Search results for: lung segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 957

Search results for: lung segmentation

747 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method

Procedia PDF Downloads 513
746 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 499
745 Enhancing the Pricing Expertise of an Online Distribution Channel

Authors: Luis N. Pereira, Marco P. Carrasco

Abstract:

Dynamic pricing is a revenue management strategy in which hotel suppliers define, over time, flexible and different prices for their services for different potential customers, considering the profile of e-consumers and the demand and market supply. This means that the fundamentals of dynamic pricing are based on economic theory (price elasticity of demand) and market segmentation. This study aims to define a dynamic pricing strategy and a contextualized offer to the e-consumers profile in order to improve the number of reservations of an online distribution channel. Segmentation methods (hierarchical and non-hierarchical) were used to identify and validate an optimal number of market segments. A profile of the market segments was studied, considering the characteristics of the e-consumers and the probability of reservation a room. In addition, the price elasticity of demand was estimated for each segment using econometric models. Finally, predictive models were used to define rules for classifying new e-consumers into pre-defined segments. The empirical study illustrates how it is possible to improve the intelligence of an online distribution channel system through an optimal dynamic pricing strategy and a contextualized offer to the profile of each new e-consumer. A database of 11 million e-consumers of an online distribution channel was used in this study. The results suggest that an appropriate policy of market segmentation in using of online reservation systems is benefit for the service suppliers because it brings high probability of reservation and generates more profit than fixed pricing.

Keywords: dynamic pricing, e-consumers segmentation, online reservation systems, predictive analytics

Procedia PDF Downloads 234
744 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning

Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel

Abstract:

Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.

Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection

Procedia PDF Downloads 44
743 Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer

Authors: Rahaba Marima, Clement Penny

Abstract:

The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer.

Keywords: cell-cycle, DNA damage response, Efavirenz, lung cancer

Procedia PDF Downloads 156
742 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model

Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König

Abstract:

In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.

Keywords: fire detection, label annotation, foundation models, object detection, segmentation

Procedia PDF Downloads 11
741 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 408
740 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 88
739 Counting People Utilizing Space-Time Imagery

Authors: Ahmed Elmarhomy, K. Terada

Abstract:

An automated method for counting passerby has been proposed using virtual-vertical measurement lines. Space-time image is representing the human regions which are treated using the segmentation process. Different color space has been used to perform the template matching. A proper template matching has been achieved to determine direction and speed of passing people. Distinguish one or two passersby has been investigated using a correlation between passerby speed and the human-pixel area. Finally, the effectiveness of the presented method has been experimentally verified.

Keywords: counting people, measurement line, space-time image, segmentation, template matching

Procedia PDF Downloads 452
738 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.

Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding

Procedia PDF Downloads 131
737 A Derivative of L-allo Threonine Alleviates Asthmatic Symptoms in vitro and in vivo

Authors: Kun Chun, Jin-Chun Heo, Sang-Han Lee

Abstract:

Asthma is a chronic airway inflammatory disease characterized by the infiltration of inflammatory cells and tissue remodeling. In this study, we examined the anti-asthmatic activity of a derivative of L-allo threonine by in vitro and in vivo anti-asthmatic assays. Ovalbumin (OVA)-induced C57BL/6 mice were used to analyze lung inflammation and cytokine expressions for exhibiting anti-atopic activity of the derivative. LX519290, a derivative of L-allo threonine, induced an increased IFN-γ and a decreased IL-10 mRNA level. This compound exhibited potent anti-asthmatic activity by decreasing immune cell infiltration in the lung, and IL-4 and IL-13 cytokine levels in the serum of OVA-induced mice. These results indicated that chronic airway injury was decreased by LX519290. We also assessed that LX519290 inhibits infiltration of immune cell, mucus release and cytokine expression in an in vivo model. Our results collectively suggest that the L-allo threonine is effective in alleviating asthmatic symptoms by treating inflammatory factors in the lung.

