Search results for: usability performance metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13486

Search results for: usability performance metrics

13276 Empirical Investigation for the Correlation between Object-Oriented Class Lack of Cohesion and Coupling

Authors: Jehad Al Dallal

Abstract:

The design of the internal relationships among object-oriented class members (i.e., attributes and methods) and the external relationships among classes affects the overall quality of the object-oriented software. The degree of relatedness among class members is referred to as class cohesion and the degree to which a class is related to other classes is called class coupling. Well designed classes are expected to exhibit high cohesion and low coupling values. In this paper, using classes of three open-source Java systems, we empirically investigate the relation between class cohesion and coupling. In the empirical study, five lack-of-cohesion metrics and eight coupling metrics are considered. The empirical study results show that class cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation highly depends on the cohesion and coupling measurement approaches.

Keywords: class cohesion measure, class coupling measure, object-oriented class, software quality

Procedia PDF Downloads 236
13275 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images

Authors: Siddhartha Khare, Suyash Khare

Abstract:

Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.

Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC

Procedia PDF Downloads 61
13274 Exploring the Motivations That Drive Paper Use in Clinical Practice Post-Electronic Health Record Adoption: A Nursing Perspective

Authors: Sinead Impey, Gaye Stephens, Lucy Hederman, Declan O'Sullivan

Abstract:

Continued paper use in the clinical area post-Electronic Health Record (EHR) adoption is regularly linked to hardware and software usability challenges. Although paper is used as a workaround to circumvent challenges, including limited availability of a computer, this perspective does not consider the important role paper, such as the nurses’ handover sheet, play in practice. The purpose of this study is to confirm the hypothesis that paper use post-EHR adoption continues as paper provides both a cognitive tool (that assists with workflow) and a compensation tool (to circumvent usability challenges). Distinguishing the different motivations for continued paper-use could assist future evaluations of electronic record systems. Methods: Qualitative data were collected from three clinical care environments (ICU, general ward and specialist day-care) who used an electronic record for at least 12 months. Data were collected through semi-structured interviews with 22 nurses. Data were transcribed, themes extracted using an inductive bottom-up coding approach and a thematic index constructed. Findings: All nurses interviewed continued to use paper post-EHR adoption. While two distinct motivations for paper use post-EHR adoption were confirmed by the data - paper as a cognitive tool and paper as a compensation tool - further finding was that there was an overlap between the two uses. That is, paper used as a compensation tool could also be adapted to function as a cognitive aid due to its nature (easy to access and annotate) or vice versa. Rather than present paper persistence as having two distinctive motivations, it is more useful to describe it as presenting on a continuum with compensation tool and cognitive tool at either pole. Paper as a cognitive tool referred to pages such as nurses’ handover sheet. These did not form part of the patient’s record, although information could be transcribed from one to the other. Findings suggest that although the patient record was digitised, handover sheets did not fall within this remit. These personal pages continued to be useful post-EHR adoption for capturing personal notes or patient information and so continued to be incorporated into the nurses’ work. Comparatively, the paper used as a compensation tool, such as pre-printed care plans which were stored in the patient's record, appears to have been instigated in reaction to usability challenges. In these instances, it is expected that paper use could reduce or cease when the underlying problem is addressed. There is a danger that as paper affords nurses a temporary information platform that is mobile, easy to access and annotate, its use could become embedded in clinical practice. Conclusion: Paper presents a utility to nursing, either as a cognitive or compensation tool or combination of both. By fully understanding its utility and nuances, organisations can avoid evaluating all incidences of paper use (post-EHR adoption) as arising from usability challenges. Instead, suitable remedies for paper-persistence can be targeted at the root cause.

Keywords: cognitive tool, compensation tool, electronic record, handover sheet, nurse, paper persistence

Procedia PDF Downloads 449
13273 Filtration Efficacy of Reusable Full-Face Snorkel Masks for Personal Protective Equipment

Authors: Adrian Kong, William Chang, Rolando Valdes, Alec Rodriguez, Roberto Miki

Abstract:

