Search results for: decision making units (DMUs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8270

Search results for: decision making units (DMUs)

5900 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods

Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim

Abstract:

Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.

Keywords: economical analysis, probability of failure, retaining walls, statistical analysis

Procedia PDF Downloads 406
5899 Patient Engagement in Healthcare and Health Literacy in China: A Survey in China

Authors: Qing Wu, Xuchun Ye, Qiuchen Wang, Kirsten Corazzini

Abstract:

Objective: It’s increasing acknowledged that patient engagement in healthcare and health literacy both have positive impact on patient outcome. Health literacy emphasizes the ability of individuals to understand and apply health information and manage health. Patients' health literacy affected their willingness to participate in decision-making, but its impact on the behavior and willingness of patient engagement in healthcare is not clear, especially in China. Therefore, this study aimed to explore the correlation between the behavior and willingness of patient engagement and health literacy. Methods: A cross-sectional survey was employed using the behavior and willingness of patient engagement in healthcare questionnaire, Chinese version All Aspects of Health Literacy Scale (AAHLS). A convenient sample of 443 patients was recruited from 8 general hospitals in Shanghai, Jiangsu Province and Zhejiang Province, from September 2016 to January 2017. Results: The mean score for the willingness was (4.41±0.45), and the mean score for the patient engagement behavior was (4.17±0.49); the mean score for the patient's health literacy was (2.36±0.29),the average score of its three dimensions- the functional literacy, the Communicative/interactive literacy and the Critical literacy, was (2.26±0.38), (2.28±0.42), and (2.61±0.43), respectively. Patients' health literacy was positively correlated with their willingness of engagement (r = 0.367, P < 0.01), and positively correlated with patient engagement behavior (r = 0.357, P < 0.01). All dimensions of health literacy were positively correlated with the behavior and willingness of patient engagement in healthcare; the dimension of Communicative/interactive literacy (r = 0.312, P < 0.01; r = 0.357, P < 0.01) and the Critical literacy (r = 0.357, P < 0.01; r = 0.357, P < 0.01) are more relevant to the behavior and willingness than the dimension of basic/functional literacy (r=0.150, P < 0.01; r = 0.150, P < 0.01). Conclusions: The behavior and willingness of patient engagement in healthcare are positively correlated with health literacy and its dimensions. In clinical work, medical staff should pay attention to patients’ health literacy, especially the situation that low literacy leads to low participation and provide health information to patients through health education or communication to improve their health literacy as well as guide them to actively and rationally participate in their own health care.

Keywords: patient engagement, health literacy, healthcare, correlation

Procedia PDF Downloads 166
5898 Building Information Modelling for Construction Delay Management

Authors: Essa Alenazi, Zulfikar Adamu

Abstract:

The Kingdom of Saudi Arabia (KSA) is not an exception in relying on the growth of its construction industry to support rapid population growth. However, its need for infrastructure development is constrained by low productivity levels and cost overruns caused by factors such as delays to project completion. Delays in delivering a construction project are a global issue and while theories such as Optimism Bias have been used to explain such delays, in KSA, client-related causes of delays are also significant. The objective of this paper is to develop a framework-based approach to explore how the country’s construction industry can manage and reduce delays in construction projects through building information modelling (BIM) in order to mitigate the cost consequences of such delays.  It comprehensively and systematically reviewed the global literature on the subject and identified gaps, critical delay factors and the specific benefits that BIM can deliver for the delay management.  A case study comprising of nine hospital projects that have experienced delay and cost overruns was also carried out. Five critical delay factors related to the clients were identified as candidates that can be mitigated through BIM’s benefits. These factors are: Ineffective planning and scheduling of the project; changes during construction by the client; delay in progress payment; slowness in decision making by the client; and poor communication between clients and other stakeholders. In addition, data from the case study projects strongly suggest that optimism bias is present in many of the hospital projects. Further validation via key stakeholder interviews and documentations are planned.

Keywords: building information modelling (BIM), clients perspective, delay management, optimism bias, public sector projects

Procedia PDF Downloads 324
5897 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 81
5896 Towards Resilient and Sustainable Integrated Agro-ecosystems Through Appropriate Climate-smart Farming Practices in Morocco Rainfed Agriculture

Authors: Abdelali Laamari, Morad Faiz, Ali Amamou And Mohamed Elkoudrim

Abstract:

This research seeks to develop multi-disciplinary, multi-criteria, and multi-institutional approaches that consider the three main pillars of sustainability (environmental, economic, and social aspects) at the level of decision making regarding the adoption of improved technologies in the targeted case study region in Morocco. The study is aimed at combining sound R&I with extensive skills in applied research and policy evaluation. The intention is to provide new simple, and transferable tools and agricultural practices that will enable the uptake of sustainability and the resiliency of agro-ecosystems. The study will understand the state-of-the-art of the impact of climate change and identify the core bottlenecks and climate change’s impact on crop and livestock productivity of the targeted value chains in Morocco. Studies conducted during 2021-2022 showed that most of the farmers are using since 2010 the direct seeding and the system can be improved by adopting new fertilizer and varieties of wheat. The alley-cropping technology is based on Atriplex plant or olive trees. The introduction of new varieties of oat and quinoa has improved biomass and grain production in a dry season. The research is targeting other issues, such as social enterprises, to diversify women’s income resources and create new job opportunities through diversification of end uses of durum wheat and barley grains. Women’s local knowledge is rich on the different end uses of durum and barley grains that can improve their added value if they are transformed as couscous, pasta, or any other products.

