA. The optimum pH for the production of VFA seems to change depending on the substrate and can vary in a range between 5.25 and 11. Nonetheless, the literature about VFA production from protein-rich waste, such as FW, is scarce. In this context, it is necessary to deepen on the determination of the optimal operating conditions of acidogenic fermentation for VFA production from protein-rich waste. Therefore, the aim of this research was to optimize the volatile fatty acid production from artisanal fishing waste, studying the effect of pH and the I/S ratio on the acidogenic process. For this research, the inoculum used was a methanogenic sludge (MS) obtained from a UASB reactor treating wastewater of a slaughterhouse plant, and the FW was collected in the port of Tumaco (Colombia) from the local artisanal fishers. The acidogenic fermentation experiments were conducted in batch mode, in 500 mL glass bottles as anaerobic reactors, equipped with rubber stoppers provided with a valve to release biogas. The effective volume used was 300 mL. The experiments were carried out for 15 days at a mesophilic temperature of 37± 2 °C and constant agitation of 200 rpm. The effect of 3 pH levels: 5, 7, 9, coupled with five I/S ratios, corresponding to 0.20, 0.15, 0.10, 0.05, 0.00 was evaluated taking as a response variable the production of VFA. A complete randomized block design was selected for the experiments in a 5x3 factorial arrangement, with two repetitions per treatment. At the beginning and during the process, pH in the experimental reactors was adjusted to the corresponding values of 5, 7, and 9 using 1M NaOH or 1M H2SO4, as was appropriated. In addition, once the optimum I/S ratio was determined, the process was evaluated at this condition without pH control. The results indicated that pH is the main factor in the production of VFA, obtaining the highest concentration with neutral pH. By reducing the I/S ratio, as low as 0.05, it was possible to maximize VFA production. Thus, the optimum conditions found were natural pH (6.6-7.7) and I/S ratio of 0.05, with which it was possible to reach a maximum total VFA concentration of 70.3 g Ac/L, whose major components were acetic acid (35%) and butyric acid (32%). The findings showed that the acidogenic fermentation of FW is an efficient way of producing VFA and that the operating conditions can be simple and economical.Keywords: acidogenesis, artisanal fishing waste, inoculum to substrate ratio, volatile fatty acids
Procedia PDF Downloads 125330 Investigating the Impact of Task Demand and Duration on Passage of Time Judgements and Duration Estimates
Authors: Jesika A. Walker, Mohammed Aswad, Guy Lacroix, Denis Cousineau
Abstract:
There is a fundamental disconnect between the experience of time passing and the chronometric units by which time is quantified. Specifically, there appears to be no relationship between the passage of time judgments (PoTJs) and verbal duration estimates at short durations (e.g., < 2000 milliseconds). When a duration is longer than several minutes, however, evidence suggests that a slower feeling of time passing is predictive of overestimation. Might the length of a task moderate the relation between PoTJs and duration estimates? Similarly, the estimation paradigm (prospective vs. retrospective) and the mental effort demanded of a task (task demand) have both been found to influence duration estimates. However, only a handful of experiments have investigated these effects for tasks of long durations, and the results have been mixed. Thus, might the length of a task also moderate the effects of the estimation paradigm and task demand on duration estimates? To investigate these questions, 273 participants performed either an easy or difficult visual and memory search task for either eight or 58 minutes, under prospective or retrospective instructions. Afterward, participants provided a duration estimate in minutes, followed by a PoTJ on a Likert scale (1 = very slow, 7 = very fast). A 2 (prospective vs. retrospective) × 2 (eight minutes vs. 58 minutes) × 2 (high vs. low difficulty) between-subjects ANOVA revealed a two-way interaction between task demand and task duration on PoTJs, p = .02. Specifically, time felt faster in the more challenging task, but only in the eight-minute condition, p < .01. Duration estimates were transformed into RATIOs (estimate/actual duration) to standardize estimates across durations. An ANOVA revealed a two-way interaction between estimation paradigm and task duration, p = .03. Specifically, participants overestimated the task more if they were given prospective instructions, but only in the eight-minute task. Surprisingly, there was no effect of task difficulty on duration estimates. Thus, the demands of a task may influence ‘feeling of time’ and ‘estimation time’ differently, contributing to the existing theory that these two forms of time judgement rely on separate underlying cognitive mechanisms. Finally, a significant main effect of task duration was found for both PoTJs and duration estimates (ps < .001). Participants underestimated the 58-minute task (m = 42.5 minutes) and overestimated the eight-minute task (m = 10.7 minutes). Yet, they reported the 58-minute task as passing significantly slower on a Likert scale (m = 2.5) compared to the eight-minute task (m = 4.1). In fact, a significant correlation was found between PoTJ and duration estimation (r = .27, p <.001). This experiment thus provides evidence for a compensatory effect at longer durations, in which people underestimate a ‘slow feeling condition and overestimate a ‘fast feeling condition. The results are discussed in relation to heuristics that might alter the relationship between these two variables when conditions range from several minutes up to almost an hour.Keywords: duration estimates, long durations, passage of time judgements, task demands
Procedia PDF Downloads 130329 Maternal Exposure to Bisphenol A and Its Association with Birth Outcomes
Authors: Yi-Ting Chen, Yu-Fang Huang, Pei-Wei Wang, Hai-Wei Liang, Chun-Hao Lai, Mei-Lien Chen
Abstract:
Background: Bisphenol A (BPA) is commonly used in consumer products, such as inner coatings of cans and polycarbonated bottles. BPA is considered to be an endocrine disrupting substance (EDs) that affects normal human hormones and may cause adverse effects on human health. Pregnant women and fetuses are susceptible groups of endocrine disrupting substances. Prenatal exposure to BPA has been shown to affect the fetus through the placenta. Therefore, it is important to evaluate the potential health risk of fetal exposure to BPA during pregnancy. The aims of this study were (1) to determine the urinary concentration of BPA in pregnant women, and (2) to investigate the association between BPA exposure during pregnancy and birth outcomes. Methods: This study recruited 117 pregnant women and their fetuses from 2012 to 2014 from the Taiwan Maternal- Infant Cohort Study (TMICS). Maternal urine samples were collected in the third trimester and questionnaires were used to collect socio-demographic characteristics, eating habits and medical conditions of the participants. Information about birth outcomes of the fetus was obtained from medical records. As for chemicals analysis, BPA concentrations in urine were determined by off-line solid-phase extraction-ultra-performance liquid chromatography coupled with a Q-Tof mass spectrometer. The urinary concentrations were adjusted with creatinine. The association between maternal concentrations of BPA and birth outcomes was estimated using the logistic regression model. Results: The detection rate of BPA is 99%; the concentration ranges (μg/g) from 0.16 to 46.90. The mean (SD) BPA levels are 5.37(6.42) μg/g creatinine. The mean ±SD of the body weight, body length, head circumference, chest circumference and gestational age at birth are 3105.18 ± 339.53 g, 49.33 ± 1.90 cm, 34.16 ± 1.06 cm, 32.34 ± 1.37 cm and 38.58 ± 1.37 weeks, respectively. After stratifying the exposure levels into two groups by median, pregnant women in higher exposure group would have an increased risk of lower body weight (OR=0.57, 95%CI=0.271-1.193), smaller chest circumference (OR=0.70, 95%CI=0.335-1.47) and shorter gestational age at birth newborn (OR=0.46, 95%CI=0.191-1.114). However, there are no associations between BPA concentration and birth outcomes reach a significant level (p < 0.05) in statistics. Conclusions: This study presents prenatal BPA profiles and infants in northern Taiwan. Women who have higher BPA concentrations tend to give birth to lower body weight, smaller chest circumference or shorter gestational age at birth newborn. More data will be included to verify the results. This report will also present the predictors of BPA concentrations for pregnant women.Keywords: bisphenol A, birth outcomes, biomonitoring, prenatal exposure