The Pneumask consists of a custom snorkel-specific adapter that attaches a snorkel-port of the mask to a 3D-printed filter. This full-face snorkel mask was designed for use as personal protective equipment (PPE) during the COVID-19 pandemic when there was a widespread shortage of PPE for medical personnel. Various clinical validation tests have been conducted, including the sealing capability of the mask, filter performance, CO2 buildup, and clinical usability. However, data regarding the filter efficiencies of Pneumask and multiple filter types have not been determined. Using an experimental system, we evaluated the filtration efficiency across various masks and filters during inhalation. Eighteen combinations of respirator models (5 P100 FFRs, 4 Dolfino Masks) and filters (2091, 7093, 7093CN, BB50T) were evaluated for their exposure to airborne particles sized 0.3 - 10.0 microns using an electronic airborne particle counter. All respirator model combinations provided similar performance levels for 1.0-micron, 3.0-micron, 5.0-micron, 10.0-microns, with the greatest differences in the 0.3-micron and 0.5-micron range. All models provided expected performances against all particle sizes, with Class P100 respirators providing the highest performance levels across all particle size ranges. In conclusion, the modified snorkel mask has the potential to protect providers who care for patients with COVID-19 from increased airborne particle exposure.

Keywords: COVID-19, PPE, mask, filtration, efficiency

Procedia PDF Downloads 169
13272 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 39
13271 Developing a Framework for Designing Digital Assessments for Middle-school Aged Deaf or Hard of Hearing Students in the United States

Authors: Alexis Polanco Jr, Tsai Lu Liu

Abstract:

Research on digital assessment for deaf and hard of hearing (DHH) students is negligible. Part of this stems from the DHH assessment design existing at the intersection of the emergent disciplines of usability, accessibility, and child-computer interaction (CCI). While these disciplines have some prevailing guidelines —e.g. in user experience design (UXD), there is Jacob Nielsen’s 10 Usability Heuristics (Nielsen-10); for accessibility, there are the Web Content Accessibility Guidelines (WCAG) & the Principles of Universal Design (PUD)— this research was unable to uncover a unified set of guidelines. Given that digital assessments have lasting implications for the funding and shaping of U.S. school districts, it is vital that cross-disciplinary guidelines emerge. As a result, this research seeks to provide a framework by which these disciplines can share knowledge. The framework entails a process of asking subject-matter experts (SMEs) and design & development professionals to self-describe their fields of expertise, how their work might serve DHH students, and to expose any incongruence between their ideal process and what is permissible at their workplace. This research used two rounds of mixed methods. The first round consisted of structured interviews with SMEs in usability, accessibility, CCI, and DHH education. These practitioners were not designers by trade but were revealed to use designerly work processes. In addition to asking these SMEs about their field of expertise, work process, etc., these SMEs were asked to comment about whether they believed Nielsen-10 and/or PUD were sufficient for designing products for middle-school DHH students. This first round of interviews revealed that Nielsen-10 and PUD were, at best, a starting point for creating middle-school DHH design guidelines or, at worst insufficient. The second round of interviews followed a semi-structured interview methodology. The SMEs who were interviewed in the first round were asked open-ended follow-up questions about their semantic understanding of guidelines— going from the most general sense down to the level of design guidelines for DHH middle school students. Designers and developers who were never interviewed previously were asked the same questions that the SMEs had been asked across both rounds of interviews. In terms of the research goals: it was confirmed that the design of digital assessments for DHH students is inherently cross-disciplinary. Unexpectedly, 1) guidelines did not emerge from the interviews conducted in this study, and 2) the principles of Nielsen-10 and PUD were deemed to be less relevant than expected. Given the prevalence of Nielsen-10 in UXD curricula across academia and certificate programs, this poses a risk to the efficacy of DHH assessments designed by UX designers. Furthermore, the following findings emerged: A) deep collaboration between the disciplines of usability, accessibility, and CCI is low to non-existent; B) there are no universally agreed-upon guidelines for designing digital assessments for DHH middle school students; C) these disciplines are structured academically and professionally in such a way that practitioners may not know to reach out to other disciplines. For example, accessibility teams at large organizations do not have designers and accessibility specialists on the same team.

Keywords: deaf, hard of hearing, design, guidelines, education, assessment

Procedia PDF Downloads 67
13270 A Basic Metric Model: Foundation for an Evidence-Based HRM System

Authors: K. M. Anusha, R. Krishnaveni

Abstract:

Crossing a decade of the 21st century, the paradigm of human resources can be seen evolving with the strategic gene induced into it. There seems to be a radical shift descending as the corporate sector calls on its HR team to become strategic rather than administrative. This transferal eventually requires the metrics employed by these HR teams not to be just operationally reactive but to be aligned to an evidence-based strategic thinking. Realizing the growing need for a prescriptive metric model for effective HR analytics, this study has designed a conceptual framework for a basic metric model that can assist IT-HRM professionals to transition to a practice of evidence-based decision-making to enhance organizational performance.