Keywords: agriculture, climate, production system, integration

Procedia PDF Downloads 76
5895 Passive Attenuation of Nitrogen Species at Northern Mine Sites

Authors: Patrick Mueller, Alan Martin, Justin Stockwell, Robert Goldblatt

Abstract:

Elevated concentrations of inorganic nitrogen (N) compounds (nitrate, nitrite, and ammonia) are a ubiquitous feature to mine-influenced drainages due to the leaching of blasting residues and use of cyanide in the milling of gold ores. For many mines, the management of N is a focus for environmental protection, therefore understanding the factors controlling the speciation and behavior of N is central to effective decision making. In this paper, the passive attenuation of ammonia and nitrite is described for three northern water bodies (two lakes and a tailings pond) influenced by mining activities. In two of the water bodies, inorganic N compounds originate from explosives residues in mine water and waste rock. The third water body is a decommissioned tailings impoundment, with N compounds largely originating from the breakdown of cyanide compounds used in the processing of gold ores. Empirical observations from water quality monitoring indicate nitrification (the oxidation of ammonia to nitrate) occurs in all three waterbodies, where enrichment of nitrate occurs commensurately with ammonia depletion. The N species conversions in these systems occurred more rapidly than chemical oxidation kinetics permit, indicating that microbial mediated conversion was occurring, despite the cool water temperatures. While nitrification of ammonia and nitrite to nitrate was the primary process, in all three waterbodies nitrite was consistently present at approximately 0.5 to 2.0 % of total N, even following ammonia depletion. The persistence of trace amounts of nitrite under these conditions suggests the co-occurrence denitrification processes in the water column and/or underlying substrates. The implications for N management in mine waters are discussed.

Keywords: explosives, mining, nitrification, water

Procedia PDF Downloads 319
5894 Qualitative and Quantitative Analysis of Motivation Letters to Model Turnover in Non-Governmental Organization

Authors: A. Porshnev, A. Zaporozhtchuk

Abstract:

Motivation regarded as a key factor of labor turnover, is especially important for volunteers working on an altruistic basis in NGO. Despite the motivational letter, candidate selection depends on the impression of the selection committee, which can be subject to human bias. We expect that structured and unstructured information provided in motivation letters could be used to improve candidate selection procedures. In our paper, we perform qualitative and quantitative analysis of 2280 motivation letters, create logistic regression, and build a decision tree to improve selection procedures. Our analysis showed that motivation factors are significant and enable human resources department to forecast labor turnover and provide extra information to demographic, professional and timing questions. In spite of the average level of accuracy the model demonstrates the selection procedures of company of under consideration can be improved. We also discuss interrelation between answers to open and closed motivation questions, recommend changes in motivational letter templates to ensure more relevant information about applicants and further steps to create more accurate model.

Keywords: decision trees, logistic regression, model, motivational letter, non-governmental organization, retention, turnover

Procedia PDF Downloads 177
5893 Annual Audit for the Year 2021 for Patients with Hyperparathyroidism: Not as Rare an Entity as We Believe

Authors: Antarip Bhattacharya, Dhritiman Maitra

Abstract:

Primary hyperparathyroidism (PHPT) is the most common cause of hypercalcemia due to autonomous production of parathormone (PTH) and the third most common endocrine disorder. Upto 2% of postmenopausal women could have this condition. Primary hyperparathyroidism is characterized by hypercalcemia with a high or insufficiently suppressed level of parathyroid hormone and is caused by a solitary parathyroid adenoma in 85-90% of patients. PHPT may also be caused by parathyroid hyperplasia (involving multiple glands) or parathyroid carcinoma. Associated morbidities and sequelae include decreased bone mineral density, fractures, kidney stones, hypertension, cardiac comorbidities and psychiatric disorder which entail huge costs for treatment. In the year 2021, by virtue of running a Breast and Endocrine Surgery clinic in a Tier 1 city at a tertiary care hospital, the opportunity to be associated with patients of hyperparathyroidism came our way. Here, we shall describe the spectrum of clinical presentations and customisation of treatment for parathyroid diseases with reference to the above patients. A retrospective analysis of the data of all patients presenting with symptoms of parathyroid diseases was made and classified according to the cause. 13 patients had presented with symptoms of hyperparathyroidism and each case presented with unique symptoms and necessitated detailed evaluation. The treatment or surgery offered to each patient was tailored to his/her individual disease and led to favourable outcomes. Diseases affecting parathyroid are not as rare as we believe. Each case merits detailed clinical evaluation, investigations and tailoring of suitable treatment with regard to medical management and extent of surgery. Intra-operative frozen section/iOPTH monitoring are really useful adjuncts for intra-operative decision making.