Keywords: asthma, L -allo threonine, LX519290, mice

Procedia PDF Downloads 382
736 The Feasibility of Online, Interactive Workshops to Facilitate Anatomy Education during the UK COVID-19 Lockdowns

Authors: Prabhvir Singh Marway, Kai Lok Chan, Maria-Ruxandra Jinga, Rachel Bok Ying Lee, Matthew Bok Kit Lee, Krishan Nandapalan, Sze Yi Beh, Harry Carr, Christopher Kui

Abstract:

We piloted a structured series of online workshops on the 3D segmentation of anatomical structures from CT scans. 33 participants were recruited from four UK universities for two-day workshops between 2020 and 2021. Open-source software (3D-Slicer) was used. We hypothesized that active participation via real-time screen-sharing and voice-communication via Discord would enable improved engagement and learning, despite national lockdowns. Written feedback indicated positive learning experiences, with subjective measures of anatomical understanding and software confidence improving.

Keywords: medical education, workshop, segmentation, anatomy

Procedia PDF Downloads 200
735 Effect of Total Body Irradiation for Metastatic Lymph Node and Lung Metastasis in Early Stage

Authors: Shouta Sora, Shizuki Kuriu, Radhika Mishra, Ariunbuyan Sukhbaatar, Maya Sakamoto, Shiro Mori, Tetsuya Kodama

Abstract:

Lymph node (LN) metastasis accounts for 20 - 30 % of all deaths in patients with head and neck cancer. Therefore, the control of metastatic lymph nodes (MLNs) is necessary to improve the life prognosis of patients with cancer. In a classical metastatic theory, tumor cells are thought to metastasize hematogenously through a bead-like network of lymph nodes. Recently, a lymph node-mediated hematogenous metastasis theory has been proposed, in which sentinel LNs are regarded as a source of distant metastasis. Therefore, the treatment of MLNs at the early stage is essential to prevent distant metastasis. Radiation therapy is one of the primary therapeutic modalities in cancer treatment. In addition, total body irradiation (TBI) has been reported to act as activation of natural killer cells and increase of infiltration of CD4+ T-cells to tumor tissues. However, the treatment effect of TBI for MLNs remains unclear. This study evaluated the possibilities of low-dose total body irradiation (L-TBI) and middle-dose total body irradiation (M-TBI) for the treatment of MLNs. Mouse breast cancer FM3A-Luc cells were injected into subiliac lymph node (SiLN) of MXH10/Mo/LPR mice to induce the metastasis to the proper axillary lymph node (PALN) and lung. Mice were irradiated for the whole body on 4 days after tumor injection. The L-TBI and M-TBI were defined as irradiations to the whole body at 0.2 Gy and 1.0 Gy, respectively. Tumor growth was evaluated by in vivo bioluminescence imaging system. In the non-irradiated group, tumor activities on SiLN and PALN significantly increased over time, and the metastasis to the lung from LNs was confirmed 28 days after tumor injection. The L-TBI led to a tumor growth delay in PALN but did not control tumor growth in SiLN and metastasis to the lung. In contrast, it was found that the M-TBI significantly delayed the tumor growth of both SiLN and PALN and controlled the distant metastasis to the lung compared with non-irradiated and L-TBI groups. These results suggest that the M-TBI is an effective treatment method for MLNs in the early stage and distant metastasis from lymph nodes via blood vessels connected with LNs.

Keywords: metastatic lymph node, lung metastasis, radiation therapy, total body irradiation, lymphatic system

Procedia PDF Downloads 181
734 Effects of Lung Protection Ventilation Strategies on Postoperative Pulmonary Complications After Noncardiac Surgery: A Network Meta-Analysis of Randomized Controlled Trials

Authors: Ran An, Dang Wang

Abstract:

Background: Mechanical ventilation has been confirmed to increase the incidence of postoperative pulmonary complications (PPCs), and several studies have shown that low tidal volumes combined with positive end-expiratory pressure (PEEP) and recruitment manoeuvres (RM) reduce the incidence of PPCs. However, the optimal lung-protective ventilatory strategy remains unclear. Methods: Multiple databases were searched for randomized controlled trials (RCTs) published prior to October 2023. The association between individual PEEP (iPEEP) or other forms of lung-protective ventilation and the incidence of PPCs was evaluated by Bayesian network meta-analysis. Results: We included 58 studies (11610 patients) in this meta-analysis. The network meta-analysis showed that low ventilation (LVt) combined with iPEEP and RM was associated with significantly lower incidences of PPCs [HVt: OR=0.38 95CrI (0.19, 0.75), LVt: OR=0.33, 95% CrI (0.12, 0.82)], postoperative atelectasis, and pneumonia than was HVt or LVt. In abdominal surgery, LVT combined with iPEEP or medium-to-high PEEP and RM were associated with significantly lower incidences of PPCs, postoperative atelectasis, and pneumonia. LVt combined with iPEEP and RM was ranked the highest, which was based on SUCRA scores. Conclusion: LVt combined with iPEEP and RM decreased the incidences of PPCs, postoperative atelectasis, and pneumonia in noncardiac surgery patients. iPEEP-guided ventilation was the optimal lung protection ventilation strategy. The quality of evidence was moderate.

Keywords: protection ventilation strategies, postoperative pulmonary complications, network meta-analysis, noncardiac surgery

Procedia PDF Downloads 35
733 The Effect of Head Posture on the Kinematics of the Spine During Lifting and Lowering Tasks

Authors: Mehdi Nematimoez

Abstract:

Head posture is paramount to retaining gaze and balance in many activities; its control is thus important in many activities. However, little information is available about the effects of head movement restriction on other spine segment kinematics and movement patterns during lifting and lowering tasks. The aim of this study was to examine the effects of head movement restriction on relative angles and their derivatives using the stepwise segmentation approach during lifting and lowering tasks. Ten healthy men lifted and lowered a box using two styles (stoop and squat), with two loads (i.e., 10 and 20% of body weight); they performed these tasks with two instructed head postures (1. Flexing the neck to keep contact between chin and chest over the task cycle; 2. No instruction, free head posture). The spine was divided into five segments, tracked by six cluster markers (C7, T3, T6, T9, T12, and L5). Relative angles between spine segments and their derivatives (first and second) were analyzed by a stepwise segmentation approach to consider the effect of each segment on the whole spine. Accordingly, head posture significantly affected the derivatives of the relative angles and manifested latency in spine segments movement, i.e., cephalad-to-caudad or caudad-to-cephalad patterns. The relative angles for C7-T3 and T3-T6 increased over the cycle of all lifting and lowering tasks; nevertheless, in lower segments increased significantly when the spine moved into upright standing. However, these effects were clearer during lifting than lowering. Conclusively, the neck flexion can unevenly increase the flexion angles of spine segments from cervical to lumbar over lifting and lowering tasks; furthermore, stepwise segmentation reveals potential for assessing the segmental contribution in spine ROM and movement patterns.

Keywords: head movement restriction, spine kinematics, lifting, lowering, stepwise segmentation

Procedia PDF Downloads 245
732 Active Contours for Image Segmentation Based on Complex Domain Approach

Authors: Sajid Hussain

Abstract:

The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.

Keywords: image segmentation, active contour, level set, Mumford and Shah model

Procedia PDF Downloads 114
731 Murine Pulmonary Responses after Sub-Chronic Exposure to Environmental Ultrafine Particles

Authors: Yara Saleh, Sebastien Antherieu, Romain Dusautoir, Jules Sotty, Laurent Alleman, Ludivine Canivet, Esperanza Perdrix, Pierre Dubot, Anne Platel, Fabrice Nesslany, Guillaume Garcon, Jean-Marc Lo-Guidice

Abstract:

Air pollution is one of the leading causes of premature death worldwide. Among air pollutants, particulate matter (PM) is a major health risk factor, through the induction of cardiopulmonary diseases and lung cancers. They are composed of coarse, fine and ultrafine particles (PM10, PM2.5, and PM0.1 respectively). Ultrafine particles are emerging unregulated pollutants that might have greater toxicity than larger particles, since they are more abundant and consequently have higher surface area per unit of mass. Our project aims to develop a relevant in vivo model of sub-chronic exposure to atmospheric particles in order to elucidate the specific respiratory impact of ultrafine particles compared to fine particulate matter. Quasi-ultrafine (PM0.18) and fine (PM2.5) particles have been collected in the urban industrial zone of Dunkirk in north France during a 7-month campaign, and submitted to physico-chemical characterization. BALB/c mice were then exposed intranasally to 10µg of PM0.18 or PM2.5 3 times a week. After 1 or 3-month exposure, broncho alveolar lavages (BAL) were performed and lung tissues were harvested for histological and transcriptomic analyses. The physico-chemical study of the collected particles shows that there is no major difference in elemental and surface chemical composition between PM0.18 and PM2.5. Furthermore, the results of the cytological analyses carried out show that both types of particulate fractions can be internalized in lung cells. However, the cell count in BAL and preliminary transcriptomic data suggest that PM0.18 could be more reactive and induce a stronger lung inflammation in exposed mice than PM2.5. Complementary studies are in progress to confirm these first data and to identify the metabolic pathways more specifically associated with the toxicity of ultrafine particles.

Keywords: environmental pollution, lung affect, mice, ultrafine particles

Procedia PDF Downloads 240
730 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors

Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri

Abstract:

Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.

Keywords: citrus greening, pattern recognition, feature extraction, classification

Procedia PDF Downloads 184
729 The Comparison of the Effects of Adipose-Derived Mesenchymal Stem Cells Delivery by Systemic and Intra-Tracheal Injection on Elastase-Induced Emphysema Model

Authors: Maryam Radan, Fereshteh Nejad Dehbashi, Vahid Bayati, Mahin Dianat, Seyyed Ali Mard, Zahra Mansouri

Abstract:

Pulmonary emphysema is a pathological respiratory condition identified by alveolar destruction which leads to limitation of airflow and diminished lung function. A substantial body of evidence suggests that mesenchymal stem cells (MSCs) have the ability to induce tissue repair primarily through a paracrine effect. In this study, we aimed to determine the efficacy of Intratracheal adipose-derived mesenchymal stem cells (ADSCs) therapy in comparison to this approach with that of Intravenous (Systemic) therapy. Fifty adult male Sprague–Dawley rats weighing between 180 and 200 g were used in this experiment. The animals were randomized to Control groups (Intratracheal or Intravenous vehicle), Elastase group (intratracheal administration of porcine pancreatic elastase; 25 U/kg on day 0 and day 10th), Elastase+Intratracheal ADSCs therapy (1x107 Cells, on day 28) and Elastase+Systemic ADSCs therapy (1x107 Cells, on day 28). The rats which not subjected to any treatment, considered as the control. All rats were sacrificed 3 weeks later. Morphometric findings in lung tissues (Mean linear intercept) confirmed the establishment of the emphysema model via alveolar disruption. Contrarily, ADSCs administration partially restored alveolar architecture. These results were associated with improving arterial oxygenation, reducing lung edema, and decreasing lung inflammation with higher significant effects in the Intratracheal therapy route. These results documented that the efficacy of intratracheal ADSCs was comparable with intravenous ADSCs therapy. Accordingly, the obtained data suggested that intratracheal delivery of ADSCs would enhance lung repair in pulmonary emphysema. Moreover, this method provides benefits over a systemic administration, such as the reduction of cell number and the low risk to engraft other organs.