Keywords: metric model, evidence based HR, HR analytics, strategic HR practices, IT sector

Procedia PDF Downloads 404
13269 On-Ice Force-Velocity Modeling Technical Considerations

Authors: Dan Geneau, Mary Claire Geneau, Seth Lenetsky, Ming -Chang Tsai, Marc Klimstra

Abstract:

Introduction— Horizontal force-velocity profiling (HFVP) involves modeling an athletes linear sprint kinematics to estimate valuable maximum force and velocity metrics. This approach to performance modeling has been used in field-based team sports and has recently been introduced to ice-hockey as a forward skating performance assessment. While preliminary data has been collected on ice, distance constraints of the on-ice test restrict the ability of the athletes to reach their maximal velocity which result in limits of the model to effectively estimate athlete performance. This is especially true of more elite athletes. This report explores whether athletes on-ice are able to reach a velocity plateau similar to what has been seen in overground trials. Fourteen male Major Junior ice-hockey players (BW= 83.87 +/- 7.30 kg, height = 188 ± 3.4cm cm, age = 18 ± 1.2 years n = 14) were recruited. For on-ice sprints, participants completed a standardized warm-up consisting of skating and dynamic stretching and a progression of three skating efforts from 50% to 95%. Following the warm-up, participants completed three on ice 45m sprints, with three minutes of rest in between each trial. For overground sprints, participants completed a similar dynamic warm-up to that of on-ice trials. Following the warm-up participants completed three 40m overground sprint trials. For each trial (on-ice and overground), radar was used to collect instantaneous velocity (Stalker ATS II, Texas, USA) aimed at the participant’s waist. Sprint velocities were modelled using custom Python (version 3.2) script using a mono-exponential function, similar to previous work. To determine if on-ice tirals were achieving a maximum velocity (plateau), minimum acceleration values of the modeled data at the end of the sprint were compared (using paired t-test) between on-ice and overground trials. Significant differences (P<0.001) between overground and on-ice minimum accelerations were observed. It was found that on-ice trials consistently reported higher final acceleration values, indicating a maximum maintained velocity (plateau) had not been reached. Based on these preliminary findings, it is suggested that reliable HFVP metrics cannot yet be collected from all ice-hockey populations using current methods. Elite male populations were not able to achieve a velocity plateau similar to what has been seen in overground trials, indicating the absence of a maximum velocity measure. With current velocity and acceleration modeling techniques, including a dependency of a velocity plateau, these results indicate the potential for error in on-ice HFVP measures. Therefore, these findings suggest that a greater on-ice sprint distance may be required or the need for other velocity modeling techniques, where maximal velocity is not required for a complete profile.   

Keywords: ice-hockey, sprint, skating, power

Procedia PDF Downloads 101
13268 A Development of a Weight-Balancing Control System Based On Android Operating System

Authors: Rattanathip Rattanachai, Piyachai Petchyen, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Weight- Balancing Control System based on the Android Operating System and it provides recommendations on ways of balancing of user’s weight based on daily metabolism process and need so that user can make informed decisions on his or her weight controls. The system also depicts more information on nutrition details. Furthermore, it was designed to suggest to users what kinds of foods they should eat and how to exercise in the right ways. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 3.94 and 4.07 respectively.

Keywords: weight-balancing control, Android operating system, daily metabolism, black box testing

Procedia PDF Downloads 472
13267 Multilabel Classification with Neural Network Ensemble Method

Authors: Sezin Ekşioğlu

Abstract:

Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.