Keywords: hyperparathyroidism, parathyroid adenoma, parathyroid surgery, PTH

Procedia PDF Downloads 125
5892 Effect of Addition Cinnamon Extract (Cinnamomum burmannii) to Water Content, pH Value, Total Lactid Acid Bacteria Colonies, Antioxidant Activity and Cholesterol Levels of Goat Milk Yoghurt Isolates Dadih (Pediococcus pentosaceus)

Authors: Endang Purwati, Ely Vebriyanti, R. Puji Hartini, Hendri Purwanto

Abstract:

This study aimed to determine the effect of addition cinnamon extract (Cinnamomum burmannii) in making goat milk yogurt product isolates dadih (Pediococcus pentosaceus) to antioxidant activity and cholesterol levels. The method of research was the experimental method by using a Randomized Block Design (RBD), which consists of 5 treatments with 4 groups as replication. Treatment in this study was used of cinnamon extract as A (0%), B (1%), C (2%), D (3%), E (4%) in a goat’s milk yoghurt. This study was used 4200 ml of Peranakan Etawa goat’s milk and 80 ml of cinnamon extract. The variable analyzed were water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. The average water content ranged from 81.2-85.56%. Mean pH values rang between 4.74–4.30. Mean total lactic acid bacteria colonies ranged from 3.87 x 10⁸ - 7.95 x 10⁸ CFU/ml. The average of the antioxidant activity ranged between 10.98%-27.88%. Average of cholesterol levels ranged from 14.0 mg/ml–17.5 mg/ml. The results showed that the addition of cinnamon extract in making goat milk yoghurt product isolates dadih (Pediococcus pentosaceus) significantly different (P < 0.05) to water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. In conclusion, the study shows that using of cinnamon extract 4% is the best in making goat milk yoghurt.

Keywords: antioxidant, cholesterol, cinnamon, Pediococcus pentosaceus, yoghurt

Procedia PDF Downloads 255
5891 Critical Assessment of Herbal Medicine Usage and Efficacy by Pharmacy Students

Authors: Anton V. Dolzhenko, Tahir Mehmood Khan

Abstract:

An ability to make an evidence-based decision is a critically important skill required for practicing pharmacists. The development of this skill is incorporated into the pharmacy curriculum. We aimed in our study to estimate perception of pharmacy students regarding herbal medicines and their ability to assess information on herbal medicines professionally. The current Monash University curriculum in Pharmacy does not provide comprehensive study material on herbal medicines and students should find their way to find information, assess its quality and make a professional decision. In the Pharmacy course, students are trained how to apply this process to conventional medicines. In our survey of 93 undergraduate students from year 1-4 of Pharmacy course at Monash University Malaysia, we found that students’ view on herbal medicines is sometimes associated with common beliefs, which affect students’ ability to make evidence-based conclusions regarding the therapeutic potential of herbal medicines. The use of herbal medicines is widespread and 95.7% of the participated students have prior experience of using them. In the scale 1 to 10, students rated the importance of acquiring herbal medicine knowledge for them as 8.1±1.6. More than half (54.9%) agreed that herbal medicines have the same clinical significance as conventional medicines in treating diseases. Even more, students agreed that healthcare settings should give equal importance to both conventional and herbal medicine use (80.6%) and that herbal medicines should comply with strict quality control procedures as conventional medicines (84.9%). The latter statement also indicates that students consider safety issues associated with the use of herbal medicines seriously. It was further confirmed by 94.6% of students saying that the safety and toxicity information on herbs and spices are important to pharmacists and 95.7% of students admitting that drug-herb interactions may affect therapeutic outcome. Only 36.5% of students consider herbal medicines as s safer alternative to conventional medicines. The students use information on herbal medicines from various sources and media. Most of the students (81.7%) obtain information on herbal medicines from the Internet and only 20.4% mentioned lectures/workshop/seminars as a source of such information. Therefore, we can conclude that students attained the skills on the critical assessment of therapeutic properties of conventional medicines have a potential to use their skills for evidence-based decisions regarding herbal medicines.

Keywords: evidence-based decision, pharmacy education, student perception, traditional medicines

Procedia PDF Downloads 282
5890 Fault Location Detection in Active Distribution System

Authors: R. Rezaeipour, A. R. Mehrabi

Abstract:

Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.

Keywords: fault location detection, active distribution system, micro grids, network operators

Procedia PDF Downloads 789
5889 The Ethics of Physical Restraints in Geriatric Care

Authors: Bei Shan Lin, Chun Mei Lu, Ya Ping Chen, Li Chen Lu

Abstract:

This study explores the ethical issues concerning the use of physical restraint in geriatric care. Physical restraint use in a medical care setting is seen as a controversial form of treatment that has occurred over decades. There is no doubt that people nowadays are living longer than previous generations. The ageing process is inevitable. Common disease such as impaired comprehension, memory loss, and trouble expressing one’s self contribute to the difficulty that these older patients have in adapting to medical institution. For these reasons, physical restraint is often used in reducing the risk of falling, managing wandering behaviour, preventing agitation, and promoting patient compliance in geriatric care. It can mean that physical restraints are considered as a common practice that is used in the care of older patients. It is most commonly used for three specific purposes, including procedural restraint, restraint to prevent falls, and behavioural restraints. Although there have been well documented instances of morbidity and mortality recognised as being potential risks associated with physical restraint use, it continues to be permitted and used in healthcare, often in the name of safety. However, there is insufficient evidence supporting the effectiveness of physical restraint use reducing injuries from falls and controlling challenging behaviour in geriatric care settings. There is barely any empirical evidence of either a scientific basis or clinical trials have evaluated the improvement in patient safety following physical restraint. In difficult clinical situations, guidelines and practical suggestions for Healthcare professionals to comply requirements can help those making appropriate decisions and to facilitate better judgement regarding physical restraint use. The following recommendations are given for physical restraint use in long-term care settings: an interdisciplinary team approach to assess, evaluate, and treat underlying diseases to determine if treatment can ease issues precipitating physical restraint use; a clearly stated purpose of treatment plan should be made after weighing up the risk of physical restraint use against the risk of without physical restraint use; a care plan for physical restraint has to include individualised treatment planning, informed consent, identification and remedial action to avoid negative consequences, regular assessment and modification, reduction and removal of risks; patients and their families must have the opportunity to consider and give voluntary informed consent prior to physical restraint utilisation; patients, family members, and Healthcare professionals should be educated on use and adverse consequences of physical restraints in order to make raise awareness of potential risks and to take appropriate steps to prevent unnecessary harm; after physical restraint removal, Healthcare professionals should discuss with patients and family members about their experience, feelings, and any anxieties regarding the treatment. Physical restraint should always be considered a last resort as deprive patient’s freedom, control, and individuality. Healthcare professionals should emphasise on providing individualized care, interdisciplinary decision-making process, and creative and collaborative alternatives to promote older patient’s rights, dignity and overall well-being as much as possible.

Keywords: ethics healthcare, geriatric care, healthcare, physical restraint

Procedia PDF Downloads 133
5888 Rule Based Architecture for Collaborative Multidisciplinary Aircraft Design Optimisation

Authors: Nickolay Jelev, Andy Keane, Carren Holden, András Sóbester

Abstract:

In aircraft design, the jump from the conceptual to preliminary design stage introduces a level of complexity which cannot be realistically handled by a single optimiser, be that a human (chief engineer) or an algorithm. The design process is often partitioned along disciplinary lines, with each discipline given a level of autonomy. This introduces a number of challenges including, but not limited to: coupling of design variables; coordinating disciplinary teams; handling of large amounts of analysis data; reaching an acceptable design within time constraints. A number of classical Multidisciplinary Design Optimisation (MDO) architectures exist in academia specifically designed to address these challenges. Their limited use in the industrial aircraft design process has inspired the authors of this paper to develop an alternative strategy based on well established ideas from Decision Support Systems. The proposed rule based architecture sacrifices possibly elusive guarantees of convergence for an attractive return in simplicity. The method is demonstrated on analytical and aircraft design test cases and its performance is compared to a number of classical distributed MDO architectures.

Keywords: Multidisciplinary Design Optimisation, Rule Based Architecture, Aircraft Design, Decision Support System

Procedia PDF Downloads 355
5887 The Birth Connection: An Examination of the Relationship between Her Birth Event and Infant Feeding among African American Mothers

Authors: Nicole Banton

Abstract:

The maternal and infant mortality rate of Blacks is three times that of Whites in the US. Research indicates that breastfeeding lowers both. In this paper, the researcher examines how the ideas that Black/African American mothers had about breastfeeding before, during, and after pregnancy (postpartum) affected whether or not they initiated breastfeeding. The researcher used snowball sampling to recruit thirty African-American mothers from the Orlando area. At the time of her interview, each mother had at least one child who was at least three years old. Through in-depth face-to-face interviews, the researcher investigated how mothers’ healthcare providers affected their decision-making about infant feeding, as well as how the type of birth that she had (e.g., preterm, vaginal, c-section, full term) affected her actual versus idealized infant feeding practice. Through our discussions, we explored how pre-pregnancy perceptions, birth and postpartum experiences, social support, and the discourses surrounding motherhood within an African-American context affected the perceptions and experiences that the mothers in the study had with their infant feeding practice(s). Findings suggest that the pregnancy and birth experiences of the mothers in the study influenced whether or not they breastfed exclusively, combined breastfeeding and infant formula use, or used infant formula exclusively. Specifically, the interplay of invocation of agency (the ability to control their bodies before, during, and after birth), birth outcomes, and the interaction that the mothers in this study had with resources, human and material, had the highest impact on the initiation, duration, and attitude toward breastfeeding.

Keywords: African American mothers, maternal health, breastfeeding, birth, midwives, obstetricians, hospital birth, breast pumps, formula use, infant feeding, lactation consultant, postpartum, vaginal birth, c-section, familial support, social support, work, pregnancy

Procedia PDF Downloads 82
5886 Federalism and Good Governance in Nigeria: A Study of the Federal Capital Territory, Abuja, Nigeria

Authors: David C. Nwogbo

Abstract:

Examining the impact of federalism on good governance is crucial for enhancing governance in Nigeria. This study focuses on the Federal Capital Territory (FCT), Abuja, as a case study. Employing a descriptive survey design, data was collected to explore the relationship between federalism and good governance in Abuja, Nigeria. A stratified random sampling method was used to select 289 respondents from the population of Abuja. The sample size was determined using a formula based on precision and population size. A survey questionnaire was employed to gather information on respondents' demographics, perceptions, and experiences concerning federalism and good governance in the FCT. Descriptive statistics, such as percentages and means, were utilized to analyze the study's findings. The findings provided insights into the perceptions and experiences of residents of the FCT with regard to the relationship between federalism and good governance. The results of this study will be useful for policy and decision-making related to the implementation of these concepts in Nigeria and, more specifically, in the FCT, Abuja. The study found that the majority of respondents believe that the federal system of government has not been effective in promoting accountability, transparency, and reducing corruption in Nigeria. There is a need for reforms to improve the effectiveness of the federal system in promoting good governance. These reforms include strengthening institutions, reallocation of resources, reform of the electoral system, decentralization of power, strengthening the role of the judiciary, capacity building, promoting transparency, and engagement of civil society. The findings also highlight the need for significant reforms to address these challenges and promote good governance in the country. The results of this study can be used to inform policy decisions and guide future research on the subject.

