Search results for: humanized mouse
60 Bioinformatic Design of a Non-toxic Modified Adjuvant from the Native A1 Structure of Cholera Toxin with Membrane Synthetic Peptide of Naegleria fowleri
Authors: Frida Carrillo Morales, Maria Maricela Carrasco Yépez, Saúl Rojas Hernández
Abstract:
Naegleria fowleri is the causative agent of primary amebic meningoencephalitis, this disease is acute and fulminant that affects humans. It has been reported that despite the existence of therapeutic options against this disease, its mortality rate is 97%. Therefore, the need arises to have vaccines that confer protection against this disease and, in addition to developing adjuvants to enhance the immune response. In this regard, in our work group, we obtained a peptide designed from the membrane protein MP2CL5 of Naegleria fowleri called Smp145 that was shown to be immunogenic; however, it would be of great importance to enhance its immunological response, being able to co-administer it with a non-toxic adjuvant. Therefore, the objective of this work was to carry out the bioinformatic design of a peptide of the Naegleria fowleri membrane protein MP2CL5 conjugated with a non-toxic modified adjuvant from the native A1 structure of Cholera Toxin. For which different bioinformatics tools were used to obtain a model with a modification in amino acid 61 of the A1 subunit of the CT (CTA1), to which the Smp145 peptide was added and both molecules were joined with a 13-glycine linker. As for the results obtained, the modification in CTA1 bound to the peptide produces a reduction in the toxicity of the molecule in in silico experiments, likewise, the prediction in the binding of Smp145 to the receptor of B cells suggests that the molecule is directed in specifically to the BCR receptor, decreasing its native enzymatic activity. The stereochemical evaluation showed that the generated model has a high number of adequately predicted residues. In the ERRAT test, the confidence with which it is possible to reject regions that exceed the error values was evaluated, in the generated model, a high score was obtained, which determines that the model has a good structural resolution. Therefore, the design of the conjugated peptide in this work will allow us to proceed with its chemical synthesis and subsequently be able to use it in the mouse meningitis protection model caused by N. fowleri.Keywords: immunology, vaccines, pathogens, infectious disease
Procedia PDF Downloads 9059 Synthesis, Characterization and Biological Properties of Half-Sandwich Complexes of Ruthenium(II), Rhodium(II) and Iridium(III)
Authors: A. Gilewska, J. Masternak, K. Kazimierczuk, L. Turlej, J. Wietrzyk, B. Barszcz
Abstract:
Platinum-based drugs are now widely used as chemotherapeutic agents. However the platinum complexes show the toxic side-effects: i) the development of platinum resistance; ii) the occurrence of severe side effects, such as nephro-, neuro- and ototoxicity; iii) the high toxicity towards human fibroblast. Therefore the development of new anticancer drugs containing different transition-metal ions, for example, ruthenium, rhodium, iridium is a valid strategy in cancer treatment. In this paper, we reported the synthesis, spectroscopic, structural and biological properties of complexes of ruthenium, rhodium, and iridium containing N,N-chelating ligand (2,2’-bisimidazole). These complexes were characterized by elemental analysis, UV-Vis and IR spectroscopy, X-ray diffraction analysis. These complexes exhibit a typical pseudotetrahedral three-legged piano-stool geometry, in which the aromatic arene ring forms the seat of the piano-stool, while the bidentate 2,2’-bisimidazole (ligand) and the one chlorido ligand form the three legs of the stool. The spectroscopy data (IR, UV-Vis) and elemental analysis correlate very well with molecular structures. Moreover, the cytotoxic activity of the complexes was carried out on human cancer cell lines: LoVo (colorectal adenoma), MV-4-11 (myelomonocytic leukaemia), MCF-7 (breast adenocarcinoma) and normal healthy mouse fibroblast BALB/3T3 cell lines. To predict a binding mode, a potential interaction of metal complexes with calf thymus DNA (CT-DNA) and protein (BSA) has been explored using UV absorption and circular dichroism (CD). It is interesting to note that the investigated complexes show no cytotoxic effect towards the normal BALB/3T3 cell line, compared to cisplatin, which IC₅₀ values was determined as 2.20 µM. Importantly, Ru(II) displayed the highest activity against HL-60 (IC₅₀ 4.35 µM). The biological studies (UV-Vis and circular dichroism) suggest that arene-complexes could interact with calf thymus DNA probably via an outside binding mode and interact with protein (BSA).Keywords: ruthenium(II) complex, rhodium(III) complex, iridium(III) complex, biological activity
Procedia PDF Downloads 13558 A Novel Application of CORDYCEPIN (Cordycepssinensis Extract): Maintaining Stem Cell Pluripotency and Improving iPS Generation Efficiency
Authors: Shih-Ping Liu, Cheng-Hsuan Chang, Yu-Chuen Huang, Shih-Yin Chen, Woei-Cherng Shyu
Abstract:
Embryonic stem cells (ES) and induced pluripotnet stem cells (iPS) are both pluripotent stem cells. For mouse stem cells culture technology, leukemia inhibitory factor (LIF) was used to maintain the pluripotency of stem cells in vitro. However, LIF is an expensive reagent. The goal of this study was to find out a pure compound extracted from Chinese herbal medicine that could maintain stem cells pluripotency to replace LIF and improve the iPS generation efficiency. From 20 candidates traditional Chinese medicine we found that Cordycepsmilitaris triggered the up-regulation of stem cells activating genes (Oct4 and Sox2) expression levels in MEF cells. Cordycepin, a major active component of Cordycepsmilitaris, also could up-regulate Oct4 and Sox2 gene expression. Furthermore, we used ES and iPS cells and treated them with different concentrations of Cordycepin (replaced LIF in the culture medium) to test whether it was useful to maintain the pluripotency. The results showed higher expression levels of several stem cells markers in 10 μM Cordycepin-treated ES and iPS cells compared to controls that did not contain LIF, including alkaline phosphatase, SSEA1, and Nanog. Embryonic body formation and differentiation confirmed that 10 μM Cordycepin-containing medium was capable to maintain stem cells pluripotency after four times passages. For mechanism analysis, microarray analysis indicated extracellular matrix and Jak/Stat signaling pathway as the top two deregulated pathways. In ECM pathway, we determined that the integrin αVβ5 expression levels and phosphorylated Src levels increased after Cordycepin treatment. In addition, the phosphorylated Jak2 and phosphorylated Sat3 protein levels were increased after Cordycepin treatment and suppressed with the Jak2 inhibitor, AG490. The expression of cytokines associated with Jak2/Stat3 signaling pathway were also up-regulated by Q-PCR and ELISA assay. Lastly, we used Oct4-GFP MEF cells to test iPS generation efficiency following Cordycepin treatment. We observed that 10 Μm Cordycepin significantly increased the iPS generation efficiency in day 21. In conclusion, we demonstrated Cordycepin could maintain the pluripotency of stem cells through both of ECM and Jak2/Stat3 signaling pathway and improved iPS generation efficiency.Keywords: cordycepin, iPS cells, Jak2/Stat3 signaling pathway, molecular biology
Procedia PDF Downloads 43757 Molecular Pathogenesis of NASH through the Dysregulation of Metabolic Organ Network in the NASH-HCC Model Mouse Treated with Streptozotocin-High Fat Diet
Authors: Bui Phuong Linh, Yuki Sakakibara, Ryuto Tanaka, Elizabeth H. Pigney, Taishi Hashiguchi
Abstract:
NASH is an increasingly prevalent chronic liver disease that can progress to hepatocellular carcinoma and now is attracting interest worldwide. The STAM™ model is a clinically-correlated murine NASH model which shows the same pathological progression as NASH patients and has been widely used for pharmacological and basic research. The multiple parallel hits hypothesis suggests abnormalities in adipocytokines, intestinal microflora, and endotoxins are intertwined and could contribute to the development of NASH. In fact, NASH patients often exhibit gut dysbiosis and dysfunction in adipose tissue and metabolism. However, the analysis of the STAM™ model has only focused on the liver. To clarify whether the STAM™ model can also mimic multiple pathways of NASH progression, we analyzed the organ crosstalk interactions between the liver and the gut and the phenotype of adipose tissue in the STAM™ model. NASH was induced in male mice by a single subcutaneous injection of 200 µg streptozotocin 2 days after birth and feeding with high-fat diet after 4 weeks of age. The mice were sacrificed at NASH stage. Colon samples were snap-frozen in liquid nitrogen and stored at -80˚C for tight junction-related protein analysis. Adipose tissue was prepared into paraffin blocks for HE staining. Blood adiponectin was analyzed to confirm changes in the adipocytokine profile. Tight junction-related proteins in the intestine showed that expression of ZO-1 decreased with the progression of the disease. Increased expression of endotoxin in the blood and decreased expression of Adiponectin were also observed. HE staining revealed hypertrophy of adipocytes. Decreased expression of ZO-1 in the intestine of STAM™ mice suggests the occurrence of leaky gut, and abnormalities in adipocytokine secretion were also observed. Together with the liver, phenotypes in these organs are highly similar to human NASH patients and might be involved in the pathogenesis of NASH.Keywords: Non-alcoholic steatohepatitis, hepatocellular carcinoma, fibrosis, organ crosstalk, leaky gut
Procedia PDF Downloads 15756 Effect of Perceived Importance of a Task in the Prospective Memory Task
Authors: Kazushige Wada, Mayuko Ueda
Abstract:
In the present study, we reanalyzed lapse errors in the last phase of a job, by re-counting near lapse errors and increasing the number of participants. We also examined the results of this study from the perspective of prospective memory (PM), which concerns future actions. This study was designed to investigate whether perceiving the importance of PM tasks caused lapse errors in the last phase of a job and to determine if such errors could be explained from the perspective of PM processing. Participants (N = 34) conducted a computerized clicking task, in which they clicked on 10 figures that they had learned in advance in 8 blocks of 10 trials. Participants were requested to click the check box in the start display of a block and to click the checking off box in the finishing display. This task was a PM task. As a measure of PM performance, we counted the number of omission errors caused by forgetting to check off in the finishing display, which was defined as a lapse error. The perceived importance was manipulated by different instructions. Half the participants in the highly important task condition were instructed that checking off was very important, because equipment would be overloaded if it were not done. The other half in the not important task condition was instructed only about the location and procedure for checking off. Furthermore, we controlled workload and the emotion of surprise to confirm the effect of demand capacity and attention. To manipulate emotions during the clicking task, we suddenly presented a photo of a traffic accident and the sound of a skidding car followed by an explosion. Workload was manipulated by requesting participants to press the 0 key in response to a beep. Results indicated too few forgetting induced lapse errors to be analyzed. However, there was a weak main effect of the perceived importance of the check task, in which the mouse moved to the “END” button before moving to the check box in the finishing display. Especially, the highly important task group showed more such near lapse errors, than the not important task group. Neither surprise, nor workload affected the occurrence of near lapse errors. These results imply that high perceived importance of PM tasks impair task performance. On the basis of the multiprocess framework of PM theory, we have suggested that PM task performance in this experiment relied not on monitoring PM tasks, but on spontaneous retrieving.Keywords: prospective memory, perceived importance, lapse errors, multi process framework of prospective memory.
Procedia PDF Downloads 44655 BSYJ Promoting Homing and Differentiation of Mesenchymal Stem Cells at the Retina of Age-Related Macular Degeneration Model Mice Induced by Sodium Iodate
Authors: Lina Liang, Kai Xu, Jing Zhang
Abstract:
Purpose: Age-related macular degeneration (AMD) is a major leading cause of visual impairment and blindness with no cure currently established. Cell replacement is discussed as a potential therapy for AMD. Besides intravitreal injection and subretinal injection, intravenous administration has been explored as an alternative route. This study is to observe the effect of BSYJ, a traditional Chinese medicine on the homing and differentiation of mesenchymal stem cells transplanted via tail vein injection in an age-related macular degeneration mouse model. Methods: Four-week-old C57BL/6J mice were injected with 40 mg/kg NaIO₃ to induce age-related macular degeneration model. At the second day after NaIO₃ injection, 1×10⁷ GFP labeled bone marrow-derived mesenchymal stem cells (GFP-MSCs) were transplanted via tali vein injection into the experimental mice. Then the mice were randomly divided into two groups, gavaged with either BSYJ solution (BSYJ group, n=12) or distilled water (DW group, n=12). 12 age-matched healthy C57BL/6J mice were fed regularly as normal control. At day 7, day 14, and day 28 after treatment, retina flat mounting was used to detect the homing of mesenchymal stem cells at the retina. Double-labeling immunofluorescence was used to determine the differentiation of mesenchymal stem cells. Results: At 7, 14, 28 days after treatment, the numbers of GFP-MSCs detected by retina flatmount were 10.2 ± 2.5, 14.5 ± 3.4 and 18.7 ± 5.8, respectively in the distilled water group, while 15.7 ± 3.8, 32.3 ± 3.5 and 77.3 ± 6.4 in BSYJ group, the differences between the two groups were significant (p < 0.05). At 28 days after treatment, it was shown by double staining immunofluorescence that there were more GFP positive cells in the retina of BSYJ group than that of the DW group, but none of the cells expressed RPE specific genes such as RPE65 and CRALBP, or photoreceptor genes such as recoverin and rhodopsin either in BSYJ group or DW group. However, GFAP positive cells were found among the cells labeled with GFP, and the double labeling cells were much more in the BSYJ group than the distilled water group. Conclusion: BSYJ could promote homing of mesenchymal stem cells at the retina of age-related macular degeneration model mice induced by NaIO₃, and the differentiation towards to glial cells. Acknowledgement: National Natural Foundation of China (No: 81473736, 81674033,81973912).Keywords: BSYJ, differentiation, homing, mesenchymal stem cells
Procedia PDF Downloads 14154 IL4/IL13 STAT6 Mediated Macrophage Polarization During Acute and Chronic Pancreatitis
Authors: Hager Elsheikh, Juliane Glaubitz, Frank Ulrich Weiss, Matthias Sendler
Abstract:
Aim: Acute pancreatitis (AP) and chronic pancreatitis (CP) are both accompanied by a prominent immune response which influences the course of disease. Whereas during AP the pro-inflammatory immune response dominates, during CP a fibroinflammatory response regulates organ remodeling. The transcription factor signal transducer and activator of transcription 6 (STAT6) is a crucial part of the Type 2 immune response. Here we investigate the role of STAT6 in a mouse model of AP and CP. Material and Methods: AP was induced by hourly repetitive i.p. injections of caerulein (50µg/kg/bodyweight) in C57Bl/6 J and STAT6-/- mice. CP was induced by repetitive caerulein injections 6 times a day, 3 days a week over 4 weeks. Disease severity was evaluated by serum amylase/lipase measurement, H&E staining of pancreas. Pancreatic infiltrate was characterized by immunofluorescent labeling of CD68, CD206, CCR2, CD4 and CD8. Pancreas fibrosis was evaluated by Azan blue staining. qRT-PCR was performed of Arg1, Nos2, Il6, Il1b, Col3a, Socs3 and Ym1. Affymetrix chip array analyses were done to illustrate the IL4/IL13/STAT6 signaling in bone marrow derived macrophages. Results: AP severity is mitigated in STAT6-/- mice, as shown by decreased serum amylase and lipase, as well as histological damage. CP mice surprisingly showed only slightly reduced fibrosis of the pancreas. Also staining of CD206 a classical marker of alternatively activated macrophages showed no decrease of M2-like polarization in the absence of STAT6. In contrast, transcription profile analysis in BMDM showed complete blockade of the IL4/IL13 pathway in STAT6-/- animals. Conclusion: STAT6 signaling pathway is protective during AP and mitigates the pancreatic damage. During chronic pancreatitis the IL4/IL13 – STAT6 axisis involved in organ fibrogenesis. Notably, fibrosis is not dependent on a single signaling pathway, and alternative macrophage activation is also complex and involves different subclasses (M2a, M2b, M2c and M2d) which could be independent of the IL4/IL13 STAT6 axis.Keywords: chronic pancreatitis, macrophages, IL4/IL13, Type immune response
Procedia PDF Downloads 6453 Identification and Characterization of Polysaccharide Biosynthesis Protein (CAPD) of Enterococcus faecium
Authors: Liaqat Ali, Hubert E. Blum, Türkân Sakinc
Abstract:
Enterococcus faecium is an emerging multidrug-resistant nosocomial pathogen increased dramatically worldwide and causing bacteremia, endocarditis, urinary tract and surgical site infections in immunocomprised patients. The capsular polysaccharides that contribute to pathogenesis through evasion of the host innate immune system are also involved in hindering leukocyte killing of enterococci. The gene cluster (enterococcal polysaccharide antigen) of E. faecalis encoding homologues of many genes involved in polysaccharide biosynthesis. We identified two putative loci with 22 kb and 19 kb which contained 11 genes encoding for glycosyltransferases (GTFs); this was confirmed by using genome comparison of already sequenced strains that has no homology to known capsule genes and the epa-locus. The polysaccharide-conjugate vaccines have rapidly emerged as a suitable strategy to combat different pathogenic bacteria, therefore, we investigated a polysaccharide biosynthesis CapD protein in E. faecium contains 336 amino acids and had putative function for N-linked glycosylation. The deletion/knock-out capD mutant was constructed and complemented by homologues recombination method and confirmed by using PCR and sequencing. For further characterization and functional analysis, in-vitro cell culture and in-vivo a mouse infection models were used. Our ΔcapD mutant shows a strong hydrophobicity and all strains exhibited biofilm production. Subsequently, the opsonic activity was tested in an opsonophagocytic assay which shows increased in mutant compared complemented and wild type strains but more than two fold decreased in colonization and adherence was seen on surface of uroepithelial cells. However, a significant higher bacterial colonialization was observed in capD mutant during animal bacteremia infection. Unlike other polysaccharides biosynthesis proteins, CapD does not seems to be a major virulence factor in enterococci but further experiments and attention is needed to clarify its function, exact mechanism and involvement in pathogenesis of enteroccocal nosocomial infections eventually to develop a vaccine/ or targeted therapy.Keywords: E. faecium, pathogenesis, polysaccharides, biofilm formation
Procedia PDF Downloads 33152 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 7251 Liver Regeneration of Small in situ Injury
Authors: Ziwei Song, Junjun Fan, Jeremy Teo, Yang Yu, Yukun Ma, Jie Yan, Shupei Mo, Lisa Tucker-Kellogg, Peter So, Hanry Yu
Abstract:
Liver is the center of detoxification and exposed to toxic metabolites all the time. It is highly regenerative after injury, with the ability to restore even after 70% partial hepatectomy. Most of the previous studies were using hepatectomy as injury models for liver regeneration study. There is limited understanding of small-scale liver injury, which can be caused by either low dose drug consumption or hepatocyte routine metabolism. Although these small in situ injuries do not cause immediate symptoms, repeated injuries will lead to aberrant wound healing in liver. Therefore, the cellular dynamics during liver regeneration is critical for our understanding of liver regeneration mechanism. We aim to study the liver regeneration of small-scale in situ liver injury in transgenic mice labeling actin (Lifeact-GFP). Previous studies have been using sample sections and biopsies of liver, which lack real-time information. In order to trace every individual hepatocyte during the regeneration process, we have developed and optimized an intravital imaging system that allows in vivo imaging of mouse liver for consecutive 5 days, allowing real-time cellular tracking and quantification of hepatocytes. We used femtosecond-laser ablation to make controlled and repeatable liver injury model, which mimics the real-life small in situ liver injury. This injury model is the first case of its kind for in vivo study on liver. We found that small-scale in situ liver injury is repaired by the coordination of hypertrophy and migration of hepatocytes. Hypertrophy is only transient at initial phase, while migration is the main driving force to complete the regeneration process. From cellular aspect, Akt/mTOR pathway is activated immediately after injury, which leads to transient hepatocyte hypertrophy. From mechano-sensing aspect, the actin cable, formed at apical surface of wound proximal hepatocytes, provides mechanical tension for hepatocyte migration. This study provides important information on both chemical and mechanical signals that promote liver regeneration of small in situ injury. We conclude that hypertrophy and migration play a dominant role at different stages of liver regeneration.Keywords: hepatocyte, hypertrophy, intravital imaging, liver regeneration, migration
Procedia PDF Downloads 20450 Quercetin Nanoparticles and Their Hypoglycemic Effect in a CD1 Mouse Model with Type 2 Diabetes Induced by Streptozotocin and a High-Fat and High-Sugar Diet
Authors: Adriana Garcia-Gurrola, Carlos Adrian Peña Natividad, Ana Laura Martinez Martinez, Alberto Abraham Escobar Puentes, Estefania Ochoa Ruiz, Aracely Serrano Medina, Abraham Wall Medrano, Simon Yobanny Reyes Lopez
Abstract:
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by elevated blood glucose levels. Quercetin is a natural flavonoid with a hypoglycemic effect, but reported data are inconsistent due mainly to the structural instability and low solubility of quercetin. Nanoencapsulation is a distinct strategy to overcome the intrinsic limitations of quercetin. Therefore, this work aims to develop a quercetin nano-formulation based on biopolymeric starch nanoparticles to enhance the release and hypoglycemic effect of quercetin in T2DM induced mice model. Starch-quercetin nanoparticles were synthesized using high-intensity ultrasonication, and structural and colloidal properties were determined by FTIR and DLS. For in vivo studies, CD1 male mice (n=25) were divided into five groups (n=5). T2DM was induced using a high-fat and high-sugar diet for 32 weeks and streptozotocin injection. Group 1 consisted of healthy mice fed with a normal diet and water ad libitum; Group 2 were diabetic mice treated with saline solution; Group 3 were diabetic mice treated with glibenclamide; Group 4 were diabetic mice treated with empty nanoparticles; and Group 5 was diabetic mice treated with quercetin nanoparticles. Quercetin nanoparticles had a hydrodynamic size of 232 ± 88.45 nm, a PDI of 0.310 ± 0.04 and a zeta potential of -4 ± 0.85 mV. The encapsulation efficiency of nanoparticles was 58 ± 3.33 %. No significant differences (p = > 0.05) were observed in biochemical parameters (lipids, insulin, and peptide C). Groups 3 and 5 showed a similar hypoglycemic effect, but quercetin nanoparticles showed a longer-lasting effect. Histopathological studies reveal that T2DM mice groups showed degenerated and fatty liver tissue; however, a treated group with quercetin nanoparticles showed liver tissue like that of the healthy mice group. These results demonstrate that quercetin nano-formulations based on starch nanoparticles are effective alternatives with hypoglycemic effects.Keywords: quercetin, diabetes mellitus tipo 2, in vivo study, nanoparticles
Procedia PDF Downloads 3249 Pioneering Technology of Night Photo-Stimulation of the Brain Lymphatic System: Therapy of Brain Diseases during Sleep
Authors: Semyachkina-Glushkovskaya Oxana, Fedosov Ivan, Blokhina Inna, Terskov Andrey, Evsukova Arina, Elovenko Daria, Adushkina Viktoria, Dubrovsky Alexander, Jürgen Kurths
Abstract:
In modern neurobiology, sleep is considered a novel biomarker and a promising therapeutic target for brain diseases. This is due to recent discoveries of the nighttime activation of the brain lymphatic system (BLS), playing an important role in the removal of wastes and toxins from the brain and contributes neuroprotection of the central nervous system (CNS). In our review, we discuss that night stimulation of BLS might be a breakthrough strategy in a new treatment of Alzheimer’s and Parkinson’s disease, stroke, brain trauma, and oncology. Although this research is in its infancy, however, there are pioneering and promising results suggesting that night transcranial photostimulation (tPBM) stimulates more effectively lymphatic removal of amyloid-beta from mouse brain than daily tPBM that is associated with a greater improvement of the neurological status and recognition memory of animals. In our previous study, we discovered that tPBM modulates the tone and permeability of the lymphatic endothelium by stimulating NO formation, promoting lymphatic clearance of wastes and toxins from the brain tissues. We also demonstrate that tPBM can also lead to angio- and lymphangiogenesis, which is another mechanism underlying tPBM-mediated stimulation of BLS. Thus, photo-augmentation of BLS might be a promising therapeutic target for preventing or delaying brain diseases associated with BLS dysfunction. Here we present pioneering technology for simultaneous tPBM in humans and sleep monitoring for stimulation of BLS to remove toxins from CNS and modulation of brain immunity. The wireless-controlled gadget includes a flexible organic light-emitting diode (LED) source that is controlled directly by a sleep-tracking device via a mobile application. The designed autonomous LED source is capable of providing the required therapeutic dose of light radiation at a certain region of the patient’s head without disturbing of sleeping patient. To minimize patients' discomfort, advanced materials like flexible organic LEDs were used. Acknowledgment: This study was supported by RSF project No. 23-75-30001.Keywords: brain diseases, brain lymphatic system, phototherapy, sleep
Procedia PDF Downloads 7148 Chronological Skin System Aging: Improvements in Reversing Markers with Different Routes of Green Tea Extract Administration
Authors: Aliaa Mahmoud Issa
Abstract:
Green tea may provide an alternative treatment for many skin system disorders. Intrinsic or chronological aging represents the structural, functional, and metabolic changes in the skin, which depend on the passage of time per se. The aim of the present study is to compare the effect of green tea extract administration, in drinking water or topically, on the chronological changes of the old Swiss albino mice skin. A total number of forty Swiss albino female mice (Mus musculus) were used; thirty were old females, 50-52 weeks old and the remaining ten young females were about 10 weeks old. The skin of the back of all the studied mice was dehaired with a topical depilatory cream. Treatment with green tea extract was applied in two different ways: in the drinking water (0.5mg/ml/day) or topically, applied to the skin of the dorsal side (6mg/ml water). They were divided into four main groups each of 10 animals: Group I: young untreated, Group II: old untreated groups, Group III: tea-drinking (TD) group, and Group IV: topical tea (TT) group. The animals were euthanized after 3 and 6 weeks from the beginning of green tea extract treatment. The skin was subject to morphometric (epidermal, dermal, and stratum corneum thicknesses; collagen and elastin content) studies. The skin ultrastructure of the groups treated for 6 weeks with the green tea extract was also examined. The old mouse skin was compared to the young one to investigate the chronological changes of the tissue. The results revealed that the skin of mice treated with green tea extract, either topically or to less extent in drinking water, showed a reduction in the aging features manifested by a numerical but statistically insignificant improvement in the morphometric measurements. A remarkable amelioration in the ultrastructure of the old skin was also observed. Generally, green tea extract in the drinking water revealed inconsistent results. The topical application of green tea extract to the skin revealed that the epidermal, dermal and stratum corneum thicknesses and the elastin content, that were statistically significant, approach those of the young group. The ultrastructural study revealed the same observations. The disjunction of the lower epidermal keratinocytes was reduced. It could be concluded that the topical application of green tea extract to the skin of old mice showed improvement in reversing markers of skin system aging more than using the extract in the drinking water.Keywords: aging, green tea extract, morphometry, skin, ultrastructure
Procedia PDF Downloads 13147 Effect of Total Body Irradiation for Metastatic Lymph Node and Lung Metastasis in Early Stage
Authors: Shouta Sora, Shizuki Kuriu, Radhika Mishra, Ariunbuyan Sukhbaatar, Maya Sakamoto, Shiro Mori, Tetsuya Kodama
Abstract:
Lymph node (LN) metastasis accounts for 20 - 30 % of all deaths in patients with head and neck cancer. Therefore, the control of metastatic lymph nodes (MLNs) is necessary to improve the life prognosis of patients with cancer. In a classical metastatic theory, tumor cells are thought to metastasize hematogenously through a bead-like network of lymph nodes. Recently, a lymph node-mediated hematogenous metastasis theory has been proposed, in which sentinel LNs are regarded as a source of distant metastasis. Therefore, the treatment of MLNs at the early stage is essential to prevent distant metastasis. Radiation therapy is one of the primary therapeutic modalities in cancer treatment. In addition, total body irradiation (TBI) has been reported to act as activation of natural killer cells and increase of infiltration of CD4+ T-cells to tumor tissues. However, the treatment effect of TBI for MLNs remains unclear. This study evaluated the possibilities of low-dose total body irradiation (L-TBI) and middle-dose total body irradiation (M-TBI) for the treatment of MLNs. Mouse breast cancer FM3A-Luc cells were injected into subiliac lymph node (SiLN) of MXH10/Mo/LPR mice to induce the metastasis to the proper axillary lymph node (PALN) and lung. Mice were irradiated for the whole body on 4 days after tumor injection. The L-TBI and M-TBI were defined as irradiations to the whole body at 0.2 Gy and 1.0 Gy, respectively. Tumor growth was evaluated by in vivo bioluminescence imaging system. In the non-irradiated group, tumor activities on SiLN and PALN significantly increased over time, and the metastasis to the lung from LNs was confirmed 28 days after tumor injection. The L-TBI led to a tumor growth delay in PALN but did not control tumor growth in SiLN and metastasis to the lung. In contrast, it was found that the M-TBI significantly delayed the tumor growth of both SiLN and PALN and controlled the distant metastasis to the lung compared with non-irradiated and L-TBI groups. These results suggest that the M-TBI is an effective treatment method for MLNs in the early stage and distant metastasis from lymph nodes via blood vessels connected with LNs.Keywords: metastatic lymph node, lung metastasis, radiation therapy, total body irradiation, lymphatic system
Procedia PDF Downloads 18046 Application of Compressed Sensing and Different Sampling Trajectories for Data Reduction of Small Animal Magnetic Resonance Image
Authors: Matheus Madureira Matos, Alexandre Rodrigues Farias
Abstract:
Magnetic Resonance Imaging (MRI) is a vital imaging technique used in both clinical and pre-clinical areas to obtain detailed anatomical and functional information. However, MRI scans can be expensive, time-consuming, and often require the use of anesthetics to keep animals still during the imaging process. Anesthetics are commonly administered to animals undergoing MRI scans to ensure they remain still during the imaging process. However, prolonged or repeated exposure to anesthetics can have adverse effects on animals, including physiological alterations and potential toxicity. Minimizing the duration and frequency of anesthesia is, therefore, crucial for the well-being of research animals. In recent years, various sampling trajectories have been investigated to reduce the number of MRI measurements leading to shorter scanning time and minimizing the duration of animal exposure to the effects of anesthetics. Compressed sensing (CS) and sampling trajectories, such as cartesian, spiral, and radial, have emerged as powerful tools to reduce MRI data while preserving diagnostic quality. This work aims to apply CS and cartesian, spiral, and radial sampling trajectories for the reconstruction of MRI of the abdomen of mice sub-sampled at levels below that defined by the Nyquist theorem. The methodology of this work consists of using a fully sampled reference MRI of a female model C57B1/6 mouse acquired experimentally in a 4.7 Tesla MRI scanner for small animals using Spin Echo pulse sequences. The image is down-sampled by cartesian, radial, and spiral sampling paths and then reconstructed by CS. The quality of the reconstructed images is objectively assessed by three quality assessment techniques RMSE (Root mean square error), PSNR (Peak to Signal Noise Ratio), and SSIM (Structural similarity index measure). The utilization of optimized sampling trajectories and CS technique has demonstrated the potential for a significant reduction of up to 70% of image data acquisition. This result translates into shorter scan times, minimizing the duration and frequency of anesthesia administration and reducing the potential risks associated with it.Keywords: compressed sensing, magnetic resonance, sampling trajectories, small animals
Procedia PDF Downloads 7245 Realistic Modeling of the Preclinical Small Animal Using Commercial Software
Authors: Su Chul Han, Seungwoo Park
Abstract:
As the increasing incidence of cancer, the technology and modality of radiotherapy have advanced and the importance of preclinical model is increasing in the cancer research. Furthermore, the small animal dosimetry is an essential part of the evaluation of the relationship between the absorbed dose in preclinical small animal and biological effect in preclinical study. In this study, we carried out realistic modeling of the preclinical small animal phantom possible to verify irradiated dose using commercial software. The small animal phantom was modeling from 4D Digital Mouse whole body phantom. To manipulate Moby phantom in commercial software (Mimics, Materialise, Leuven, Belgium), we converted Moby phantom to DICOM image file of CT by Matlab and two- dimensional of CT images were converted to the three-dimensional image and it is possible to segment and crop CT image in Sagittal, Coronal and axial view). The CT images of small animals were modeling following process. Based on the profile line value, the thresholding was carried out to make a mask that was connection of all the regions of the equal threshold range. Using thresholding method, we segmented into three part (bone, body (tissue). lung), to separate neighboring pixels between lung and body (tissue), we used region growing function of Mimics software. We acquired 3D object by 3D calculation in the segmented images. The generated 3D object was smoothing by remeshing operation and smoothing operation factor was 0.4, iteration value was 5. The edge mode was selected to perform triangle reduction. The parameters were that tolerance (0.1mm), edge angle (15 degrees) and the number of iteration (5). The image processing 3D object file was converted to an STL file to output with 3D printer. We modified 3D small animal file using 3- Matic research (Materialise, Leuven, Belgium) to make space for radiation dosimetry chips. We acquired 3D object of realistic small animal phantom. The width of small animal phantom was 2.631 cm, thickness was 2.361 cm, and length was 10.817. Mimics software supported efficiency about 3D object generation and usability of conversion to STL file for user. The development of small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.Keywords: mimics, preclinical small animal, segmentation, 3D printer
Procedia PDF Downloads 36544 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay
Authors: Zhen Cao, Yu Zhu, Junxue Fu
Abstract:
Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration
Procedia PDF Downloads 10243 Oleic Acid Enhances Hippocampal Synaptic Efficacy
Authors: Rema Vazhappilly, Tapas Das
Abstract:
Oleic acid is a cis unsaturated fatty acid and is known to be a partially essential fatty acid due to its limited endogenous synthesis during pregnancy and lactation. Previous studies have demonstrated the role of oleic acid in neuronal differentiation and brain phospholipid synthesis. These evidences indicate a major role for oleic acid in learning and memory. Interestingly, oleic acid has been shown to enhance hippocampal long term potentiation (LTP), the physiological correlate of long term synaptic plasticity. However the effect of oleic acid on short term synaptic plasticity has not been investigated. Short term potentiation (STP) is the physiological correlate of short term synaptic plasticity which is the key underlying molecular mechanism of short term memory and neuronal information processing. STP in the hippocampal CA1 region has been known to require the activation of N-methyl-D-aspartate receptors (NMDARs). The NMDAR dependent hippocampal STP as a potential mechanism for short term memory has been a subject of intense interest for the past few years. Therefore in the present study the effect of oleic acid on NMDAR dependent hippocampal STP was determined in mouse hippocampal slices (in