Procedia PDF Downloads 143328 Interaction between Cognitive Control and Language Processing in Non-Fluent Aphasia
Authors: Izabella Szollosi, Klara Marton
Abstract:
Aphasia can be defined as a weakness in accessing linguistic information. Accessing linguistic information is strongly related to information processing, which in turn is associated with the cognitive control system. According to the literature, a deficit in the cognitive control system interferes with language processing and contributes to non-fluent speech performance. The aim of our study was to explore this hypothesis by investigating how cognitive control interacts with language performance in participants with non-fluent aphasia. Cognitive control is a complex construct that includes working memory (WM) and the ability to resist proactive interference (PI). Based on previous research, we hypothesized that impairments in domain-general (DG) cognitive control abilities have negative effects on language processing. In contrast, better DG cognitive control functioning supports goal-directed behavior in language-related processes as well. Since stroke itself might slow down information processing, it is important to examine its negative effects on both cognitive control and language processing. Participants (N=52) in our study were individuals with non-fluent Broca’s aphasia (N = 13), with transcortical motor aphasia (N=13), individuals with stroke damage without aphasia (N=13), and unimpaired speakers (N = 13). All participants performed various computer-based tasks targeting cognitive control functions such as WM and resistance to PI in both linguistic and non-linguistic domains. Non-linguistic tasks targeted primarily DG functions, while linguistic tasks targeted more domain specific (DS) processes. The results showed that participants with Broca’s aphasia differed from the other three groups in the non-linguistic tasks. They performed significantly worse even in the baseline conditions. In contrast, we found a different performance profile in the linguistic domain, where the control group differed from all three stroke-related groups. The three groups with impairment performed more poorly than the controls but similar to each other in the verbal baseline condition. In the more complex verbal PI condition, however, participants with Broca’s aphasia performed significantly worse than all the other groups. Participants with Broca’s aphasia demonstrated the most severe language impairment and the highest vulnerability in tasks measuring DG cognitive control functions. Results support the notion that the more severe the cognitive control impairment, the more severe the aphasia. Thus, our findings suggest a strong interaction between cognitive control and language. Individuals with the most severe and most general cognitive control deficit - participants with Broca’s aphasia - showed the most severe language impairment. Individuals with better DG cognitive control functions demonstrated better language performance. While all participants with stroke damage showed impaired cognitive control functions in the linguistic domain, participants with better language skills performed also better in tasks that measured non-linguistic cognitive control functions. The overall results indicate that the level of cognitive control deficit interacts with the language functions in individuals along with the language spectrum (from severe to no impairment). However, future research is needed to determine any directionality.Keywords: cognitive control, information processing, language performance, non-fluent aphasia
Procedia PDF Downloads 122327 Economic Efficiency of Cassava Production in Nimba County, Liberia: An Output-Oriented Approach
Authors: Kollie B. Dogba, Willis Oluoch-Kosura, Chepchumba Chumo
Abstract:
In Liberia, many of the agricultural households cultivate cassava for either sustenance purposes, or to generate farm income. Many of the concentrated cassava farmers reside in Nimba, a north-eastern County that borders two other economies: the Republics of Cote D’Ivoire and Guinea. With a high demand for cassava output and products in emerging Asian markets coupled with an objective of the Liberia agriculture policies to increase the competitiveness of valued agriculture crops; there is a need to examine the level of resource-use efficiency for many agriculture crops. However, there is a scarcity of information on the efficiency of many agriculture crops, including cassava. Hence the study applying an output-oriented method seeks to assess the economic efficiency of cassava farmers in Nimba County, Liberia. A multi-stage sampling technique was employed to generate a sample for the study. From 216 cassava farmers, data related to on-farm attributes, socio-economic and institutional factors were collected. The stochastic frontier models, using the Translog functional forms, of production and revenue, were used to determine the level of revenue efficiency and its determinants. The result showed that most of the cassava farmers are male (60%). Many of the farmers are either married, engaged or living together with a spouse (83%), with a mean household size of nine persons. Farmland is prevalently obtained by inheritance (95%), average farm size is 1.34 hectares, and most cassava farmers did not access agriculture credits (76%) and extension services (91%). The mean cassava output per hectare is 1,506.02 kg, which estimates average revenue of L$23,551.16 (Liberian dollars). Empirical results showed that the revenue efficiency of cassava farmers varies from 0.1% to 73.5%; with the mean revenue efficiency of 12.9%. This indicates that on average, there is a vast potential of 87.1% to increase the economic efficiency of cassava farmers in Nimba by improving technical and allocative efficiencies. For the significant determinants of revenue efficiency, age and group membership had negative effects on revenue efficiency of cassava production; while farming experience, access to extension, formal education, and average wage rate have positive effects. The study recommends the setting-up and incentivizing of farmer field schools for cassava farmers to primarily share their farming experiences with others and to learn robust cultivation techniques of sustainable agriculture. Also, farm managers and farmers should consider a fix wage rate in labor contracts for all stages of cassava farming.Keywords: economic efficiency, frontier production and revenue functions, Nimba County, Liberia, output-oriented approach, revenue efficiency, sustainable agriculture
Procedia PDF Downloads 127326 Solid Particles Transport and Deposition Prediction in a Turbulent Impinging Jet Using the Lattice Boltzmann Method and a Probabilistic Model on GPU
Authors: Ali Abdul Kadhim, Fue Lien
Abstract:
Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). In-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This paper proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 lattice, while the particle model employs the D3Q27 lattice. The particle numbers are defined at the same regular LBM nodes, and transport of particles from one node to its neighboring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous models distribute particles at each time step without considering the local velocity and the number of particles at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite the increasing popularity of LBM-MRT-CA model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of each simulation, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-CA algorithm. The methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The present LBM solutions agree well with other results available in the open literature. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The simulations were conducted for L/D=2,4 and 6, where L is the nozzle-to-surface distance and D is the jet diameter. The effect of changing the Stokes number on the particle deposition profile was studied at different L/D ratios. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data is generally good. The present GPU approach achieves a speedup ratio of about 350 against the serial code running on a single CPU.Keywords: CUDA, GPU parallel programming, LES, lattice Boltzmann method, MRT, multi-phase flow, probabilistic model