Keywords: multilabel, classification, neural network, KNN

Procedia PDF Downloads 155
13266 The Effectiveness of Congressional Redistricting Commissions: A Comparative Approach Investigating the Ability of Commissions to Reduce Gerrymandering with the Wilcoxon Signed-Rank Test

Authors: Arvind Salem

Abstract:

Voters across the country are transferring the power of redistricting from the state legislatures to commissions to secure “fairer” districts by curbing the influence of gerrymandering on redistricting. Gerrymandering, intentionally drawing distorted districts to achieve political advantage, has become extremely prevalent, generating widespread voter dissatisfaction and resulting in states adopting commissions for redistricting. However, the efficacy of these commissions is dubious, with some arguing that they constitute a panacea for gerrymandering, while others contend that commissions have relatively little effect on gerrymandering. A result showing that commissions are effective would allay these fears, supplying ammunition for activists across the country to advocate for commissions in their state and reducing the influence of gerrymandering across the nation. However, a result against commissions may reaffirm doubts about commissions and pressure lawmakers to make improvements to commissions or even abandon the commission system entirely. Additionally, these commissions are publicly funded: so voters have a financial interest and responsibility to know if these commissions are effective. Currently, nine states place commissions in charge of redistricting, Arizona, California, Colorado, Michigan, Idaho, Montana, Washington, and New Jersey (Hawaii also has a commission but will be excluded for reasons mentioned later). This study compares the degree of gerrymandering in the 2022 election (“after”) to the election in which voters decided to adopt commissions (“before”). The before-election provides a valuable benchmark for assessing the efficacy of commissions since voters in those elections clearly found the districts to be unfair; therefore, comparing the current election to that one is a good way to determine if commissions have improved the situation. At the time Hawaii adopted commissions, it was merely a single at-large district, so it is before metrics could not be calculated, and it was excluded. This study will use three methods to quantify the degree of gerrymandering: the efficiency gap, the percentage of seats and the percentage of votes difference, and the mean-median difference. Each of these metrics has unique advantages and disadvantages, but together, they form a balanced approach to quantifying gerrymandering. The study uses a Wilcoxon Signed-Rank Test with a null hypothesis that the value of the metrics is greater than or equal to after the election than before and an alternative hypothesis that the value of these metrics is greater in the before the election than after using a 0.05 significance level and an expected difference of 0. Accepting the alternative hypothesis would constitute evidence that commissions reduce gerrymandering to a statistically significant degree. However, this study could not conclude that commissions are effective. The p values obtained for all three metrics (p=0.42 for the efficiency gap, p=0.94 for the percentage of seats and percentage of votes difference, and p=0.47 for the mean-median difference) were extremely high and far from the necessary value needed to conclude that commissions are effective. These results halt optimism about commissions and should spur serious discussion about the effectiveness of these commissions and ways to change them moving forward so that they can accomplish their goal of generating fairer districts.

Keywords: commissions, elections, gerrymandering, redistricting

Procedia PDF Downloads 73
13265 An Efficient Resource Management Algorithm for Mobility Management in Wireless Mesh Networks

Authors: Mallikarjuna Rao Yamarthy, Subramanyam Makam Venkata, Satya Prasad Kodati

Abstract:

The main objective of the proposed work is to reduce the overall network traffic incurred by mobility management, packet delivery cost and to increase the resource utilization. The proposed algorithm, An Efficient Resource Management Algorithm (ERMA) for mobility management in wireless mesh networks, relies on pointer based mobility management scheme. Whenever a mesh client moves from one mesh router to another, the pointer is set up dynamically between the previous mesh router and current mesh router based on the distance constraints. The algorithm evaluated for signaling cost, data delivery cost and total communication cost performance metrics. The proposed algorithm is demonstrated for both internet sessions and intranet sessions. The proposed algorithm yields significantly better performance in terms of signaling cost, data delivery cost, and total communication cost.

Keywords: data delivery cost, mobility management, pointer forwarding, resource management, wireless mesh networks

Procedia PDF Downloads 368
13264 Force Feedback Enabled Syringe for Aspiration and Biopsy

Authors: Pelin Su Firat, Sohyung Cho

Abstract:

Biopsy or aspiration procedures are known to be complicated as they involve the penetration of a needle through human tissues, including vital organs. This research presents the design of a force sensor-guided device to be used with syringes and needles for aspiration and biopsy. The development of the device was aimed to help accomplish accurate needle placement and increase the performance of the surgeon in navigating the tool and tracking the target. Specifically, a prototype for a force-sensor embedded syringe has been created using 3D (3-Dimensional) modeling and printing techniques in which two different force sensors were used to provide significant force feedback to users during the operations when needles pernitrate different tissues. From the extensive tests using synthetic tissues, it is shown that the proposed syringe design has accomplished the desired accuracy, efficiency, repeatability, and effectiveness. Further development is desirable through usability tests.

