Search results for: fracture management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9759

Search results for: fracture management

9549 Brittle Fracture Tests on Steel Bridge Bearings: Application of the Potential Drop Method

Authors: Natalie Hoyer

Abstract:

Usually, steel structures are designed for the upper region of the steel toughness-temperature curve. To address the reduced toughness properties in the temperature transition range, additional safety assessments based on fracture mechanics are necessary. These assessments enable the appropriate selection of steel materials to prevent brittle fracture. In this context, recommendations were established in 2011 to regulate the appropriate selection of steel grades for bridge bearing components. However, these recommendations are no longer fully aligned with more recent insights: Designing bridge bearings and their components in accordance with DIN EN 1337 and the relevant sections of DIN EN 1993 has led to an increasing trend of using large plate thicknesses, especially for long-span bridges. However, these plate thicknesses surpass the application limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with the regulations outlined in DIN EN 1993-1-10 regarding material toughness and through-thickness properties requires some further modifications. Therefore, these standards cannot be directly applied to the material selection for bearings without additional information. In addition, recent findings indicate that certain bridge bearing components are subjected to high fatigue loads, necessitating consideration in structural design, material selection, and calculations. To address this issue, the German Center for Rail Traffic Research initiated a research project aimed at developing a proposal to enhance the existing standards. This proposal seeks to establish guidelines for the selection of steel materials for bridge bearings to prevent brittle fracture, particularly for thick plates and components exposed to specific fatigue loads. The results derived from theoretical analyses, including finite element simulations and analytical calculations, are verified through component testing on a large-scale. During these large-scale tests, where a brittle failure is deliberately induced in a bearing component, an artificially generated defect is introduced into the specimen at the predetermined hotspot. Subsequently, a dynamic load is imposed until the crack initiation process transpires, replicating realistic conditions akin to a sharp notch resembling a fatigue crack. To stop the action of the dynamic load in time, it is important to precisely determine the point at which the crack size transitions from stable crack growth to unstable crack growth. To achieve this, the potential drop measurement method is employed. The proposed paper informs about the choice of measurement method (alternating current potential drop (ACPD) or direct current potential drop (DCPD)), presents results from correlations with created FE models, and may proposes a new approach to introduce beach marks into the fracture surface within the framework of potential drop measurement.

Keywords: beach marking, bridge bearing design, brittle fracture, design for fatigue, potential drop

Procedia PDF Downloads 4
9548 Sudan’s Approach to Knowledge Management in Disaster Management

Authors: Mohamed Abdalla Elamein Boshara, Peter Charles Woods, Nour Eldin Mohamed Elshaiekh

Abstract:

Knowledge Management has become very important for Disaster Management response and planning. This paper proposes the implementation of a Knowledge Management System with a sustainable data collection mechanism for reliable and timely information management to support decision makers in making the right decisions in the timely manner.

Keywords: knowledge management, disaster management, incident tracking, web application

Procedia PDF Downloads 750
9547 Prediction of Fracture Aperture in Fragmented Rocks

Authors: Hossein Agheshlui, Stephan Matthai

Abstract:

In fractured rock masses open fractures tend to act as the main pathways of fluid flow. The permeability of a rock fracture depends on its aperture. The change of aperture with stress can cause a many-orders-of-magnitude change in the hydraulic conductivity at moderate compressive stress levels. In this study, the change of aperture in fragmented rocks is investigated using finite element analysis. A full 3D mechanical model of a simplified version of an outcrop analog is created and studied. A constant initial aperture value is applied to all fractures. Different far field stresses are applied and the change of aperture is monitored considering the block to block interaction. The fragmented rock layer is assumed to be sandwiched between softer layers. Frictional contact forces are defined at the layer boundaries as well as among contacting rock blocks. For a given in situ stress, the blocks slide and contact each other, resulting in new aperture distributions. A map of changed aperture is produced after applying the in situ stress and compared to the initial apertures. Subsequently, the permeability of the system before and after the stress application is compared.