Procedia PDF Downloads 207325 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend
Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes
Abstract:
This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.Keywords: diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions
Procedia PDF Downloads 350324 Mitigating the Vulnerability of Subsistence Farmers through Ground Water Optimisation
Authors: Olayemi Bakre
Abstract:
The majoritant of the South African rural populace are directly or indirectly engaged in agricultural practices for a livelihood. However, impediments such as the climate change and inadequacy of governmental support has undermined the once thriving subsistence farming communities of South Africa. Furthermore, the poor leadership in hydrology, coupled with lack of depths in skills to facilitate the understanding and acceptance of groundwater from national level to local governance has made it near impossible for subsistence farmers to optimally benefit from the groundwater beneath their feet. The 2012 drought experienced in South Africa paralysed the farming activities across several subsistence farming communities across the KwaZulu-Natal Province. To revamp subsistence farming, a variety of interventions and strategies such as the Resource Poor Farmers (RPF) and Water Allocation Reforms (WAR) have been launched by the Department of Water and Sanitation (DWS) as an agendum to galvanising the defunct subsistence farming communities of KwaZulu-Natal as well as other subsistence farming communities across South Africa. Despite the enormous resources expended on the subsistence farming communities whom often fall under the Historically Disadvantaged Individuals (HDI); indicators such as the unsustainable farming practices, poor crop yield, pitiable living condition as well as the poor standard of living, are evidential to the claim that these afore cited interventions and a host of other similar strategies indicates that these initiatives have not yield the desired result. Thus, this paper seeks to suggest practicable interventions aimed at salvaging the vulnerability of subsistence farmers within the province understudy. The study pursued a qualitative approach as the view of experts on ground water and similarly related fields from the DWS were solicited as an agendum to obtaining in-depth perspective into the current study. Some of the core challenges undermining the sustainability and growth of subsistence farming in the area of study were - inadequacy of experts (engineers, scientist, researchers) in ground water; water shortages; lack of political will as well as lack of coordination among stakeholders. As an agendum to optimising the ground water usage for subsistence farming, this paper advocates the strengthening of geohydrological skills, development of technical training capacity, interactive participation among stakeholders as well as the initiation of Participatory Action Research as an agenda to optimising the available ground water in KwaZulu-Natal which is intended to orchestrate a sustainable and viable subsistence farming practice within the province.Keywords: subsistence farming, ground water optimisation, resource poor farmers, and water allocation reforms, hydrology
Procedia PDF Downloads 247323 The Pioneering Model in Teaching Arabic as a Mother Tongue through Modern Innovative Strategies
Authors: Rima Abu Jaber Bransi, Rawya Jarjoura Burbara
Abstract:
This study deals with two pioneering approaches in teaching Arabic as a mother tongue: first, computerization of literary and functional texts in the mother tongue; second, the pioneering model in teaching writing skills by computerization. The significance of the study lies in its treatment of a serious problem that is faced in the era of technology, which is the widening gap between the pupils and their mother tongue. The innovation in the study is that it introduces modern methods and tools and a pioneering instructional model that turns the process of mother tongue teaching into an effective, meaningful, interesting and motivating experience. In view of the Arabic language diglossia, standard Arabic and spoken Arabic, which constitutes a serious problem to the pupil in understanding unused words, and in order to bridge the gap between the pupils and their mother tongue, we resorted to computerized techniques; we took texts from the pre-Islamic period (Jahiliyya), starting with the Mu'allaqa of Imru' al-Qais and other selected functional texts and computerized them for teaching in an interesting way that saves time and effort, develops high thinking strategies, expands the literary good taste among the pupils, and gives the text added values that neither the book, the blackboard, the teacher nor the worksheets provide. On the other hand, we have developed a pioneering computerized model that aims to develop the pupil's ability to think, to provide his imagination with the elements of growth, invention and connection, and motivate him to be creative, and raise level of his scores and scholastic achievements. The model consists of four basic stages in teaching according to the following order: 1. The Preparatory stage, 2. The reading comprehension stage, 3. The writing stage, 4. The evaluation stage. Our lecture will introduce a detailed description of the model with illustrations and samples from the units that we built through highlighting some aspects of the uniqueness and innovation that are specific to this model and the different integrated tools and techniques that we developed. One of the most significant conclusions of this research is that teaching languages through the employment of new computerized strategies is very likely to get the Arabic speaking pupils out of the circle of passive reception into active and serious action and interaction. The study also emphasizes the argument that the computerized model of teaching can change the role of the pupil's mind from being a store of knowledge for a short time into a partner in producing knowledge and storing it in a coherent way that prevents its forgetfulness and keeping it in memory for a long period of time. Consequently, the learners also turn into partners in evaluation by expressing their views, giving their notes and observations, and application of the method of peer-teaching and learning.Keywords: classical poetry, computerization, diglossia, writing skill
Procedia PDF Downloads 225322 Direct Assessment of Cellular Immune Responses to Ovalbumin with a Secreted Luciferase Transgenic Reporter Mouse Strain IFNγ-Lucia
Authors: Martyna Chotomska, Aleksandra Studzinska, Marta Lisowska, Justyna Szubert, Aleksandra Tabis, Jacek Bania, Arkadiusz Miazek
Abstract:
Objectives: Assessing antigen-specific T cell responses is of utmost importance for the pre-clinical testing of prototype vaccines against intracellular pathogens and tumor antigens. Mainly two types of in vitro assays are used for this purpose 1) enzyme-linked immunospot (ELISpot) and 2) intracellular cytokine staining (ICS). Both are time-consuming, relatively expensive, and require manual dexterity. Here, we assess if a straightforward detection of luciferase activity in blood samples of transgenic reporter mice expressing a secreted Lucia luciferase under the transcriptional control of IFN-γ promoter parallels the sensitivity of IFNγ ELISpot assay. Methods: IFN-γ-LUCIA mouse strain carrying multiple copies of Lucia luciferase transgene under the transcriptional control of IFNγ minimal promoter were generated by pronuclear injection of linear DNA. The specificity of transgene expression and mobilization was assessed in vitro using transgenic splenocytes exposed to various mitogens. The IFN-γ-LUCIA mice were immunized with 50mg of ovalbumin (OVA) emulsified in incomplete Freund’s adjuvant three times every two weeks by subcutaneous injections. Blood samples were collected before and five days after each immunization. Luciferase activity was assessed in blood serum. Peripheral blood mononuclear cells were separated and assessed for frequencies of OVA-specific IFNγ-secreting T cells. Results: We show that in vitro cultured splenocytes of IFN-γ-LUCIA mice respond by 2 and 3 fold increase in secreted luciferase activity to T cell mitogens concanavalin A and phorbol myristate acetate, respectively but fail to respond to B cell-stimulating E.coli lipopolysaccharide. Immunization of IFN-γ-LUCIA mice with OVA leads to over 4 fold increase in luciferase activity in blood serum five days post-immunization with a barely detectable increase in OVA-specific, IFNγ-secreting T cells by ELISpot. Second and third immunizations, further increase the luciferase activity and coincidently also increase the frequencies of OVA-specific T cells by ELISpot. Conclusions: We conclude that minimally invasive monitoring of luciferase secretions in blood serum of IFN-γ-LUCIA mice constitutes a sensitive method for evaluating primary and memory Th1 responses to protein antigens. As such, this method may complement existing methods for rapid immunogenicity assessment of prototype vaccines.Keywords: ELISpot, immunogenicity, interferon-gamma, reporter mice, vaccines