Keywords: accountability, federalism, good, governance

Procedia PDF Downloads 102
5885 The Integration of Geographical Information Systems and Capacitated Vehicle Routing Problem with Simulated Demand for Humanitarian Logistics in Tsunami-Prone Area: A Case Study of Phuket, Thailand

Authors: Kiatkulchai Jitt-Aer, Graham Wall, Dylan Jones

Abstract:

As a result of the Indian Ocean tsunami in 2004, logistics applied to disaster relief operations has received great attention in the humanitarian sector. As learned from such disaster, preparing and responding to the aspect of delivering essential items from distribution centres to affected locations are of the importance for relief operations as the nature of disasters is uncertain especially in suffering figures, which are normally proportional to quantity of supplies. Thus, this study proposes a spatial decision support system (SDSS) for humanitarian logistics by integrating Geographical Information Systems (GIS) and the capacitated vehicle routing problem (CVRP). The GIS is utilised for acquiring demands simulated from the tsunami flooding model of the affected area in the first stage, and visualising the simulation solutions in the last stage. While CVRP in this study encompasses designing the relief routes of a set of homogeneous vehicles from a relief centre to a set of geographically distributed evacuation points in which their demands are estimated by using both simulation and randomisation techniques. The CVRP is modeled as a multi-objective optimization problem where both total travelling distance and total transport resources used are minimized, while demand-cost efficiency of each route is maximized in order to determine route priority. As the model is a NP-hard combinatorial optimization problem, the Clarke and Wright Saving heuristics is proposed to solve the problem for the near-optimal solutions. The real-case instances in the coastal area of Phuket, Thailand are studied to perform the SDSS that allows a decision maker to visually analyse the simulation scenarios through different decision factors.

Keywords: demand simulation, humanitarian logistics, geographical information systems, relief operations, capacitated vehicle routing problem

Procedia PDF Downloads 248
5884 Binary Decision Diagram Based Methods to Evaluate the Reliability of Systems Considering Failure Dependencies

Authors: Siqi Qiu, Yijian Zheng, Xin Guo Ming

Abstract:

In many reliability and risk analysis, failures of components are supposed to be independent. However, in reality, the ignorance of failure dependencies among components may render the results of reliability and risk analysis incorrect. There are two principal ways to incorporate failure dependencies in system reliability and risk analysis: implicit and explicit methods. In the implicit method, failure dependencies can be modeled by joint probabilities, correlation values or conditional probabilities. In the explicit method, certain types of dependencies can be modeled in a fault tree as mutually independent basic events for specific component failures. In this paper, explicit and implicit methods based on BDD will be proposed to evaluate the reliability of systems considering failure dependencies. The obtained results prove the equivalence of the proposed implicit and explicit methods. It is found that the consideration of failure dependencies decreases the reliability of systems. This observation is intuitive, because more components fail due to failure dependencies. The consideration of failure dependencies helps designers to reduce the dependencies between components during the design phase to make the system more reliable.

Keywords: reliability assessment, risk assessment, failure dependencies, binary decision diagram

Procedia PDF Downloads 472
5883 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects

Authors: Muhammad Abu Bakar Tariq

Abstract:

Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.

Keywords: building information modeling, clash detection, construction project success, visualization

Procedia PDF Downloads 260
5882 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 20
5881 Artificial Law: Legal AI Systems and the Need to Satisfy Principles of Justice, Equality and the Protection of Human Rights

Authors: Begum Koru, Isik Aybay, Demet Celik Ulusoy

Abstract:

The discipline of law is quite complex and has its own terminology. Apart from written legal rules, there is also living law, which refers to legal practice. Basic legal rules aim at the happiness of individuals in social life and have different characteristics in different branches such as public or private law. On the other hand, law is a national phenomenon. The law of one nation and the legal system applied on the territory of another nation may be completely different. People who are experts in a particular field of law in one country may have insufficient expertise in the law of another country. Today, in addition to the local nature of law, international and even supranational law rules are applied in order to protect basic human values and ensure the protection of human rights around the world. Systems that offer algorithmic solutions to legal problems using artificial intelligence (AI) tools will perhaps serve to produce very meaningful results in terms of human rights. However, algorithms to be used should not be developed by only computer experts, but also need the contribution of people who are familiar with law, values, judicial decisions, and even the social and political culture of the society to which it will provide solutions. Otherwise, even if the algorithm works perfectly, it may not be compatible with the values of the society in which it is applied. The latest developments involving the use of AI techniques in legal systems indicate that artificial law will emerge as a new field in the discipline of law. More AI systems are already being applied in the field of law, with examples such as predicting judicial decisions, text summarization, decision support systems, and classification of documents. Algorithms for legal systems employing AI tools, especially in the field of prediction of judicial decisions and decision support systems, have the capacity to create automatic decisions instead of judges. When the judge is removed from this equation, artificial intelligence-made law created by an intelligent algorithm on its own emerges, whether the domain is national or international law. In this work, the aim is to make a general analysis of this new topic. Such an analysis needs both a literature survey and a perspective from computer experts' and lawyers' point of view. In some societies, the use of prediction or decision support systems may be useful to integrate international human rights safeguards. In this case, artificial law can serve to produce more comprehensive and human rights-protective results than written or living law. In non-democratic countries, it may even be thought that direct decisions and artificial intelligence-made law would be more protective instead of a decision "support" system. Since the values of law are directed towards "human happiness or well-being", it requires that the AI algorithms should always be capable of serving this purpose and based on the rule of law, the principle of justice and equality, and the protection of human rights.