vitro) using Multi-electrode array system. STP was induced by weak tetanic Stimulation (one train of 100 Hz stimulations for 0.1s) of the Schaffer collaterals of CA1 region of the hippocampus in slices treated with different concentrations of oleic acid in presence or absence of NMDAR antagonist D-AP5 (30 µM) . Oleic acid at 20 (mean increase in fEPSP amplitude = ~135 % Vs. Control = 100%; P<0.001) and 30 µM (mean increase in fEPSP amplitude = ~ 280% Vs. Control = 100%); P<0.001) significantly enhanced the STP following weak tetanic stimulation. Lower oleic acid concentrations at 10 µM did not modify the hippocampal STP induced by weak tetanic stimulation. The hippocampal STP induced by weak tetanic stimulation was completely blocked by the NMDA receptor antagonist D-AP5 (30µM) in both oleic acid and control treated hippocampal slices. This lead to the conclusion that the hippocampal STP elicited by weak tetanic stimulation and enhanced by oleic acid was NMDAR dependent. Together these findings suggest that oleic acid may enhance the short term memory and neuronal information processing through the modulation of NMDAR dependent hippocampal short-term synaptic plasticity. In conclusion this study suggests the possible role of oleic acid to prevent the short term memory loss and impaired neuronal function throughout development.Keywords: oleic acid, short-term potentiation, memory, field excitatory post synaptic potentials, NMDA receptor
Procedia PDF Downloads 33342 Pomegranates Attenuates Cognitive and Behavioural Deficts and reduces inflammation in a Transgenic Mice Model of Alzheimer's Disease
Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein
Abstract:
Objective: Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioural deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Pomegranates contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani pomegranate extract on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 4% pomegranate. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analysed. Results: APPsw/Tg2576 mice that were fed a standard chow diet without pomegranates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, APPsw/Tg2576 mice that were fed a diet containing 4% pomegranates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Conclusion: Our results suggest that dietary supplementation with pomegranates may slow the progression of cognitive and behavioural impairments in AD. The exact mechanism is still unclear and further extensive research needed.Keywords: Alzheimer's disease, pomegranates, oman, cognitive decline, memory loss, anxiety, inflammation
Procedia PDF Downloads 52741 Morphological and Molecular Evaluation of Dengue Virus Serotype 3 Infection in BALB/c Mice Lungs
Authors: Gabriela C. Caldas, Fernanda C. Jacome, Arthur da C. Rasinhas, Ortrud M. Barth, Flavia B. dos Santos, Priscila C. G. Nunes, Yuli R. M. de Souza, Pedro Paulo de A. Manso, Marcelo P. Machado, Debora F. Barreto-Vieira
Abstract:
The establishment of animal models for studies of DENV infections has been challenging, since circulating epidemic viruses do not naturally infect nonhuman species. Such studies are of great relevance to the various areas of dengue research, including immunopathogenesis, drug development and vaccines. In this scenario, the main objective of this study is to verify possible morphological changes, as well as the presence of antigens and viral RNA in lung samples from BALB/c mice experimentally infected with an epidemic and non-neuroadapted DENV-3 strain. Male BALB/c mice, 2 months old, were inoculated with DENV-3 by intravenous route. After 72 hours of infection, the animals were euthanized and the lungs were collected. Part of the samples was processed by standard technique for analysis by light and transmission electronic microscopies and another part was processed for real-time PCR analysis. Morphological analyzes of lungs from uninfected mice showed preserved tissue areas. In mice infected with DENV-3, the analyzes revealed interalveolar septum thickening with presence of inflammatory infiltrate, foci of alveolar atelectasis and hyperventilation, bleeding foci in the interalveolar septum and bronchioles, peripheral capillary congestion, accumulation of fluid in the blood capillary, signs of interstitial cell necrosis presence of platelets and mononuclear inflammatory cells circulating in the capillaries and/or adhered to the endothelium. In addition, activation of endothelial cells, platelets, mononuclear inflammatory cell and neutrophil-type polymorphonuclear inflammatory cell evidenced by the emission of cytoplasmic membrane prolongation was observed. DEN-like particles were seen in the cytoplasm of endothelial cells. The viral genome was recovered from 3 in 12 lung samples. These results demonstrate that the BALB / c mouse represents a suitable model for the study of the histopathological changes induced by DENV infection in the lung, with tissue alterations similar to those observed in human cases of DEN.Keywords: BALB/c mice, dengue, histopathology, lung, ultrastructure
Procedia PDF Downloads 25340 Understanding the Role of Concussions as a Risk Factor for Multiple Sclerosis
Authors: Alvin Han, Reema Shafi, Alishba Afaq, Jennifer Gommerman, Valeria Ramaglia, Shannon E. Dunn
Abstract:
Adolescents engaged in contact-sports can suffer from recurrent brain concussions with no loss of consciousness and no need for hospitalization, yet they face the possibility of long-term neurocognitive problems. Recent studies suggest that head concussive injuries during adolescence can also predispose individuals to multiple sclerosis (MS). The underlying mechanisms of how brain concussions predispose to MS is not understood. Here, we hypothesize that: (1) recurrent brain concussions prime microglial cells, the tissue resident myeloid cells of the brain, setting them up for exacerbated responses when exposed to additional challenges later in life; and (2) brain concussions lead to the sensitization of myelin-specific T cells in the peripheral lymphoid organs. Towards addressing these hypotheses, we implemented a mouse model of closed head injury that uses a weight-drop device. First, we calibrated the model in male 12 week-old mice and established that a weight drop from a 3 cm height induced mild neurological symptoms (mean neurological score of 1.6+0.4 at 1 hour post-injury) from which the mice fully recovered by 72 hours post-trauma. Then, we performed immunohistochemistry on the brain of concussed mice at 72 hours post-trauma. Despite mice having recovered from all neurological symptoms, immunostaining for leukocytes (CD45) and IBA-1 revealed no peripheral immune infiltration, but an increase in the intensity of IBA1+ staining compared to uninjured controls, suggesting that resident microglia had acquired a more active phenotype. This microglia activation was most apparent in the white matter tracts in the brain and in the olfactory bulb. Immunostaining for the microglia-specific homeostatic marker TMEM119, showed a reduction in TMEM119+ area in the brain of concussed mice compared to uninjured controls, confirming a loss of this homeostatic signal by microglia after injury. Future studies will test whether single or repetitive concussive injury can worsen or accelerate autoimmunity in male and female mice. Understanding these mechanisms will guide the development of timed and targeted therapies to prevent MS from getting started in people at risk.Keywords: concussion, microglia, microglial priming, multiple sclerosis
Procedia PDF Downloads 10039 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications
Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries
Abstract:
A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing
Procedia PDF Downloads 46038 Date Palm Fruits from Oman Attenuates Cognitive and Behavioral Defects and Reduces Inflammation in a Transgenic Mice Model of Alzheimer's Disease
Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein
Abstract:
Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioral deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Date palm fruits contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani date palm fruits on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 2% and 4% Date palm fruits. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analyzed. APPsw/Tg2576 mice that were fed a standard chow diet without dates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, PPsw/Tg2576 mice that were fed a diet containing 2% and 4% dates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Our results suggest that dietary supplementation with dates may slow the progression of cognitive and behavioral impairments in AD. The exact mechanism is still unclear and further extensive research needed.Keywords: Alzheimer's disease, date palm fruits, Oman, cognitive decline, memory loss, anxiety, inflammation
Procedia PDF Downloads 42237 Exploring the Potential of Bio-Inspired Lattice Structures for Dynamic Applications in Design
Authors: Axel Thallemer, Aleksandar Kostadinov, Abel Fam, Alex Teo
Abstract:
For centuries, the forming processes in nature served as a source of inspiration for both architects and designers. It seems as most human artifacts are based on ideas which stem from the observation of the biological world and its principles of growth. As a fact, in the cultural history of Homo faber, materials have been mostly used in their solid state: From hand axe to computer mouse, the principle of employing matter has not changed ever since the first creation. In the scope of history only recently and by the help of additive-generative fabrication processes through Computer Aided Design (CAD), designers were enabled to deconstruct solid artifacts into an outer skin and an internal lattice structure. The intention behind this approach is to create a new topology which reduces resources and integrates functions into an additively manufactured component. However, looking at the currently employed lattice structures, it is very clear that those lattice structure geometries have not been thoroughly designed, but rather taken out of basic-geometry libraries which are usually provided by the CAD. In the here presented study, a group of 20 industrial design students created new and unique lattice structures using natural paragons as their models. The selected natural models comprise both the animate and inanimate world, with examples ranging from the spiraling of narwhal tusks, off-shooting of mangrove roots, minimal surfaces of soap bubbles, up to the rhythmical arrangement of molecular geometry, like in the case of SiOC (Carbon-Rich Silicon Oxicarbide). This ideation process leads to a design of a geometric cell, which served as a basic module for the lattice structure, whereby the cell was created in visual analogy to its respective natural model. The spatial lattices were fabricated additively in mostly [X]3 by [Y]3 by [Z]3 units’ volumes using selective powder bed melting in polyamide with (z-axis) 50 mm and 100 µm resolution and subdued to mechanical testing of their elastic zone in a biomedical laboratory. The results demonstrate that additively manufactured lattice structures can acquire different properties when they are designed in analogy to natural models. Several of the lattices displayed the ability to store and return kinetic energy, while others revealed a structural failure which can be exploited for purposes where a controlled collapse of a structure is required. This discovery allows for various new applications of functional lattice structures within industrially created objects.Keywords: bio-inspired, biomimetic, lattice structures, additive manufacturing
Procedia PDF Downloads 14736 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis
Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren
Abstract:
Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1
Procedia PDF Downloads 23535 Expression of CASK Antibody in Non-Mucionus Colorectal Adenocarcinoma and Its Relation to Clinicopathological Prognostic Factors
Authors: Reham H. Soliman, Noha Noufal, Howayda AbdelAal
Abstract:
Calcium/calmodulin-dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinase (MAGUK) family and has been proposed as a mediator of cell-cell adhesion and proliferation, which can contribute to tumorogenesis. CASK has been linked as a good prognostic factor with some tumor subtypes, while considered as a poor prognostic marker in others. To our knowledge, no sufficient evidence of CASK role in colorectal cancer is available. The aim of this study is to evaluate the expression of Calcium/calmodulin-dependent serine protein kinase (CASK) in non-mucinous colorectal adenocarcinoma and adenomatous polyps as precursor lesions and assess its prognostic significance. The study included 42 cases of conventional colorectal adenocarcinoma and 15 biopsies of adenomatous polyps with variable degrees of dysplasia. They were reviewed for clinicopathological prognostic factors and stained by CASK; mouse, monoclonal antibody using heat-induced antigen retrieval immunohistochemical techniques. The results showed that CASK protein was significantly overexpressed (p <0.05) in CRC compared with adenoma samples. The CASK protein was overexpressed in the majority of CRC samples with 85.7% of cases showing moderate to strong expression, while 46.7% of adenomas were positive. CASK overexpression was significantly correlated with both TNM stage and grade of differentiation (p <0.05). There was a significantly higher expression in tumor samples with early stages (I/II) rather than advanced stage (III/IV) and with low grade (59.5%) rather than high grade (40.5%). Another interesting finding was found among the adenomas group, where the stronger intensity of staining was observed in samples with high grade dysplasia (33.3%) than those of lower grades (13.3%). In conclusion, this study shows that there is significant overexpression of CASK protein in CRC as well as in adenomas with high grade dysplasia. This indicates that CASK is involved in the process of carcinogenesis and functions as a potential trigger of the adenoma-carcinoma cascade. CASK was significantly overexpressed in early stage and low-grade tumors rather than tumors with advanced stage and higher histological grades. This suggests that CASK protein is a good prognostic factor. We suggest that CASK affects CRC in two different ways derived from its physiology. CASK as part of MAGUK family can stimulate proliferation and through its cell membrane localization and as a mediator of cell-cell adhesion might contribute in tumor confinement and localization.Keywords: CASK, colorectal cancer, overexpression, prognosis
Procedia PDF Downloads 27734 Transgenerational Impact of Intrauterine Hyperglycaemia to F2 Offspring without Pre-Diabetic Exposure on F1 Male Offspring
Authors: Jun Ren, Zhen-Hua Ming, He-Feng Huang, Jian-Zhong Sheng
Abstract:
Adverse intrauterine stimulus during critical or sensitive periods in early life, may lead to health risk not only in later life span, but also further generations. Intrauterine hyperglycaemia, as a major feature of gestational diabetes mellitus (GDM), is a typical adverse environment for both F1 fetus and F1 gamete cells development. However, there is scare information of phenotypic difference of metabolic memory between somatic cells and germ cells exposed by intrauterine hyperglycaemia. The direct transmission effect of intrauterine hyperglycaemia per se has not been assessed either. In this study, we built a GDM mice model and selected male GDM offspring without pre-diabetic phenotype as our founders, to exclude postnatal diabetic influence on gametes, thereby investigate the direct transmission effect of intrauterine hyperglycaemia exposure on F2 offspring, and we further compared the metabolic difference of affected F1-GDM male offspring and F2 offspring. A GDM mouse model of intrauterine hyperglycemia was established by intraperitoneal injection of streptozotocin after pregnancy. Pups of GDM mother were fostered by normal control mothers. All the mice were fed with standard food. Male GDM offspring without metabolic dysfunction phenotype were crossed with normal female mice to obtain F2 offspring. Body weight, glucose tolerance test, insulin tolerance test and homeostasis model of insulin resistance (HOMA-IR) index were measured in both generations at 8 week of age. Some of F1-GDM male mice showed impaired glucose tolerance (p < 0.001), none of F1-GDM male mice showed impaired insulin sensitivity. Body weight of F1-GDM mice showed no significance with control mice. Some of F2-GDM offspring exhibited impaired glucose tolerance (p < 0.001), all the F2-GDM offspring exhibited higher HOMA-IR index (p < 0.01 of normal glucose tolerance individuals vs. control, p < 0.05 of glucose intolerance individuals vs. control). All the F2-GDM offspring exhibited higher ITT curve than control (p < 0.001 of normal glucose tolerance individuals, p < 0.05 of glucose intolerance individuals, vs. control). F2-GDM offspring had higher body weight than control mice (p < 0.001 of normal glucose tolerance individuals, p < 0.001 of glucose intolerance individuals, vs. control). While glucose intolerance is the only phenotype that F1-GDM male mice may exhibit, F2 male generation of healthy F1-GDM father showed insulin resistance, increased body weight and/or impaired glucose tolerance. These findings imply that intrauterine hyperglycaemia exposure affects germ cells and somatic cells differently, thus F1 and F2 offspring demonstrated distinct metabolic dysfunction phenotypes. And intrauterine hyperglycaemia exposure per se has a strong influence on F2 generation, independent of postnatal metabolic dysfunction exposure.Keywords: inheritance, insulin resistance, intrauterine hyperglycaemia, offspring
Procedia PDF Downloads 23633 Phage Therapy as a Potential Solution in the Fight against Antimicrobial Resistance
Authors: Sanjay Shukla
Abstract:
Excessive use of antibiotics is a main problem in the treatment of wounds and other chronic infections and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most effective approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of current study was to investigate the efficiency of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in double agar overlay method out of 150 sewage samples. In TEM recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9 and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate was very safe, did not show any appearance of abscess formation which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureus which indicates that they are good prophylactic agent. The S. aureus inoculated mice were completely recovered by bacteriophage administration with 100% recovery which was very good as compere to conventional therapy. In present study ten chronic cases of wound were treated with phage lysate and follow up of these cases was done regularly up to ten days (at 0, 5 and 10 d). Result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for treatment of septic chronic wounds.Keywords: phage therapy, phage lysate, antimicrobial resistance, S. aureus
Procedia PDF Downloads 11632 The Beneficial Effects of Inhibition of Hepatic Adaptor Protein Phosphotyrosine Interacting with PH Domain and Leucine Zipper 2 on Glucose and Cholesterol Homeostasis
Authors: Xi Chen, King-Yip Cheng
Abstract:
Hypercholesterolemia, characterized by high low-density lipoprotein cholesterol (LDL-C), raises cardiovascular events in patients with type 2 diabetes (T2D). Although several drugs, such as statin and PCSK9 inhibitors, are available for the treatment of hypercholesterolemia, they exert detrimental effects on glucose metabolism and hence increase the risk of T2D. On the other hand, the drugs used to treat T2D have minimal effect on improving the lipid profile. Therefore, there is an urgent need to develop treatments that can simultaneously improve glucose and lipid homeostasis. Adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 2 (APPL2) causes insulin resistance in the liver and skeletal muscle via inhibiting insulin and adiponectin actions in animal models. Single-nucleotide polymorphisms in the APPL2 gene were associated with LDL-C, non-alcoholic fatty liver disease, and coronary artery disease in humans. The aim of this project is to investigate whether APPL2 antisense oligonucleotide (ASO) can alleviate dietary-induced T2D and hypercholesterolemia. High-fat diet (HFD) was used to induce obesity and insulin resistance in mice. GalNAc-conjugated APPL2 ASO (GalNAc-APPL2-ASO) was used to silence hepatic APPL2 expression in C57/BL6J mice selectively. Glucose, lipid, and energy metabolism were monitored. Immunoblotting and quantitative PCR analysis showed that GalNAc-APPL2-ASO treatment selectively reduced APPL2 expression in the liver instead of other tissues, like adipose tissues, kidneys, muscle, and heart. The glucose tolerance test and insulin sensitivity test revealed that GalNAc-APPL2-ASO improved glucose tolerance and insulin sensitivity progressively. Blood chemistry analysis revealed that the mice treated with GalNAc-APPL2-ASO had significantly lower circulating levels of total cholesterol and LDL cholesterol. However, there was no difference in circulating levels of high-density lipoprotein (HDL) cholesterol, triglyceride, and free fatty acid between the mice treated with GalNac-APPL2-ASO and GalNAc-Control-ASO. No obvious effect on food intake, body weight, and liver injury markers after GalNAc-APPL2-ASO treatment was found, supporting its tolerability and safety. We showed that selectively silencing hepatic APPL2 alleviated insulin resistance and hypercholesterolemia and improved energy metabolism in the dietary-induced obese mouse model, indicating APPL2 as a therapeutic target for metabolic diseases.Keywords: APPL2, antisense oligonucleotide, hypercholesterolemia, type 2 diabetes
Procedia PDF Downloads 6631 Bacteriophage Is a Novel Solution of Therapy Against S. aureus Having Multiple Drug Resistance
Authors: Sanjay Shukla, A. Nayak, R. K. Sharma, A. P. Singh, S. P. Tiwari
Abstract:
Excessive use of antibiotics is a major problem in the treatment of wounds and other chronic infections, and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most promising approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of the present study was to evaluate the efficacy of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by the double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in the double agar overlay method out of 150 sewage samples. In TEM, recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9, and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate were very safe, did not show any appearance of abscess formation, which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureuswhich indicates that they are good prophylactic agent. The S. aureusinoculated mice were completely recovered by bacteriophage administration with 100% recovery, which was very good as compere to conventional therapy. In the present study, ten chronic cases of the wound were treated with phage lysate, and follow up of these cases was done regularly up to ten days (at 0, 5, and 10 d). The result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for the treatment of septic chronic wounds.Keywords: phage therapy, S aureus, antimicrobial resistance, lytic phage, and bacteriophage
Procedia PDF Downloads 115