Procedia PDF Downloads 171321 In situ Stabilization of Arsenic in Soils with Birnessite and Goethite
Authors: Saeed Bagherifam, Trevor Brown, Chris Fellows, Ravi Naidu
Abstract:
Over the last century, rapid urbanization, industrial emissions, and mining activities have resulted in widespread contamination of the environment by heavy metal(loid)s. Arsenic (As) is a toxic metalloid belonging to group 15 of the periodic table, which occurs naturally at low concentrations in soils and the earth’s crust, although concentrations can be significantly elevated in natural systems as a result of dispersion from anthropogenic sources, e.g., mining activities. Bioavailability is the fraction of a contaminant in soils that is available for uptake by plants, food chains, and humans and therefore presents the greatest risk to terrestrial ecosystems. Numerous attempts have been made to establish in situ and ex-situ technologies of remedial action for remediation of arsenic-contaminated soils. In situ stabilization techniques are based on deactivation or chemical immobilization of metalloid(s) in soil by means of soil amendments, which consequently reduce the bioavailability (for biota) and bioaccessibility (for humans) of metalloids due to the formation of low-solubility products or precipitates. This study investigated the effectiveness of two different types of synthetic manganese and iron oxides (birnessite and goethite) for stabilization of As in a soil spiked with 1000 mg kg⁻¹ of As and treated with 10% dosages of soil amendments. Birnessite was made using HCl and KMnO₄, and goethite was synthesized by the dropwise addition of KOH into Fe(NO₃) solution. The resulting contaminated soils were subjected to a series of chemical extraction studies including sequential extraction (BCR method), single-step extraction with distilled (DI) water, 2M HNO₃ and simplified bioaccessibility extraction tests (SBET) for estimation of bioaccessible fractions of As in two different soil fractions ( < 250 µm and < 2 mm). Concentrations of As in samples were measured using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that soil with birnessite reduced bioaccessibility of As by up to 92% in both soil fractions. Furthermore, the results of single-step extractions revealed that the application of both birnessite and Goethite reduced DI water and HNO₃ extractable amounts of arsenic by 75, 75, 91, and 57%, respectively. Moreover, the results of the sequential extraction studies showed that both birnessite and goethite dramatically reduced the exchangeable fraction of As in soils. However, the amounts of recalcitrant fractions were higher in birnessite, and Goethite amended soils. The results revealed that the application of both birnessite and goethite significantly reduced bioavailability and the exchangeable fraction of As in contaminated soils, and therefore birnessite and Goethite amendments might be considered as promising adsorbents for stabilization and remediation of As contaminated soils.Keywords: arsenic, bioavailability, in situ stabilisation, metalloid(s) contaminated soils
Procedia PDF Downloads 135320 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model
Authors: Seydou Sinde
Abstract:
The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression
Procedia PDF Downloads 84319 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model
Authors: Subham Ghosh, Arnab Nandi
Abstract:
Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.Keywords: activity recognition, antenna, deep-learning, time-frequency
Procedia PDF Downloads 9318 Rural Farmers-Herdsmen Conflicts, State Mediation Failure and Prospects of Traditional Institutions’ Intervention in Southwest Nigeria
Authors: Grace Adebo
Abstract:
Rural Farmers-herdsmen conflicts have resulted in a large number of causalities in many parts of Nigeria. Herds of cattle have died, while farmers recorded inestimable losses of their crops and harvests. The overall consequences have impacted negatively on food security across the country. There are divided opinions by scholars, agricultural experts and conflict analysts on the root causes of the conflicts and why traditional institutional interventions are ineffective in resolving the crisis. The study, therefore, aims to investigate the fundamentality of the conflicts’ causes in Southwest Nigeria and the correlates between traditional institutional authorities’ intervention and farmers-herdsmen conflicts in Southwest Nigeria. A structured interview schedule and focus group discussion were employed to elicit information from 180 farmers and 48 herdsmen selected through a multistage sampling procedure from the conflict zones in Southwest Nigeria. Collected data were analyzed using frequency counts, percentages, means and the Relative Importance Index (RII). The study found that climate change effects, farmland encroachment, crop damage, theft, and competition for land and water resources and pollution were the root causes of the violent herders-rural farmer’s clashes. The quest for wealth acquisition by some traditional rulers and some notable individuals in the conflict neighborhoods, occasioned tribal-mix herds possession and, thus undermining local institutional interventions and perverting justice through weak conflict resolution strategies, therefore, fueling further conflicts. Most farmers in the conflict zones have abandoned their farms for fear of death. This coupled with physical, social, economic and psychological consequences have deepened food insecurity and impaired the economic conditions of the herdsmen and the farmers. Currently, there are no mutually established mediation mechanisms as most states are opposed to the enactment of grazing laws to protect territorial encroachments of lands and subsequent multiplication of the herdsmen. It is suggested that government and Non-Governmental Organisation (NGOs) should encourage a functional stakeholder's forum for sustainable conflict resolution and establish a compensation scheme for losses incurred while extension agents are equipped with knowledge on conflict management strategies for peace attainment with the envisioned goal of achieving sustainable livelihoods and food security in Southwest Nigeria.Keywords: conflict resolution, food security, herdsmen-farmers conflict, sustainable livelihoods, traditional institutions
Procedia PDF Downloads 112317 A Theragnostic Approach for Alzheimer’s Disease Focused on Phosphorylated Tau
Authors: Tomás Sobrino, Lara García-Varela, Marta Aramburu-Núñez, Mónica Castro, Noemí Gómez-Lado, Mariña Rodríguez-Arrizabalaga, Antía Custodia, Juan Manuel Pías-Peleteiro, José Manuel Aldrey, Daniel Romaus-Sanjurjo, Ángeles Almeida, Pablo Aguiar, Alberto Ouro
Abstract:
Introduction: Alzheimer’s disease (AD) and other tauopathies are primary causes of dementia, causing progressive cognitive deterioration that entails serious repercussions for the patients' performance of daily tasks. Currently, there is no effective approach for the early diagnosis and treatment of AD and tauopathies. This study suggests a theragnostic approach based on the importance of phosphorylated tau protein (p-Tau) in the early pathophysiological processes of AD. We have developed a novel theragnostic monoclonal antibody (mAb) to provide both diagnostic and therapeutic effects. Methods/Results: We have developed a p-Tau mAb, which was doped with deferoxamine for radiolabeling with Zirconium-89 (89Zr) for PET imaging, as well as fluorescence dies for immunofluorescence assays. The p-Tau mAb was evaluated in vitro for toxicity by MTT assay, LDH activity, propidium iodide/Annexin V assay, caspase-3, and mitochondrial membrane potential (MMP) assay in both mouse endothelial cell line (bEnd.3) and cortical primary neurons cell cultures. Importantly, non-toxic effects (up to concentrations of p-Tau mAb greater than 100 ug/mL) were detected. In vivo experiments in the tauopathy model mice (PS19) show that the 89Zr-pTau-mAb and 89Zr-Fragments-pTau-mAb are stable in circulation for up to 10 days without toxic effects. However, only less than 0.2% reached the brain, so further strategies have to be designed for crossing the Brain-Blood-Barrier (BBB). Moreover, an intraparenchymal treatment strategy was carried out. The PS19 mice were operated to implement osmotic pumps (Alzet 1004) at two different times, at 4 and 7 months, to stimulate the controlled release for one month each of the B6 antibody or the IgG1 control antibody. We demonstrated that B6-treated mice maintained their motor and memory abilities significantly compared with IgG1 treatment. In addition, we observed a significant reduction in p-Tau deposits in the brain. Conclusions /Discussion: A theragnostic pTau-mAb was developed. Moreover, we demonstrated that our p-Tau mAb recognizes very-early pathology forms of p-Tau by non-invasive techniques, such as PET. In addition, p-Tau mAb has non-toxic effects, both in vitro and in vivo. Although the p-Tau mAb is stable in circulation, only 0.2% achieve the brain. However, direct intraventricular treatment significantly reduces cognitive impairment in Alzheimer's animal models, as well as the accumulation of toxic p-Tau species.Keywords: alzheimer's disease, theragnosis, tau, PET, immunotherapy, tauopathies