Keywords: AI and law, artificial law, protection of human rights, AI tools for legal systems

Procedia PDF Downloads 75
5880 Subjective Mapping Methodologies: Mapping Local Perceptions with Geographic Information Systems

Authors: A. Llopis Alvarez, D. Muller-Eie

Abstract:

Participatory GIS (geographic information systems) are designed for community mapping exercises in order to produce spatial representations of local knowledge. Ideally, participatory GIS caters to public participation through the use of spatial data in order to increase community-led policy-and decision-making. Having defined a spatial object, such as a neighborhood, subjective mapping involves attaining a description of the spatial, physical, social and psychological characteristics of that spatial object. This paper highlights an emerging appreciation of the subjective component, particularly in spatial analyses. The beliefs, feelings, and behaviors associated with an urban area reflect its sense of place for an individual or a group. It is important therefore to understand what types of beliefs, emotions, and behavioral patterns are relevant to particular resident, groups and urban scales. In this sense, resident’s emotional attachment to their urban areas motivates civic engagement and facilitates awareness of its strengths and its problems. Similarly, subjective perceptions act in complex ways to influence the formation and maintenance of social identity and quality of life. This paper reports on findings from a case study of immigrant population in Norwegian cities, their residential conditions and their relationship to quality of urban life. Cognitive mapping methodologies are used in this study to understand local perceptions of urban qualities. Thus, measures to alleviate disadvantages and improve quality of urban life are more likely to be effective when they are informed by an understanding of a place as constructed by those who live in it, meaning their subjective perceptions about it.

Keywords: mapping methodologies, participatory GIS, perceptual maps, public participation, spatial analysis, subjective perceptions

Procedia PDF Downloads 143
5879 How Whatsappization of the Chatbot Affects User Satisfaction, Trust, and Acceptance in a Drive-Sharing Task

Authors: Nirit Gavish, Rotem Halutz, Liad Neta

Abstract:

Nowadays, chatbots are gaining more and more attention due to the advent of large language models. One of the important considerations in chatbot design is how to create an interface to achieve high user satisfaction, trust, and acceptance. Since WhatsApp conversations sometimes substitute for face-to-face communication, we studied whether WhatsAppization of the chatbot -making the conversation resemble a WhatsApp conversation more- will improve user satisfaction, trust, and acceptance, or whether the opposite will occur due to the Uncanny Valley (UV) effect. The task was a drive-sharing task, in which participants communicated with a textual chatbot via WhatsApp and could decide whether to participate in a ride to college with a driver suggested by the chatbot. WhatsAppization of the chatbot was done in two ways: By a dialog-style conversation (Dialog versus No Dialog), and by adding WhatsApp indicators – “Last Seen”, “Connected”, “Read Receipts”, and “Typing…” (Indicators versus No Indicators). Our 120 participants were randomly assigned to one of the four 2 by 2 design groups, with 30 participants in each. They interacted with the WhatsApp chatbot and then filled out a questionnaire. The results demonstrated that, as expected from the manipulation, the interaction with the chatbot was longer for the dialog condition compared to the no dialog. This extra interaction, however, did not lead to higher acceptance -quite the opposite, since participants in the dialog condition were less willing to implement the decision made at the end of the conversation with the chatbot and continue the interaction with the driver they chose. The results are even more striking when considering the Indicators condition. Both for the satisfaction measures and the trust measures, participants’ ratings were lower in the Indicators condition compared to the No Indicators. Participants in the Indicators condition felt that the ride search process was harder to operate, and slower (even though the actual interaction time was similar). They were less convinced that the chatbot suggested real trips and they trusted the person offering the ride and referred to them by the chatbot less. These effects were more evident for participants who preferred to share their rides using WhatsApp compared to participants who preferred chatbots for that purpose. Considering our findings, we can say that the WhatsAppization of the chatbot was detrimental. This is true for the both chatbot WhatsAppization methods – by making the conversation more a dialog and adding WhatsApp indicators. For the chosen drive-sharing task, the results were, in addition to lower satisfaction, less trust in the chatbot’s suggestion and even in the driver suggested by the chatbot, and lower willingness to actually undertake the suggested ride. In addition, it seems that the most problematic WhatsAppization method was using WhatsApp’s indicators during the interaction with the chatbot. The current study suggests that a conversation with an artificial agent should also not imitate a WhatsApp conversation very closely. With the proliferation of WhatsApp use, the emotional and social aspect of face-to face commination are moving to WhatsApp communication. Based on the current study’s findings, it is possible that the UV effect also occurs in WhatsAppization, and not only in humanization, of the chatbot, with a similar feeling of eeriness, and is more pronounced for people who prefer to use WhatsApp over chatbots. The current research can serve as a starting point to study the very interesting and important topic of chatbots WhatsAppization. More methods of WhatsAppization and other tasks could be the focus of further studies.

