Search results for: Arbel Yaniv
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: Arbel Yaniv

5 Evaluation Methods for Question Decomposition Formalism

Authors: Aviv Yaniv, Ron Ben Arosh, Nadav Gasner, Michael Konviser, Arbel Yaniv

Abstract:

This paper introduces two methods for the evaluation of Question Decomposition Meaning Representation (QDMR) as predicted by sequence-to-sequence model and COPYNET parser for natural language questions processing, motivated by the fact that previous evaluation metrics used for this task do not take into account some characteristics of the representation, such as partial ordering structure. To this end, several heuristics to extract such partial dependencies are formulated, followed by the hereby proposed evaluation methods denoted as Proportional Graph Matcher (PGM) and Conversion to Normal String Representation (Nor-Str), designed to better capture the accuracy level of QDMR predictions. Experiments are conducted to demonstrate the efficacy of the proposed evaluation methods and show the added value suggested by one of them- the Nor-Str, for better distinguishing between high and low-quality QDMR when predicted by models such as COPYNET. This work represents an important step forward in the development of better evaluation methods for QDMR predictions, which will be critical for improving the accuracy and reliability of natural language question-answering systems.

Keywords: NLP, question answering, question decomposition meaning representation, QDMR evaluation metrics

Procedia PDF Downloads 35
4 Multilayer Thermal Screens for Greenhouse Insulation

Authors: Clara Shenderey, Helena Vitoshkin, Mordechai Barak, Avraham Arbel

Abstract:

Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or U-value, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the U-value reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the U-value by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse.

Keywords: energy-saving thermal screen, greenhouse cover material, heat transfer coefficient, hot box

Procedia PDF Downloads 117
3 An Evolutionary Perspective on the Role of Extrinsic Noise in Filtering Transcript Variability in Small RNA Regulation in Bacteria

Authors: Rinat Arbel-Goren, Joel Stavans

Abstract:

Cell-to-cell variations in transcript or protein abundance, called noise, may give rise to phenotypic variability between isogenic cells, enhancing the probability of survival under stress conditions. These variations may be introduced by post-transcriptional regulatory processes such as non-coding, small RNAs stoichiometric degradation of target transcripts in bacteria. We study the iron homeostasis network in Escherichia coli, in which the RyhB small RNA regulates the expression of various targets as a model system. Using fluorescence reporter genes to detect protein levels and single-molecule fluorescence in situ hybridization to monitor transcripts levels in individual cells, allows us to compare noise at both transcript and protein levels. The experimental results and computer simulations show that extrinsic noise buffers through a feed-forward loop configuration the increase in variability introduced at the transcript level by iron deprivation, illuminating the important role that extrinsic noise plays during stress. Surprisingly, extrinsic noise also decouples of fluctuations of two different targets, in spite of RyhB being a common upstream factor degrading both. Thus, phenotypic variability increases under stress conditions by the decoupling of target fluctuations in the same cell rather than by increasing the noise of each. We also present preliminary results on the adaptation of cells to prolonged iron deprivation in order to shed light on the evolutionary role of post-transcriptional downregulation by small RNAs.

Keywords: cell-to-cell variability, Escherichia coli, noise, single-molecule fluorescence in situ hybridization (smFISH), transcript

Procedia PDF Downloads 137
2 Dishonesty and Achievement: An Experiment of Self-Revealing Individual Cheating

Authors: Gideon Yaniv, Erez Siniver, Yossef Tobol

Abstract:

The extensive body of economic and psychological research correlating between students' cheating and their grade point average (GPA) consistently finds a significant negative relationship between cheating and the GPA. However, this literature is entirely based on students' responses to direct question surveys that inquire whether they have ever cheated on their academic assignments. The present paper reports the results of a two-round experiment designed to expose student cheating at the individual level and correlate it with their GPAs. The experiment involved two classes of third-year economics students incentivized by a competitive reward to answer a multiple-choice trivia quiz without consulting their electronic devices. While this forbiddance was deliberately overlooked in the first round, providing an opportunity to cheat, it was strictly enforced in the second, conducted two months later in the same classes with the same quiz. A comparison of subjects' performance in the two rounds, self-revealed a considerable extent of cheating in the first one. Regressing the individual cheating levels on subjects' gender and GPA exhibited no significant differences in cheating between males and females. However, cheating of both genders was found to significantly increase with their GPA, implying, in sharp contrast with the direct question surveys, that higher achievers are bigger cheaters. A second experiment, which allowed subjects to answer the quiz in the privacy of their own cars, reveals that when really feeling safe to cheat, many subjects would cheat maximally, challenging the literature's claim that people generally cheat modestly.

Keywords: academic achievement, cheating behavior, experimental data, grade-point average

Procedia PDF Downloads 181
1 Development of Green Cement, Based on Partial Replacement of Clinker with Limestone Powder

Authors: Yaniv Knop, Alva Peled

Abstract:

Over the past few years there has been a growing interest in the development of Portland Composite Cement, by partial replacement of the clinker with mineral additives. The motivations to reduce the clinker content are threefold: (1) Ecological - due to lower emission of CO2 to the atmosphere; (2) Economical - due to cost reduction; and (3) Scientific\Technology – improvement of performances. Among the mineral additives being used and investigated, limestone is one of the most attractive, as it is considered natural, available, and with low cost. The goal of the research is to develop green cement, by partial replacement of the clinker with limestone powder while improving the performances of the cement paste. This work studied blended cements with three limestone powder particle diameters: smaller than, larger than, and similarly sized to the clinker particle. Blended cement with limestone consisting of one particle size distribution and limestone consisting of a combination of several particle sizes were studied and compared in terms of hydration rate, hydration degree, and water demand to achieve normal consistency. The performances of these systems were also compared with that of the original cement (without added limestone). It was found that the ability to replace an active material with an inert additive, while achieving improved performances, can be obtained by increasing the packing density of the cement-based particles. This may be achieved by replacing the clinker with limestone powders having a combination of several different particle size distributions. Mathematical and physical models were developed to simulate the setting history from initial to final setting time and to predict the packing density of blended cement with limestone having different sizes and various contents. Besides the effect of limestone, as inert additive, on the packing density of the blended cement, the influence of the limestone particle size on three different chemical reactions were studied; hydration of the cement, carbonation of the calcium hydroxide and the reactivity of the limestone with the hydration reaction products. The main results and developments will be presented.

Keywords: packing density, hydration degree, limestone, blended cement

Procedia PDF Downloads 255