Keywords: fractured rocks, mechanical model, aperture change due to stress, frictional interface

Procedia PDF Downloads 390
9546 Analgesia in Acute Traumatic Rib Fractures

Authors: A. Duncan, A. Blake, A. O'Gara, J. Fitzgerald

Abstract:

Introduction: Acute traumatic rib fractures have significant morbidity and mortality and are a commonly seen injury in trauma patients. Rib fracture pain can often be acute and can prove challenging to manage. We performed an audit on patients with acute traumatic rib fractures with the aim of composing a referral and treatment pathway for such patients. Methods: From January 2021 to January 2022, the pain medicine service encouraged early referral of all traumatic rib fractures to the pain service for a multi-modal management approach. A retrospective audit of analgesic management was performed on a select cohort of 24 patients, with a mean age of 67, of which 19 had unilateral rib fractures. Results: 17 of 24 patients (71%) underwent local, regional block as part of a multi-modal analgesia regime. Only one regional complication was observed, seen with hypotension occurring in one patient with a thoracic epidural. The group who did not undergo regional block had a length of stay (LOS) 17 days longer than those who did (27 vs. 10) and higher rates of pneumonia (29% vs. 18%). Conclusion: Early referral to pain specialists is an important component of the effective management of acute traumatic rib fractures. From our audit, it is evident that regional blocks can be effectively used in these cases as part of a multi-modal analgesia regime and may confer benefits in terms of respiratory complications and length of stay.

Keywords: rib fractures, regional blocks, thoracic epidural, erector spina block

Procedia PDF Downloads 54
9545 Simulation Study on Effects of Surfactant Properties on Surfactant Enhanced Oil Recovery from Fractured Reservoirs

Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsaeter

Abstract:

One objective of this work is to analyze the effects of surfactant properties (viscosity, concentration, and adsorption) on surfactant enhanced oil recovery at laboratory scale. The other objective is to obtain the functional relationships between surfactant properties and the ultimate oil recovery and oil recovery rate. A core is cut into two parts from the middle to imitate the matrix with a horizontal fracture. An injector and a producer are at the left and right sides of the fracture separately. The middle slice of the core is used as the model in this paper, whose size is 4cm x 0.1cm x 4.1cm, and the space of the fracture in the middle is 0.1 cm. The original properties of matrix, brine, oil in the base case are from Ekofisk Field. The properties of surfactant are from literature. Eclipse is used as the simulator. The results are followings: 1) The viscosity of surfactant solution has a positive linear relationship with surfactant oil recovery time. And the relationship between viscosity and oil production rate is an inverse function. The viscosity of surfactant solution has no obvious effect on ultimate oil recovery. Since most of the surfactant has no big effect on viscosity of brine, the viscosity of surfactant solution is not a key parameter of surfactant screening for surfactant flooding in fractured reservoirs. 2) The increase of surfactant concentration results a decrease of oil recovery rate and an increase of ultimate oil recovery. However, there are no functions could describe the relationships. Study on economy should be conducted because of the price of surfactant and oil. 3) In the study of surfactant adsorption, assume that the matrix wettability is changed to water-wet when the surfactant adsorption is to the maximum at all cases. And the ratio of surfactant adsorption and surfactant concentration (Cads/Csurf) is used to estimate the functional relationship. The results show that the relationship between ultimate oil recovery and Cads/Csurf is a logarithmic function. The oil production rate has a positive linear relationship with exp(Cads/Csurf). The work here could be used as a reference for the surfactant screening of surfactant enhanced oil recovery from fractured reservoirs. And the functional relationships between surfactant properties and the oil recovery rate and ultimate oil recovery help to improve upscaling methods.

Keywords: fractured reservoirs, surfactant adsorption, surfactant concentration, surfactant EOR, surfactant viscosity

Procedia PDF Downloads 146
9544 A Modified Open Posterior Approach for the Fixation of Posterior Cruciate Ligament Tibial Avulsion Fractures

Authors: Babak Mirzashahi, Arvin Najafi, Pejman Mansouri, Mahmoud Farzan

Abstract:

Background: The most effective treatment of posterior cruciate ligament (PCL) tears and the consequence of untreated PCL injuries remain controversial. Objectives: The aim of this study is to assess outcomes of fixation of tibial posterior cruciate ligament (PCL) avulsion fractures via a modified technique. Patients and Methods: From January, 2009 to March, 2012, there were 45 cases of PCL tibial avulsion fractures that were referred to our hospital and were managed through a modified open posterior approach. Fixation of Tibial PCL avulsion fractures were fixed by means of a lag screw and washer placed through our modified open posterior approach. Range of motion was begun on the first postoperative day. Clinical stability, range of motion, gastrocnemius muscle strength, radiographic investigation, and patient’s overall quality of life was analyzed at final follow up visit. Results: The average of overall musculoskeletal functional evaluation scores was 15 (range 3–35). All patients achieved union of their fracture and had clinically stable knees at the latest follow-up. The mean preoperative Lysholm score for 15 knees was 62 ± 8 (range, 50-75); the mean postoperative Lysholm score was 92± 7 (range, 75-101). A significant difference in Lysholm scores between preoperative and final follow-up evaluations was found (P < .05). At first-year follow-up, 42 (93%) patients revealed a difference of less than 10 mm in thigh circumference between their injured and healthy knees. Conclusions: The management of displaced large PCL avulsion fractures with placement of a cancellous lag screw with washer by means of the modified open posterior approach leads to satisfactory clinical, radiographic, and functional results and reduces the operation time and less blood loss. Level of evidence: IV.