Keywords: chatbot, WhatsApp, humanization, Uncanny Valley, drive sharing

Procedia PDF Downloads 48
5878 Bi-objective Network Optimization in Disaster Relief Logistics

Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann

Abstract:

Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.

Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks

Procedia PDF Downloads 79
5877 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 229
5876 Identification and Antibiotic Resistance Rates of Acinetobacter baumannii Strains Isolated from the Respiratory Tract Samples, Obtained from the Different Intensive Care Units

Authors: Recep Kesli, Gulşah Asik, Cengiz Demir, Onur Turkyilmaz

Abstract:

Objective: Acinetobacter baumannii (A. baumannii) can cause health-care associated infections, such as bacteremia, urinary tract and wound infections, endocarditis, meningitis, and pneumonia, particularly in intensive care unit patients. In this study, we aimed to evaluate A. baumannii production in sputum and bronchoalveolar lavage and susceptibilities for antibiotics in a 24 months period. Methods: Between October 2013 and September 2015, Acinetobacter baumannii isolated from respiratory tract speciments were evaluated retrospectively. The strains were isolated from the different intensive care units patients. A. baumannii strains were identified by both the conventional methods and aoutomated identification system -VITEK 2 (bio-Merieux, Marcy l’etoile, France). Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria. Results: All the ninety isolates included in the study were from respiratory tract specimens. While of all the isolated 90 Acinetobacter baumannii strains were found to be resistant (100%), against ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam, resistance rates against other tested antibiotics found as follows; meropenem 77, 86%, imipenem 75, 83%, trimethoprim-sulfamethoxazole (TMP-STX) 69, 76,6%, gentamicin 51, 56,6% and amikacin 48, 53,3%. Colistin was found as the most effective antibiotic against Acinetobacter baumannii, and there were not found any resistant (0%) strain against colistin. Conclusion: This study demonstrated that the no resistance was found in Acinetobacter baumannii against to colistin. High rates of resistance to carbapenems (imipenem and meropenem) and other tested antibiotics (ceftiaxone, ceftazidime, ciprofloxacine, piperacilline-tazobactam, TMP-STX gentamicin and amikacin) also have remarkable resistance rates. There was a significant relationship between demographic features of patients such as age, undergoing mechanical ventilation, length of hospital stay with resistance rates. High resistance rates against antibiotics require implementation of the infection control program and rational use of antibiotics. In the present study, while there were not found colistin resistance, panresistance were found against to ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam.

Keywords: acinetobacter baumannii, antibiotic resistance, multi drug resistance, intensive care unit

Procedia PDF Downloads 282
5875 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 27
5874 Effects of Empathy Priming on Idea Generation

Authors: Tejas Dhadphale

Abstract:

The user-centered design (UCD) approach has led to an increased interest in empathy within the product development process. Designers have explored several empathetic methods and tools such as personas, empathy maps, journey maps, user needs statements and user scenarios to capture and visualize users’ needs. The goal of these tools is not only to generate a deeper and shared understanding of user needs but also to become a point of reference for subsequent decision making, brainstorming and concept evaluation tasks. The purpose of this study is to measure the effect of empathy priming on divergent brainstorming tasks. This study compares the effects of three empathy tools, personas, empathy maps and user needs statements, on ideation fluency and originality of ideas during brainstorming tasks. In a three-between-subjects experimental design study, sixty product design students were randomly assigned to one of three conditions: persona, empathy maps and user needs statements. A one-way, between-subjects analysis of variance (ANOVA) revealed a a statistically significant difference in empathy priming on fluency and originality of ideas. Participants in the persona group showed higher ideation fluency and generated a greater number of original ideas compared to the other groups. The results show that participants in the user need statement group to generate a greater number of feasible and relevant ideas. The study also aims to understand how formatting and visualization of empathy tools impact divergent brainstorming tasks. Participants were interviewed to understand how different visualizations of users’ needs (personas, empathy maps and user needs statements) facilitated idea generation during brainstorming tasks. Implications for design education are discussed.

Keywords: empathy, persona, priming, Design research

Procedia PDF Downloads 87
5873 Research Methodology of Living Environment of Modern Residential Development in St. Petersburg

Authors: Kalina Alina Aidarovna, Khayrullina Yulia Sergeevna

Abstract:

The question of forming quality housing and living environment remains a vexed problem in the current situation of high-rise apartment building in big cities of Russia. At this start up stage of the modern so-called "mass housing" market it needs to identify key quality characteristics on a different scale from apartments to the district. This paper describes the methodology of qualitative assessment of modern mass housing construction, made on the basis of the ITMO university in cooperation with the institute of spatial planning "Urbanika," based on the case study of St. Petersburg’s residential mass housing built in 2011-2014. The methodology of the study of housing and living environment goes back to the native and foreign urbanists of 60s - 80s, such Jane Jacobs, Jan Gehl, Oscar Newman, Krasheninnikov, as well as Sommer, Stools, Kohnen and Sherrod, Krasilnikova, Sychev, Zhdanov, Tinyaeva considering spatial features of living environment in a wide range of its characteristics (environmental control, territorial and personalization, privacy, etc.). Assessment is carrying out on the proposed system of criteria developed for each residential environment scale-district, quarter, courtyard, building surrounding grounds, houses, and flats. Thus the objects of study are planning unit of residential development areas (residential area, neighborhood, quarter) residential units areas (living artist, a house), and households (apartments) consisting of residential units. As a product of identified methodology, after the results of case studies of more than 700 residential complexes in St. Petersburg, we intend the creation of affordable online resource that would allow conducting a detailed qualitative evaluation or comparative characteristics of residential complexes for all participants of the construction market-developers, designers, realtors and buyers. Thereby the main objective of the rating may be achieved to improve knowledge, requirements, and demand for quality housing and living environment among the major stakeholders of the construction market.

Keywords: methodology of living environment, qualitative assessment of mass housing, scale-district, vexed problem

Procedia PDF Downloads 459
5872 Exploring Environmental, Social, and Governance (ESG) Standards for Space Exploration

Authors: Rachael Sullivan, Joshua Berman

Abstract:

The number of satellites orbiting earth are in the thousands now. Commercial launches are increasing, and civilians are venturing into the outer reaches of the atmosphere. As the space industry continues to grow and evolve, so too will the demand on resources, the disparities amongst socio-economic groups, and space company governance standards. Outside of just ensuring that space operations are compliant with government regulations, export controls, and international sanctions, companies should also keep in mind the impact their operations will have on society and the environment. Those looking to expand their operations into outer space should remain mindful of both the opportunities and challenges that they could encounter along the way. From commercial launches promoting civilian space travel—like the recent launches from Blue Origin, Virgin Galactic, and Space X—to regulatory and policy shifts, the commercial landscape beyond the Earth's atmosphere is evolving. But practices will also have to become sustainable. Through a review and analysis of space industry trends, international government regulations, and empirical data, this research explores how Environmental, Social, and Governance (ESG) reporting and investing will manifest within a fast-changing space industry.Institutions, regulators, investors, and employees are increasingly relying on ESG. Those working in the space industry will be no exception. Companies (or investors) that are already engaging or plan to engage in space operations should consider 1) environmental standards and objectives when tackling space debris and space mining, 2) social standards and objectives when considering how such practices may impact access and opportunities for different socioeconomic groups to the benefits of space exploration, and 3) how decision-making and governing boards will function ethically, equitably, and sustainably as we chart new paths and encounter novel challenges in outer space.

Keywords: climate, environment, ESG, law, outer space, regulation

Procedia PDF Downloads 152
5871 Understanding Awareness, Agency and Autonomy of Mothers and Potential of Digital Technology in Expanding Maternal Health Information Access: A Survey of Mothers in Urban India

Authors: Sumiti Saharan, Pallav Patankar, Lily W. Lee

Abstract:

Understanding the health-seeking behaviors and attitudes of women towards maternal health in the context of gender roles and family dynamics is tremendously crucial for designing effective and impactful interventions aimed at improving maternal and child health outcomes. Further, as the digital world becomes more accessible and affordable, it is imperative to scope the potential of digital technology in enabling access to maternal health information in different socio-economic groups (SEGs). In the summer of 2017, we conducted a study with 500 women across different SEGs in urban India who were pregnant or had had a delivery in the last year. The study was undertaken to assess their maternal health information seeking behavior with a particular focus on probing their use of digital technology for health-related information. The study also measured women's decision-making autonomy in the context of maternal health, awareness of their rights to quality and respectful maternal healthcare, and agency to voice their rights. We probed the impact of key variables including education, age, and socioeconomic status on all outcome variables. In terms of health-seeking behaviors, we found that women heavily relied on medical professionals and/or their mothers and mothers-in-law for all maternal health advice. Digital adoption was found to be high across all SEGs, with around 70% of women from all populations using the internet several times a week. On the other hand, use of the internet for both accessing maternal health information and choosing maternity hospitals were both significantly dependent on SEG. The key reasons reported for not using the internet for health purposes were lack of awareness and lack of trust on content accuracy. Decisions around health practices and type of delivery were found to be jointly made by women and other family members. Almost all women reported their husbands to play a key role in all maternal health decisions and for decisions with a clear financial implication like choice of hospital for delivery, husbands were reported to be the sole decision maker by a majority of women. The agency of women was also found to be low in interactions with maternal healthcare providers with a third of respondents not comfortable with voicing their opinions and preferences to their doctors. Interestingly, we find that this relatively low agency was prominent in both lower middle class and middle-class SEGs. Recognition of the sociocultural determinants of behavior is the first step in developing actionable strategies for improving maternal health outcomes. Our study quantifies the agency and autonomy of women in urban India and the variables that impact them. Our findings emphasize the value of gender normative approaches that factor in the key role husbands play in guiding maternal health decisions. They also highlight the power of digital approaches for catalyzing access to maternal health information. These insights into the attitude and behaviors of mothers in context of their sociocultural environments—and their relationship with digital technology—can help pave the way towards designing effective, scalable maternal and child health programs in developing nations like India.

Keywords: access to healthcare information, behavior, digital health, maternal health

Procedia PDF Downloads 137