Procedia PDF Downloads 70316 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes
Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen
Abstract:
Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades
Procedia PDF Downloads 164315 Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review
Authors: Melissa Langevin, Natalie Ward, Colleen Fitzgibbons, Christa Ramsey, Melanie Hogue, Anna Theresa Lobos
Abstract:
Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews.Keywords: adverse events, patient safety, pediatrics, root cause analysis, simulation
Procedia PDF Downloads 152314 Sintering of YNbO3:Eu3+ Compound: Correlation between Luminescence and Spark Plasma Sintering Effect
Authors: Veronique Jubera, Ka-Young Kim, U-Chan Chung, Amelie Veillere, Jean-Marc Heintz
Abstract:
Emitting materials and all solid state lasers are widely used in the field of optical applications and materials science as a source of excitement, instrumental measurements, medical applications, metal shaping etc. Recently promising optical efficiencies were recorded on ceramics which result from a cheaper and faster ways to obtain crystallized materials. The choice and optimization of the sintering process is the key point to fabricate transparent ceramics. It includes a high control on the preparation of the powder with the choice of an adequate synthesis, a pre-heat-treatment, the reproducibility of the sintering cycle, the polishing and post-annealing of the ceramic. The densification is the main factor needed to reach a satisfying transparency, and many technologies are now available. The symmetry of the unit cell plays a crucial role in the diffusion rate of the material. Therefore, the cubic symmetry compounds having an isotropic refractive index is preferred. The cubic Y3NbO7 matrix is an interesting host which can accept a high concentration of rare earth doping element and it has been demonstrated that SPS is an efficient way to sinter this material. The optimization of diffusion losses requires a microstructure of fine ceramics, generally less than one hundred nanometers. In this case, grain growth is not an obstacle to transparency. The ceramics properties are then isotropic thereby to free-shaping step by orienting the ceramics as this is the case for the compounds of lower symmetry. After optimization of the synthesis route, several SPS parameters as heating rate, holding, dwell time and pressure were adjusted in order to increase the densification of the Eu3+ doped Y3NbO7 pellets. The luminescence data coupled with X-Ray diffraction analysis and electronic diffraction microscopy highlight the existence of several distorted environments of the doping element in the studied defective fluorite-type host lattice. Indeed, the fast and high crystallization rate obtained to put in evidence a lack of miscibility in the phase diagram, being the final composition of the pellet driven by the ratio between niobium and yttrium elements. By following the luminescence properties, we demonstrate a direct impact on the SPS process on this material.Keywords: emission, niobate of rare earth, Spark plasma sintering, lack of miscibility
Procedia PDF Downloads 268313 An Approach to Determine the in Transit Vibration to Fresh Produce Using Long Range Radio (LORA) Wireless Transducers
Authors: Indika Fernando, Jiangang Fei, Roger Stanely, Hossein Enshaei
Abstract:
Ever increasing demand for quality fresh produce by the consumers, had increased the gravity on the post-harvest supply chains in multi-fold in the recent years. Mechanical injury to fresh produce was a critical factor for produce wastage, especially with the expansion of supply chains, physically extending to thousands of miles. The impact of vibration damages in transit was identified as a specific area of focus which results in wastage of significant portion of the fresh produce, at times ranging from 10% to 40% in some countries. Several studies were concentrated on quantifying the impact of vibration to fresh produce, and it was a challenge to collect vibration impact data continuously due to the limitations in battery life or the memory capacity in the devices. Therefore, the study samples were limited to a stretch of the transit passage or a limited time of the journey. This may or may not give an accurate understanding of the vibration impacts encountered throughout the transit passage, which limits the accuracy of the results. Consequently, an approach which can extend the capacity and ability of determining vibration signals in the transit passage would contribute to accurately analyze the vibration damage along the post-harvest supply chain. A mechanism was developed to address this challenge, which is capable of measuring the in transit vibration continuously through the transit passage subject to a minimum acceleration threshold (0.1g). A system, consisting six tri-axel vibration transducers installed in different locations inside the cargo (produce) pallets in the truck, transmits vibration signals through LORA (Long Range Radio) technology to a central device installed inside the container. The central device processes and records the vibration signals transmitted by the portable transducers, along with the GPS location. This method enables to utilize power consumption for the portable transducers to maximize the capability of measuring the vibration impacts in the transit passage extending to days in the distribution process. The trial tests conducted using the approach reveals that it is a reliable method to measure and quantify the in transit vibrations along the supply chain. The GPS capability enables to identify the locations in the supply chain where the significant vibration impacts were encountered. This method contributes to determining the causes, susceptibility and intensity of vibration impact damages to fresh produce in the post-harvest supply chain. Extensively, the approach could be used to determine the vibration impacts not limiting to fresh produce, but for products in supply chains, which may extend from few hours to several days in transit.Keywords: post-harvest, supply chain, wireless transducers, LORA, fresh produce
Procedia PDF Downloads 265312 Effect of Pollutions on Mangrove Forests of Nayband National Marine Park
Authors: Esmaeil Kouhgardi, Elaheh Shakerdargah
Abstract:
The mangrove ecosystem is a complex of various inter-related elements in the land-sea interface zone which is linked with other natural systems of the coastal region such as corals, sea-grass, coastal fisheries and beach vegetation. The mangrove ecosystem consists of water, muddy soil, trees, shrubs, and their associated flora, fauna and microbes. It is a very productive ecosystem sustaining various forms of life. Its waters are nursery grounds for fish, crustacean, and mollusk and also provide habitat for a wide range of aquatic life, while the land supports a rich and diverse flora and fauna, but pollutions may affect these characteristics. Iran has the lowest share of Persian Gulf pollution among the eight littoral states; environmental experts are still deeply concerned about the serious consequences of the pollution in the oil-rich gulf. Prolongation of critical conditions in the Persian Gulf has endangered its aquatic ecosystem. Water purification equipment, refineries, wastewater emitted by onshore installations, especially petrochemical plans, urban sewage, population density and extensive oil operations of Arab states are factors contaminating the Persian Gulf waters. Population density has been the major cause of pollution and environmental degradation in the Persian Gulf. Persian Gulf is a closed marine environment which is connected to open waterways only from one way. It usually takes between three and four years for the gulf's water to be completely replaced. Therefore, any pollution entering the water will remain there for a relatively long time. Presently, the high temperature and excessive salt level in the water have exposed the marine creatures to extra threats, which mean they have to survive very tough conditions. The natural environment of the Persian Gulf is very rich with good fish grounds, extensive coral reefs and pearl oysters in abundance, but has become increasingly under pressure due to the heavy industrialization and in particular the repeated major oil spillages associated with the various recent wars fought in the region. Pollution may cause the mortality of mangrove forests by effect on root, leaf and soil of the area. Study was showed the high correlation between industrial pollution and mangrove forests health in south of Iran and increase of population, coupled with economic growth, inevitably caused the use of mangrove lands for various purposes such as construction of roads, ports and harbors, industries and urbanization.Keywords: Mangrove forest, pollution, Persian Gulf, population, environment
Procedia PDF Downloads 399311 Strategic Metals and Rare Earth Elements Exploration of Lithium Cesium Tantalum Type Pegmatites: A Case Study from Northwest Himalayas
Authors: Auzair Mehmood, Mohammad Arif
Abstract:
The LCT (Li, Cs and Ta rich)-type pegmatites, genetically related to peraluminous S-type granites, are being mined for strategic metals (SMs) and rare earth elements (REEs) around the world. This study investigates the SMs and REEs potentials of pegmatites that are spatially associated with an S-type granitic suite of the Himalayan sequence, specifically Mansehra Granitic Complex (MGC), northwest Pakistan. Geochemical signatures of the pegmatites and some of their mineral extracts were analyzed using Inductive Coupled Plasma Mass Spectroscopy (ICP-MS) technique to explore and generate potential prospects (if any) for SMs and REEs. In general, the REE patterns of the studied whole-rock pegmatite samples show tetrad effect and possess low total REE abundances, strong positive Europium (Eu) anomalies, weak negative Cesium (Cs) anomalies and relative enrichment in heavy REE. Similar features have been observed on the REE patterns of the feldspar extracts. However, the REE patterns of the muscovite extracts reflect preferential enrichment and possess negative Eu anomalies. The trace element evaluation further suggests that the MGC pegmatites have undergone low levels of fractionation. Various trace elements concentrations (and their ratios) including Ta versus Cs, K/Rb (Potassium/Rubidium) versus Rb and Th/U (Thorium/Uranium) versus K/Cs, were used to analyze the economically viable mineral potential of the studied rocks. On most of the plots, concentrations fall below the dividing line and confer either barren or low-level mineralization potential of the studied rocks for both SMs and REEs. The results demonstrate paucity of the MGC pegmatites with respect to Ta-Nb (Tantalum-Niobium) mineralization, which is in sharp contrast to many Pan-African S-type granites around the world. The MGC pegmatites are classified as muscovite pegmatites based on their K/Rb versus Cs relationship. This classification is consistent with the occurrence of rare accessory minerals like garnet, biotite, tourmaline, and beryl. Furthermore, the classification corroborates with an earlier sorting of the MCG pegmatites into muscovite-bearing, biotite-bearing, and subordinate muscovite-biotite types. These types of pegmatites lack any significant SMs and REEs mineralization potentials. Field relations, such as close spatial association with parent granitic rocks and absence of internal zonation structure, also reflect the barren character and hence lack of any potential prospects of the MGC pegmatites.Keywords: exploration, fractionation, Himalayas, pegmatites, rare earth elements
Procedia PDF Downloads 204310 Use of Satellite Altimetry and Moderate Resolution Imaging Technology of Flood Extent to Support Seasonal Outlooks of Nuisance Flood Risk along United States Coastlines and Managed Areas
Authors: Varis Ransibrahmanakul, Doug Pirhalla, Scott Sheridan, Cameron Lee
Abstract:
U.S. coastal areas and ecosystems are facing multiple sea level rise threats and effects: heavy rain events, cyclones, and changing wind and weather patterns all influence coastal flooding, sedimentation, and erosion along critical barrier islands and can strongly impact habitat resiliency and water quality in protected habitats. These impacts are increasing over time and have accelerated the need for new tracking techniques, models and tools of flood risk to support enhanced preparedness for coastal management and mitigation. To address this issue, NOAA National Ocean Service (NOS) evaluated new metrics from satellite altimetry AVISO/Copernicus and MODIS IR flood extents to isolate nodes atmospheric variability indicative of elevated sea level and nuisance flood events. Using de-trended time series of cross-shelf sea surface heights (SSH), we identified specific Self Organizing Maps (SOM) nodes and transitions having a strongest regional association with oceanic spatial patterns (e.g., heightened downwelling favorable wind-stress and enhanced southward coastal transport) indicative of elevated coastal sea levels. Results show the impacts of the inverted barometer effect as well as the effects of surface wind forcing; Ekman-induced transport along broad expanses of the U.S. eastern coastline. Higher sea levels and corresponding localized flooding are associated with either pattern indicative of enhanced on-shore flow, deepening cyclones, or local- scale winds, generally coupled with an increased local to regional precipitation. These findings will support an integration of satellite products and will inform seasonal outlook model development supported through NOAAs Climate Program Office and NOS office of Center for Operational Oceanographic Products and Services (CO-OPS). Overall results will prioritize ecological areas and coastal lab facilities at risk based on numbers of nuisance flood projected and inform coastal management of flood risk around low lying areas subjected to bank erosion.Keywords: AVISO satellite altimetry SSHA, MODIS IR flood map, nuisance flood, remote sensing of flood
Procedia PDF Downloads 143309 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach
Authors: Kristina Pflug, Markus Busch
Abstract:
Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology
Procedia PDF Downloads 124308 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano
Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das
Abstract:
Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption
Procedia PDF Downloads 415307 OnabotulinumtoxinA Injection for Glabellar Frown Lines as an Adjunctive Treatment for Depression
Authors: I. Witbooi, J. De Smidt, A. Oelofse
Abstract:
Negative emotions that are common in depression are coupled with the activation of the corrugator supercilli and procerus muscles in the glabellar region of the face. This research investigated the impact of OnabotulinumtoxinA (BOTOX) in the improvement of emotional states in depressed subjects by relaxing the mentioned muscles. The aim of the study was to investigate the effectiveness of BOTOX treatment for glabellar frown lines as an adjunctive therapy for Major Depressive Disorder (MDD) and to improve the quality of life and self-esteem of the subjects. It is hypothesized that BOTOX treatment for glabellar frown lines reduces depressive symptoms significantly and therefore augment conventional antidepressant medication. Forty-five (45) subjects diagnosed with MDD were assigned to a treatment (n = 15), placebo (n = 15), and control (n = 15) group. The treatment group received BOTOX injection, while the placebo group received saline injection into the Procerus and Corrugator supercilli muscles with follow-up visits every 3 weeks (weeks 3, 6 and 12 respectively). The control group received neither BOTOX nor saline injections and were only interviewed again on the 12th week. To evaluate the effect of BOTOX treatment in the glabellar region on depressive symptoms, the Montgomery-Asberg Depression Rating (MADRS) scale and the Beck Depression Inventory (BDI) were