Keywords: mesenchymal stem cell, emphysema, Intratracheal, systemic

Procedia PDF Downloads 211
728 High-Resolution Computed Tomography Imaging Features during Pandemic 'COVID-19'

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

By the development of new coronavirus (2019-nCoV) pneumonia, chest high-resolution computed tomography (HRCT) has been one of the main investigative implements. To realize timely and truthful diagnostics, defining the radiological features of the infection is of excessive value. The purpose of this impression was to consider the imaging demonstrations of early-stage coronavirus disease 2019 (COVID-19) and to run an imaging base for a primary finding of supposed cases and stratified interference. The right prophetic rate of HRCT was 85%, sensitivity was 73% for all patients. Total accuracy was 68%. There was no important change in these values for symptomatic and asymptomatic persons. These consequences were besides free of the period of X-ray from the beginning of signs or interaction. Therefore, we suggest that HRCT is a brilliant attachment for early identification of COVID-19 pneumonia in both symptomatic and asymptomatic individuals in adding to the role of predictive gauge for COVID-19 pneumonia. Patients experienced non-contrast HRCT chest checkups and images were restored in a thin 1.25 mm lung window. Images were estimated for the existence of lung scratches & a CT severity notch was allocated separately for each patient based on the number of lung lobes convoluted.

Keywords: COVID-19, radiology, respiratory diseases, HRCT

Procedia PDF Downloads 142
727 Telemedicine and Telemonitoring for Interstitial Lung Disease Patients with Nintedanib

Authors: M. Brockes, S. Beck, A. Sigaroudi, C. Brockes

Abstract:

Over the last years, telemedicine and telemonitoring have become a popular way of treatment, especially in other chronic diseases. Therefore this type of treatment methodology was also implemented in interstitial lung disease (ILD) patients. In January 2024, a new service for patients with interstitial lung disease (ILD) treated with Nintedanib was established, which contains daily telemonitoring (home spirometry, pulse oximetry, and daily level of activity), daily evaluation of parameters as well as a telemedical availability answered by doctors and telemedical specialists throughout 365 days per year. The main motivational points of this service are the early detection of first signs of exacerbations and/or other symptoms/complications as well as easier access to healthcare professionals. The evaluation of the patient’s quality of life and the subjective feeling of safetyness was measured through patient reported experience measurements (PREMs) and patient reported outcome measurements (PROMs). Patients were introduced to the telemedical and telemonitoring service six-months ago. Within this period, every sixty days, the questionnaires were conducted by the scientific employees. Due to the unlimited time frame of the long-term service the evaluation is not completed. The first analysis of patient reported experience measurements (PREMs) and patient reported outcome measurements (PROMs) have shown an increased positive effect on the patients' quality of life as well as an increased positive effect on the subjective feeling of safety at home, plus a reduction and avoidance of secondary damages (e.g., exacerbations, deterioration of typical interstitial lung disease ILD symptoms and pharmaceutical side effects). The first results have shown a tendency that the telemedical treatment combined with telemonitoring at home and the encouragement of patients to actively participate in their healthcare has a positive effect on the patient’s overall well-being and could be implemented as a complementation of the traditional standard of care.

Keywords: avoidance of secondary damages, interstitial lung disease, telemedicine and telemonitoring, subjective feeling of safety

Procedia PDF Downloads 20
726 Histopathological Examination of BALB/C Mice Receiving Strains of Acinetobacter baumannii Resistant to Colistin Antibiotic

Authors: Shahriar Sepahvand, Mohammad Ali Davarpanah

Abstract:

Infections caused by Acinetobacter baumannii are among the common hospital-acquired infections that have seen an increase in antibiotic resistance in recent years. Colistin is the last treatment option against this pathogen. The aim of this study is to investigate the histopathology of BALB/C mice receiving sensitive and resistant strains of Acinetobacter baumannii to colistin. A total of 68 female laboratory mice weighing 30 to 40 grams of the BALB/C breed were studied in this research for three weeks under appropriate laboratory conditions in terms of food and environment. The experimental groups included: control group, second group, third group, fourth group. Lung, liver, spleen, and kidney tissues were removed from anesthetized mice and, after washing in physiological serum, were fixed in 10% formalin for 14 days. For dehydration, alcohol with ascending degrees of 70, 80, 90, and 100 was used. After clearing and soaking in paraffin, the samples were embedded in paraffin. Then, sections with a thickness of 5 microns were prepared and, after staining by hematoxylin-eosin, the samples were ready for study with a light microscope. In liver, spleen, lung, and kidney tissues of mice receiving the colistin-sensitive strain of Acinetobacter baumannii, infiltration of inflammatory cells and hyperemia were observed compared to control group mice. Liver and lung tissues of mice receiving strains of Acinetobacter baumannii resistant to colistin showed tissue destruction in addition to infiltration of inflammatory cells and hyperemia, with more destruction observed in lung tissue.

Keywords: acinetobacter baumannii, colistin antibiotic, histopathological examination, resistant

Procedia PDF Downloads 69
725 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages

Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova

Abstract:

Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.

Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages

Procedia PDF Downloads 167
724 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle

Authors: Hu Ding, Kai Liu, Guoan Tang

Abstract:

The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest

Procedia PDF Downloads 218
723 Symptom Burden and Quality of Life in Advanced Lung Cancer Patients

Authors: Ammar Asma, Bouafia Nabiha, Dhahri Meriem, Ben Cheikh Asma, Ezzi Olfa, Chafai Rim, Njah Mansour

Abstract:

Despite recent advances in treatment of the lung cancer patients, the prognosis remains poor. Information is limited regarding health related quality of life (QOL) status of advanced lung cancer patients. The purposes of this study were: to assess patient reported symptom burden, to measure their QOL, and to identify determinant factors associated with QOL. Materials/Methods: A cross sectional study of 60 patients was carried out from over the period of 03 months from February 1st to 30 April 2016. Patients were recruited in two department of health care: Pneumology department in a university hospital in Sousse and an oncology unit in a University Hospital in Kairouan. Patients with advanced stage (III and IV) of lung cancer who were hospitalized or admitted in the day hospital were recruited by convenience sampling. We used a questionnaire administrated and completed by a trained interviewer. This questionnaire is composed of three parts: demographic, clinical and therapeutic information’s, QOL measurements: based on the SF-36 questionnaire, Symptom’s burden measurement using the Lung Cancer Symptom Scale (LCSS). To assess Correlation between symptoms burden and QOL, we compared the scores of two scales two by two using the Pearson correlation. To identify factors influencing QOL in Lung cancer, a univariate statistical analysis then, a stepwise backward approach, wherein the variables with p< 0.2, were carried out to determine the association between SF-36 scores and different variables. Results: During the study period, 60 patients consented to complete symptom and quality of life questionnaires at a single point time (72% were recruited from day hospital). The majority of patients were male (88%), age ranged from 21 to 79 years with a mean of 60.5 years. Among patients, 48 (80%) were diagnosed as having non-small cell lung carcinoma (NSCLC). Approximately, 60 % (n=36) of patients were in stage IV, 25 % in stage IIIa and 15 % in stage IIIb. For symptom burden, the symptom burden index was 43.07 (Standard Deviation, 21.45). Loss of appetite and fatigue were rated as the most severe symptoms with mean scores (SD): 49.6 (25.7) and 58.2 (15.5). The average overall score of SF36 was 39.3 (SD, 15.4). The physical and emotional limitations had the lowest scores. Univariate analysis showed that factors which influence negatively QOL were: married status (p<0.03), smoking cessation after diagnosis (p<0.024), LCSS total score (p<0.001), LCSS symptom burden index (p<0.001), fatigue (p<0.001), loss of appetite (p<0.001), dyspnea (p<0.001), pain (p<0.002), and metastatic stage (p<0.01). In multivariate analysis, unemployment (p<0.014), smoking cessation after diagnosis (p<0.013), consumption of analgesic (p<0.002) and the indication of an analgesic radiotherapy (p<0.001) are revealed as independent determinants of QOL. The result of the correlation analyses between total LCSS scores and the total and individual domain SF36 scores was significant (p<0.001); the higher total LCSS score is, the poorer QOL is. Conclusion: A built in support of lung cancer patients would better control the symptoms and promote the QOL of these patients.