Keywords: biopsy, syringe, force sensors, haptic feedback

Procedia PDF Downloads 71
13263 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 213
13262 Subjective versus Objective Assessment for Magnetic Resonance (MR) Images

Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran

Abstract:

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.

Keywords: medical resonance (MR) images, difference mean opinion score (DMOS), full reference image quality assessment (FR-IQA)

Procedia PDF Downloads 458
13261 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 42
13260 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 46
13259 Enhancing Organizational Performance through Adaptive Learning: A Case Study of ASML

Authors: Ramin Shadani

Abstract:

This study introduces adaptive performance as a key organizational performance dimension and explores the relationship between the dimensions of a learning organization and adaptive performance. A survey was therefore conducted using the dimensions of the Learning Organization Questionnaire (DLOQ), followed by factor analysis and structural equation modeling in order to investigate the dynamics between learning organization practices and adaptive performance. Results confirm that adaptive performance is indeed one important dimension of organizational performance. The study also shows that perceived knowledge and adaptive performance mediate the positive relationship between the practices of a learning organization with perceived financial performance. We extend existing DLOQ research by demonstrating that adaptive performance, as a nonfinancial organizational learning outcome, has a significant impact on financial performance. Our study also provides additional validation of the measures of DLOQ's performance. Indeed, organizations need to take a glance at how the activities of learning and development can provide better overall improvement in performance, especially in enhancing adaptive capability. The study has provided requisite empirical support that activities of learning and development within organizations allow much-improved intangible performance outcomes, especially through adaptive performance.

Keywords: adaptive performance, continuous learning, financial performance, leadership style, organizational learning, organizational performance

Procedia PDF Downloads 34
13258 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry

Authors: Dhanuj M. Gandikota

Abstract:

Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.

Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry

Procedia PDF Downloads 104
13257 Faculty Attendance Management System (FAMS)

Authors: G. C. Almiranez, J. Mercado, L. U. Aumentado, J. M. Mahaguay, J. P. Cruz, M. L. Saballe

Abstract:

This research project focused on the development of an application that aids the university administrators to establish an efficient and effective system in managing faculty attendance and discourage unnecessary absences. The Faculty Attendance Management System (FAMS) is a web based and mobile application which is proven to be efficient and effective in handling and recording data, generating updated reports and analytics needed in managing faculty attendance. The FAMS can facilitate not only a convenient and faster way of gathering and recording of data but it can also provide data analytics, immediate feedback system mechanism and analysis. The software database architecture uses MySQL for web based and SQLite for mobile applications. The system includes different modules that capture daily attendance of faculty members, generate faculty attendance reports and analytics, absences notification system for faculty members, chairperson and dean regarding absences, and immediate communication system concerning the absences incurred. Quantitative and qualitative evaluation showed that the system satisfactory meet the stakeholder’s requirements. The functionality, usability, reliability, performance, and security all turned out to be above average. System testing, integration testing and user acceptance testing had been conducted. Results showed that the system performed very satisfactory and functions as designed. Performance of the system is also affected by Internet infrastructure or connectivity of the university. The faculty analytics generated from the system may not only be used by Deans and Chairperson in their evaluation of faculty performance but as well as the individual faculty to increase awareness on their attendance in class. Hence, the system facilitates effective communication between system stakeholders through FAMS feedback mechanism and up to date posting of information.

Keywords: faculty attendance management system, MySQL, SQLite, FAMS, analytics

Procedia PDF Downloads 439
13256 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 188
13255 Optimizing Usability Testing with Collaborative Method in an E-Commerce Ecosystem

Authors: Markandeya Kunchi

Abstract:

Usability testing (UT) is one of the vital steps in the User-centred design (UCD) process when designing a product. In an e-commerce ecosystem, UT becomes primary as new products, features, and services are launched very frequently. And, there are losses attached to the company if an unusable and inefficient product is put out to market and is rejected by customers. This paper tries to answer why UT is important in the product life-cycle of an E-commerce ecosystem. Secondary user research was conducted to find out work patterns, development methods, type of stakeholders, and technology constraints, etc. of a typical E-commerce company. Qualitative user interviews were conducted with product managers and designers to find out the structure, project planning, product management method and role of the design team in a mid-level company. The paper tries to address the usual apprehensions of the company to inculcate UT within the team. As well, it stresses upon factors like monetary resources, lack of usability expert, narrow timelines, and lack of understanding of higher management as some primary reasons. Outsourcing UT to vendors is also very prevalent with mid-level e-commerce companies, but it has its own severe repercussions like very little team involvement, huge cost, misinterpretation of the findings, elongated timelines, and lack of empathy towards the customer, etc. The shortfalls of the unavailability of a UT process in place within the team and conducting UT through vendors are bad user experiences for customers while interacting with the product, badly designed products which are neither useful and nor utilitarian. As a result, companies see dipping conversions rates in apps and websites, huge bounce rates and increased uninstall rates. Thus, there was a need for a more lean UT system in place which could solve all these issues for the company. This paper highlights on optimizing the UT process with a collaborative method. The degree of optimization and structure of collaborative method is the highlight of this paper. Collaborative method of UT is one in which the centralised design team of the company takes for conducting and analysing the UT. The UT is usually a formative kind where designers take findings into account and uses in the ideation process. The success of collaborative method of UT is due to its ability to sync with the product management method employed by the company or team. The collaborative methods focus on engaging various teams (design, marketing, product, administration, IT, etc.) each with its own defined roles and responsibility in conducting a smooth UT with users In-house. The paper finally highlights the positive results of collaborative UT method after conducting more than 100 In-lab interviews with users across the different lines of businesses. Some of which are the improvement of interaction between stakeholders and the design team, empathy towards users, improved design iteration, better sanity check of design solutions, optimization of time and money, effective and efficient design solution. The future scope of collaborative UT is to make this method leaner, by reducing the number of days to complete the entire project starting from planning between teams to publishing the UT report.

Keywords: collaborative method, e-commerce, product management method, usability testing

Procedia PDF Downloads 119
13254 Evaluation Methods for Question Decomposition Formalism

Authors: Aviv Yaniv, Ron Ben Arosh, Nadav Gasner, Michael Konviser, Arbel Yaniv

Abstract:

This paper introduces two methods for the evaluation of Question Decomposition Meaning Representation (QDMR) as predicted by sequence-to-sequence model and COPYNET parser for natural language questions processing, motivated by the fact that previous evaluation metrics used for this task do not take into account some characteristics of the representation, such as partial ordering structure. To this end, several heuristics to extract such partial dependencies are formulated, followed by the hereby proposed evaluation methods denoted as Proportional Graph Matcher (PGM) and Conversion to Normal String Representation (Nor-Str), designed to better capture the accuracy level of QDMR predictions. Experiments are conducted to demonstrate the efficacy of the proposed evaluation methods and show the added value suggested by one of them- the Nor-Str, for better distinguishing between high and low-quality QDMR when predicted by models such as COPYNET. This work represents an important step forward in the development of better evaluation methods for QDMR predictions, which will be critical for improving the accuracy and reliability of natural language question-answering systems.

Keywords: NLP, question answering, question decomposition meaning representation, QDMR evaluation metrics

Procedia PDF Downloads 78
13253 Performance Analysis of Ad-Hoc Network Routing Protocols

Authors: I. Baddari, A. Riahla, M. Mezghich

Abstract:

Today in the literature, we discover a lot of routing algorithms which some have been the subject of normalization. Two great classes Routing algorithms are defined, the first is the class reactive algorithms and the second that of algorithms proactive. The aim of this work is to make a comparative study between some routing algorithms. Two comparisons are considered. The first will focus on the protocols of the same class and second class on algorithms of different classes (one reactive and the other proactive). Since they are not based on analytical models, the exact evaluation of some aspects of these protocols is challenging. Simulations have to be done in order to study their performances. Our simulation is performed in NS2 (Network Simulator 2). It identified a classification of the different routing algorithms studied in a metrics such as loss of message, the time transmission, mobility, etc.