used. The Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF) and Rosenberg Self-Esteem Scale (RSES) were used in the assessment of self-esteem and quality of life. Participants were followed up for a 12 week period. The expected primary outcome measure is the response to treatment, and it is defined as a ≥ 50% reduction in MADRS score from baseline. Other outcome measures include a clinically significant decrease in BDI scores and the increase in quality of life and self-esteem respectively. Initial results show a clear trend towards such differences. Results showed trends towards expected differences. Patients in the Botox group had a mean MADRS score of 14.0 at 3 weeks compared to 20.3 of the placebo group. This trend was still visible at 6 weeks with the Botox and placebo group scoring an average of 10 vs. 18 respectively. The mean difference in MDRS scores from baseline to 3 weeks were 9.3 and 2.0 for the Botox and placebo group respectively. Similarly, the BDI scores were lower in the Botox group (17.25) compared to the placebo group (19.43). The two self-esteem questionnaires showed expected results at this stage with the RSES 19.1 in the Botox group compared to 18.6 in the placebo group. Similarly, the Botox patients had a higher score for the Q-LES-Q-SF of 49.2 compared to 46.1 for the placebo group. Conclusions: Initial results clearly demonstrated that the use of Botox had positive effects on both scores of depressions and that of self-esteem when compared to a placebo group.Keywords: adjunctive therapy, depression, glabellar area, OnabotulinumtoxinA
Procedia PDF Downloads 135306 An Energy and Economic Comparison of Solar Thermal Collectors for Domestic Hot Water Applications
Authors: F. Ghani, T. S. O’Donovan
Abstract:
Today, the global solar thermal market is dominated by two collector types; the flat plate and evacuated tube collector. With regards to the number of installations worldwide, the evacuated tube collector is the dominant variant primarily due to the Chinese market but the flat plate collector dominates both the Australian and European markets. The market share of the evacuated tube collector is, however, growing in Australia due to a common belief that this collector type is ‘more efficient’ and, therefore, the better choice for hot water applications. In this study, we investigate this issue further to assess the validity of this statement. This was achieved by methodically comparing the performance and economics of several solar thermal systems comprising of; a low-performance flat plate collector, a high-performance flat collector, and an evacuated tube collector coupled with a storage tank and pump. All systems were simulated using the commercial software package Polysun for four climate zones in Australia to take into account different weather profiles in the study and subjected to a thermal load equivalent to a household comprising of four people. Our study revealed that the energy savings and payback periods varied significantly for systems operating under specific environmental conditions. Solar fractions ranged between 58 and 100 per cent, while payback periods range between 3.8 and 10.1 years. Although the evacuated tube collector was found to operate with a marginally higher thermal efficiency over the selective surface flat plate collector due to reduced ambient heat loss, the high-performance flat plate collector outperformed the evacuated tube collector on thermal yield. This result was obtained as the flat plate collector possesses a significantly higher absorber to gross collector area ratio over the evacuated tube collector. Furthermore, it was found for Australian regions operating with a high average solar radiation intensity and ambient temperature, the lower performance collector is the preferred choice due to favorable economics and reduced stagnation temperature. Our study has provided additional insight into the thermal performance and economics of the two prevalent solar thermal collectors currently available. A computational investigation has been carried out specifically for the Australian climate due to its geographic size and significant variation in weather. For domestic hot water applications were fluid temperatures between 50 and 60 degrees Celsius are sought, the flat plate collector is both technically and economically favorable over the evacuated tube collector. This research will be useful to system design engineers, solar thermal manufacturers, and those involved in policy to encourage the implementation of solar thermal systems into the hot water market.Keywords: solar thermal, energy analysis, flat plate, evacuated tube, collector performance
Procedia PDF Downloads 210305 Progress Toward More Resilient Infrastructures
Authors: Amir Golalipour
Abstract:
In recent years, resilience emerged as an important topic in transportation infrastructure practice, planning, and design to address the myriad stressors of future climate facing the Nation. Climate change has increased the frequency of extreme weather events and also causes climate and weather patterns to diverge from historic trends, culminating in circumstances where transportation infrastructure and assets are operating outside the scope of their design. To design and maintain transportation infrastructure that can continue meeting objectives over the infrastructure’s design life, these systems must be made adaptable to the changing climate by incorporating resilience wherever practically and financially feasible. This study is focused on the adaptation strategies and incorporation of resilience in infrastructure construction, maintenance, rehabilitation, and preservation processes. This study will include highlights from some of the recent FHWA activities on resilience. This study describes existing resilience planning and decision-making practices related to transportation infrastructure; mechanisms to identify, analyze, and prioritize adaptation options; and the strain that future climate and extreme weather event pressures place on existing transportation assets and the stressors these systems face for both single and combined stressor scenarios. Results of two case studies from Transportation Engineering Approaches to Climate Resiliency (TEACR) projects with focus on temperature and precipitation impacts on transportation infrastructures will be presented. These case studies looked at the impact of infrastructure performance using future temperature and precipitation compared to traditional climate design parameters. The research team used the adaptation decision making assessment and Coupled Model Intercomparison Project (CMIP) processing tool to determine which solution is best to pursue. The CMIP tool provided project climate data for temperature and precipitation which then could be incorporated into the design procedure to estimate the performance. As a result, using the future climate scenarios would impact the design. These changes were noted to have only a slight increase in costs, however it is acknowledged that network wide these costs could be significant. This study will also focus on what we have learned from recent storms, floods, and climate related events that will help us be better prepared to ensure our communities have a resilient transportation network. It should be highlighted that standardized mechanisms to incorporate resilience practices are required to encourage widespread implementation, mitigate the effects of climate stressors, and ensure the continuance of transportation systems and assets in an evolving climate.Keywords: adaptation strategies, extreme events, resilience, transportation infrastructure
Procedia PDF Downloads 3304 Impact of Emotional Intelligence and Cognitive Intelligence on Radio Presenter's Performance in All India Radio, Kolkata, India
Authors: Soumya Dutta
Abstract:
This research paper aims at investigating the impact of emotional intelligence and cognitive intelligence on radio presenter’s performance in the All India Radio, Kolkata (India’s public service broadcaster). The ancient concept of productivity is the ratio of what is produced to what is required to produce it. But, father of modern management Peter F. Drucker (1909-2005) defined productivity of knowledge work and knowledge workers in a new form. In the other hand, the concept of Emotional Intelligence (EI) originated back in 1920’s when Thorndike (1920) for the first time proposed the emotional intelligence into three dimensions, i.e., abstract intelligence, mechanical intelligence, and social intelligence. The contribution of Salovey and Mayer (1990) is substantive, as they proposed a model for emotional intelligence by defining EI as part of the social intelligence, which takes measures the ability of an individual to regulate his/her personal and other’s emotions and feeling. Cognitive intelligence illustrates the specialization of general intelligence in the domain of cognition in ways that possess experience and learning about cognitive processes such as memory. The outcomes of past research on emotional intelligence show that emotional intelligence has a positive effect on social- mental factors of human resource; positive effects of emotional intelligence on leaders and followers in terms of performance, results, work, satisfaction; emotional intelligence has a positive and significant relationship with the teachers' job performance. In this paper, we made a conceptual framework based on theories of emotional intelligence proposed by Salovey and Mayer (1989-1990) and a compensatory model of emotional intelligence, cognitive intelligence, and job performance proposed by Stephen Cote and Christopher T. H. Miners (2006). For investigating the impact of emotional intelligence and cognitive intelligence on radio presenter’s performance, sample size consists 59 radio presenters (considering gender, academic qualification, instructional mood, age group, etc.) from All India Radio, Kolkata station. Questionnaires prepared based on cognitive (henceforth called C based and represented by C1, C2,.., C5) as well as emotional intelligence (henceforth called E based and represented by E1, E2,., E20). These were sent to around 59 respondents (Presenters) for getting their responses. Performance score was collected from the report of program executive of All India Radio, Kolkata. The linear regression has been carried out using all the E-based and C-based variables as the predictor variables. The possible problem of autocorrelation has been tested by having the Durbinson-Watson (DW) Statistic. Values of this statistic, almost within the range of 1.80-2.20, indicate the absence of any significant problem of autocorrelation. The possible problem of multicollinearity has been tested by having the Variable Inflation Factor (VIF) value. Values of this statistic, around within 2, indicates the absence of any significant problem of multicollinearity. It is inferred that the performance scores can be statistically regressed linearly on the E-based and C-based scores, which can explain 74.50% of the variations in the performance.Keywords: cognitive intelligence, emotional intelligence, performance, productivity
Procedia PDF Downloads 163303 Technology Changing Senior Care
Authors: John Kosmeh
Abstract:
Introduction – For years, senior health care and skilled nursing facilities have been plagued with the dilemma of not having the necessary tools and equipment to adequately care for senior residents in their communities. This has led to high transport rates to emergency departments and high 30-day readmission rates, costing billions of unnecessary dollars each year, as well as quality assurance issues. Our Senior care telemedicine program is designed to solve this issue. Methods – We conducted a 1-year pilot program using our technology coupled with our 24/7 telemedicine program with skilled nursing facilities in different parts of the United States. We then compared transports rates and 30-day readmission rates to previous years before the use of our program, as well as transport rates of other communities of similar size not using our program. This data was able to give us a clear and concise look at the success rate of reducing unnecessary transport and readmissions as well as cost savings. Results – A 94% reduction nationally of unnecessary out-of-facility transports, and to date, complete elimination of 30-day readmissions. Our virtual platform allowed us to instruct facility staff on the utilization of our tools and system as well as deliver treatment by our ER-trained providers. Delay waiting for PCP callbacks was eliminated. We were able to obtain lung, heart, and abdominal ultrasound imaging, 12 lead EKG, blood labs, auscultate lung and heart sounds, and collect other diagnostic tests at the bedside within minutes, providing immediate care and allowing us to treat residents within the SNF. Are virtual capabilities allowed for loved ones, family members, and others who had medical power of attorney to virtually connect with us at the time of visit, to speak directly with the medical provider, providing increased confidence in the decision to treat the resident in-house. The decline in transports and readmissions will greatly reduce governmental cost burdens, as well as fines imposed on SNF for high 30-day readmissions, reduce the cost of Medicare A readmissions, and significantly impact the number of patients visiting overcrowded ERs. Discussion – By utilizing our program, SNF can effectively reduce the number of unnecessary transports of residents, as well as create significant savings from loss of day rates, transportation costs, and high CMS fines. The cost saving is in the thousands monthly, but more importantly, these facilities can create a higher quality of life and medical care for residents by providing definitive care instantly with ER-trained personnel.Keywords: senior care, long term care, telemedicine, technology, senior care communities
Procedia PDF Downloads 94302 Reclaiming the Lost Jewish Identity of a Second Generation Holocaust Survivor Raised as a Christian: The Role of Art and Art Therapy
Authors: Bambi Ward
Abstract:
Children of Holocaust survivors have been described as inheriting their parents’ trauma as a result of ‘vicarious memory’. The term refers to a process whereby second generation Holocaust survivors subconsciously remember aspects of Holocaust trauma, despite not having directly experienced it. This can occur even when there has been a conspiracy of silence in which survivors chose not to discuss the Holocaust with their children. There are still people born in various parts of the world such as Poland, Hungary, other parts of Europe, USA, Canada and Australia, who have only learnt of their Jewish roots as adults. This discovery may occur during a parent’s deathbed confession, or when an adult child is sorting through the personal belongings of a deceased family member. Some Holocaust survivors chose to deny their Jewish heritage and raise their children as Christians. Reasons for this decision include the trauma experienced during the Holocaust for simply being Jewish, the existence of anti-Semitism, and the desire to protect one’s self and one’s family. Although there has been considerable literature written about the transgenerational impact of trauma on children of Holocaust survivors, there has been little scholarly investigation into the effects of a hidden Jewish identity on these children. This paper presents a case study of an adult child of Hungarian Holocaust survivors who was raised as a Christian. At the age of eight she was told about her family’s Jewish background, but her parents insisted that she keep this a secret, even if asked directly. She honoured their request until she turned forty. By that time she had started the challenging process of reclaiming her Jewish identity. The paper outlines the tension between family loyalty and individual freedom, and discusses the role that art and art therapy played in assisting the subject of the case study to reclaim her Jewish identity and commence writing a memoir about her spiritual journey. The main methodology used in this case study is creative practice-led research. Particular attention is paid to the utilisation of an autoethnographic approach. The autoethnographic tools used include reflective journals of the subject of the case study. These journals reflect on the subject’s collection of autobiographical data relating to her family history, and include memories, drawings, products of art therapy, diaries, letters, photographs, home movies, objects, and oral history interviews with her mother. The case study illustrates how art and art therapy benefitted a second generation Holocaust survivor who was brought up having to suppress her Jewish identity. The process allowed her to express subconscious thoughts and feelings about her identity and free herself from the burden of the long term secret she had been carrying. The process described may also be of assistance to other traumatised people who have been trying to break the silence and who are seeking to express themselves in a positive and healing way.Keywords: art, hidden identity, holocaust, silence
Procedia PDF Downloads 239