Keywords: quality of life, lung cancer, metastasis, symptoms burden

Procedia PDF Downloads 381
722 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 257
721 The Bicoid Gradient in the Drosophila Embryo: 3D Modelling with Realistic Egg Geometries

Authors: Alexander V. Spirov, David M. Holloway, Ekaterina M. Myasnikova

Abstract:

Segmentation of the early Drosophila embryo results from the dynamic establishment of spatial gene expression patterns. Patterning occurs on an embryo geometry which is a 'deformed' prolate ellipsoid, with anteroposterior and dorsal-ventral major and minor axes, respectively. Patterning is largely independent along each axis, but some interaction can be seen in the 'bending' of the segmental expression stripes. This interaction is not well understood. In this report, we investigate how 3D geometrical features of the early embryo affect the segmental expression patterning. Specifically, we study the effect of geometry on formation of the Bicoid primary morphogenetic gradient. Our computational results demonstrate that embryos with a much longer ventral than dorsal surface ('bellied') can produce curved Bicoid concentration contours which could activate curved stripes in the downstream pair-rule segmentation genes. In addition, we show that having an extended source for Bicoid in the anterior of the embryo may be necessary for producing the observed exponential form of the Bicoid gradient along the anteroposterior axis.

Keywords: Drosophila embryo, bicoid morphogenetic gradient, exponential expression profile, expression surface form, segmentation genes, 3D modelling

Procedia PDF Downloads 275
720 Astaxanthin Induces Cytotoxicity through Down-Regulating Rad51 Expression in Human Lung Cancer Cells

Authors: Jyh-Cheng Chen, Tai-Jing Wang, Yun-Wei Lin

Abstract:

Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Treatment with astaxanthin decreased Rad51 expression and phospho-AKT protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector significantly rescued the decreased Rad51 protein and mRNA levels in astaxanthin-treated NSCLC cells. Combined treatment with PI3K inhibitors (LY294002 or wortmannin) and astaxanthin further decreased the Rad51 expression in NSCLC cells. Knockdown of Rad51 enhanced astaxanthin-induced cytotoxicity and growth inhibition in NSCLC cells. These findings may have implications for the rational design of future drug regimens incorporating astaxanthin for the treatment of NSCLC.

Keywords: astaxanthin, cytotoxicity, AKT, non-small cell lung cancer, PI3K

Procedia PDF Downloads 297
719 Content-Aware Image Augmentation for Medical Imaging Applications

Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang

Abstract:

Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.

Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving

Procedia PDF Downloads 224
718 Novel Unsupervised Approaches for Traffic Sign Image Segmentation in Autonomous Driving

Authors: B. Vishnupriya, R. Josphineleela

Abstract:

Road sign recognition is a key element in advanced driver-assistance systems (ADAS) and self-driving technologies, as it is fundamental to maintaining safe and effective navigation. Conventional supervised learning approaches rely heavily on extensive labeled datasets for training, which can be resource-intensive and challenging to obtain. This study examines the effectiveness of three unsupervised image segmentation approaches—Kmeans clustering, GrabCut, and Gaussian Mixture Model (GMM)—in detecting road signs within complex settings. Using a publicly available Road Sign dataset from Kaggle, we assess the effectiveness of these methods based on clustering performance metrics. Our results indicate that GMM achieves the highest performance across these metrics, demonstrating superior segmentation accuracy under diverse lighting and weather conditions, followed by GrabCut and K-means clustering. This research highlights the potential of unsupervised techniques in reducing the dependency on labeled data, offering insights for future advancements in road sign detection systems for ADAS and autonomous vehicles.

Keywords: silhouette score, calinski-harabasz index, davies-bouldin index, k-means clustering, grabcut, gaussian mixture mode

Procedia PDF Downloads 1