Keywords: ad-hoc network routing protocol, simulation, NS2, delay, packet loss, wideband, mobility

Procedia PDF Downloads 401
13252 Smart Online Library Catalog System with Query Expansion for the University of the Cordilleras

Authors: Vincent Ballola, Raymund Dilan, Thelma Palaoag

Abstract:

The Smart Online Library Catalog System with Query Expansion seeks to address the low usage of the library because of the emergence of the Internet. Library users are not accustomed to catalog systems that need a query to have the exact words without any mistakes for decent results to appear. The graphical user interface of the current system has a rather skewed learning curve for users to adapt with. With a simple graphical user interface inspired by Google, users can search quickly just by inputting their query and hitting the search button. Because of the query expansion techniques incorporated into the new system such as stemming, thesaurus search, and weighted search, users can have more efficient results from their query. The system will be adding the root words of the user's query to the query itself which will then be cross-referenced to a thesaurus database to search for any synonyms that will be added to the query. The results will then be arranged by the number of times the word has been searched. Online queries will also be added to the results for additional references. Users showed notable increases in efficiency and usability due to the familiar interface and query expansion techniques incorporated in the system. The simple yet familiar design led to a better user experience. Users also said that they would be more inclined in using the library because of the new system. The incorporation of query expansion techniques gives a notable increase of results to users that in turn gives them a wider range of resources found in the library. Used books mean more knowledge imparted to the users.

Keywords: query expansion, catalog system, stemming, weighted search, usability, thesaurus search

Procedia PDF Downloads 388
13251 Application of a Lighting Design Method Using Mean Room Surface Exitance

Authors: Antonello Durante, James Duff, Kevin Kelly

Abstract:

The visual needs of people in modern work based buildings are changing. Self-illuminated screens of computers, televisions, tablets and smart phones have changed the relationship between people and the lit environment. In the past, lighting design practice was primarily based on providing uniform horizontal illuminance on the working plane, but this has failed to ensure good quality lit environments. Lighting standards of today continue to be set based upon a 100 year old approach that at its core, considers the task illuminance of the utmost importance, with this task typically being located on a horizontal plane. An alternative method focused on appearance has been proposed, as opposed to the traditional performance based approach. Mean Room Surface Exitance (MRSE) and Target-Ambient Illuminance Ratio (TAIR) are two new metrics proposed to assess illumination adequacy in interiors. The hypothesis is that these factors will be superior to the existing metrics used, which are horizontal illuminance led. For the six past years, research has examined this, within the Dublin Institute of Technology, with a view to determining the suitability of this approach for application to general lighting practice. Since the start of this research, a number of key findings have been produced that centered on how occupants will react to various levels of MRSE. This paper provides a broad update on how this research has progressed. More specifically, this paper will: i) Demonstrate how MRSE can be measured using HDR images technology, ii) Illustrate how MRSE can be calculated using scripting and an open source lighting computation engine, iii) Describe experimental results that demonstrate how occupants have reacted to various levels of MRSE within experimental office environments.

Keywords: illumination hierarchy (IH), mean room surface exitance (MRSE), perceived adequacy of illumination (PAI), target-ambient illumination ratio (TAIR)

Procedia PDF Downloads 189
13250 On Multiobjective Optimization to Improve the Scalability of Fog Application Deployments Using Fogtorch

Authors: Suleiman Aliyu

Abstract:

Integrating IoT applications with Fog systems presents challenges in optimization due to diverse environments and conflicting objectives. This study explores achieving Pareto optimal deployments for Fog-based IoT systems to address growing QoS demands. We introduce Pareto optimality to balance competing performance metrics. Using the FogTorch optimization framework, we propose a hybrid approach (Backtracking search with branch and bound) for scalable IoT deployments. Our research highlights the advantages of Pareto optimality over single-objective methods and emphasizes the role of FogTorch in this context. Initial results show improvements in IoT deployment cost in Fog systems, promoting resource-efficient strategies.

Keywords: pareto optimality, fog application deployment, resource allocation, internet of things

Procedia PDF Downloads 90
13249 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark

Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos

Abstract:

This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.

Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark

Procedia PDF Downloads 120
13248 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 61
13247 An Approach to Physical Performance Analysis for Judo

Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich

Abstract:

Sport performance analysis is a technique that is becoming every year more important for athletes of every level. Many techniques have been developed to measure and analyse efficiently the performance of athletes in some sports, but in combat sports these techniques found in many times their limits, due to the high interaction between the two opponents during the competition. In this paper the problem will be framed. Moreover the physical performance measurement problem will be analysed and three different techniques to manage it will be presented. All the techniques have been used to analyse the performance of 22 high level Judo athletes.

Keywords: sport performance, physical performance, judo, performance coefficients

Procedia PDF Downloads 415