Keywords: posterior cruciate ligament, tibial fracture, lysholm knee score, patient outcome assessment

Procedia PDF Downloads 280
9543 The Effect of Interfacial Chemistry on Mechanical Properties of Epoxy Composites Containing Poly (Ether Ether Ketone) Grafted Multiwall Carbon Nanotubes

Authors: Prajakta Katti, Suryasarathi Bose, S. Kumar

Abstract:

In this work, carboxyl functionalized multiwall carbon nanotubes (a-MWNTs) covalently grafted with hydroxylated functionalized poly (ether ether ketone), HPEEK, which is miscible with the pre-polymer (epoxy) through the esterification reaction. The functionalized MWNTs were systematically characterized using spectroscopic techniques. The epoxy composites containing a-MWNTs and HPEEK grafted multiwall carbon nanotubes (HPEEK-g-MWNTs) were formulated using mechanical stirring coupled with a bath sonicator to improve the dispersion property of the nanoparticles and were subsequently cured at 80 ̊C and post cured at 180 ̊C. With the addition of 0.5 wt% of HPEEK-g-MWNTs, an impressive 44% enhancement in the storage modulus, 22% increase in tensile strength and 38% increase in fracture toughness was observed with respect to neat epoxy. In addition to these mechanical properties, the epoxy composites displayed significant enhancement in the hardness without reducing thermal stability. These improved properties were attributed to the tailored interface between HPEEK-MWNTs and epoxy matrix.

Keywords: epoxy, MWNTs, HPEEK-g-MWNTs, tensile properties, nanoindentation, fracture toughness

Procedia PDF Downloads 282
9542 Impact of Treatment of Fragility Fractures Due to Osteoporosis as an Economic Burden Worldwide: A Systematic Review

Authors: Fabiha Tanzeem

Abstract:

BACKGROUND: Osteoporosis is a skeletal disease that is associated with a reduction in bone mass and microstructures of the bone and deterioration of bone tissue. Fragility fracture due to osteoporosis is the most significant complication of osteoporosis. The increasing prevalence of fragility fractures presents a growing burden on the global economy. There is a rapidly evolving need to improve awareness of the costs associated with these types of fractures and to review current policies and practices for the prevention and management of the disease. This systematic review will identify and describe the direct and indirect costs associated with osteoporotic fragility fractures from a global perspective from the included studies. The review will also find out whether the costs required for the treatment of fragility fractures due to osteoporosis impose an economic burden on the global healthcare system. METHODS: Four major databases were systematically searched for direct and indirect costs of osteoporotic fragility fracture studies in the English Language. PubMed, Cochrane Library, Embase and Google Scholar were searched for suitable articles published between 1990 and July 2020. RESULTS: The original search yielded 1166 papers; from these, 27 articles were selected for this review according to the inclusion and exclusion criteria. In the 27 studies, the highest direct costs were associated with the treatment of pelvic fractures, with the majority of the expenditure due to hospitalization and surgical treatments. It is also observed that most of the articles are from developed countries. CONCLUSION: This review indicates the significance of the economic burden of osteoporosis globally, although more research needs to be done in developing countries. In the treatment of fragility fractures, direct costs were the main reported expenditure in this review. The healthcare costs incurred globally can be significantly reduced by implementing measures to effectively prevent the disease. Raising awareness in children and adults by improving the quality of the information available and standardising policies and planning of services requires further research.

Keywords: systematic review, osteoporosis, cost of illness

Procedia PDF Downloads 142
9541 Tibial Plateau Fractures During Covid-19 In A Trauma Unit. Impact of Lockdown and The Pressures on the Healthcare Provider

Authors: R. Gwynn, P. Panwalkar, K. Veravalli , M. Tofighi, R. Clement, A. Mofidi

Abstract:

The aim of this study was to access the impact of Covid-19 and lockdown on the incidence, injury pattern, and treatment of tibial plateau fractures in a combined rural and urban population in wales. Methods: Retrospective study was performed to identify tibial plateau fractures in 15-month period of Covid-19 lockdown 15-month period immediately before lockdown. Patient demographics, injury mechanism, injury severity (based on Schatzker classification), and associated injuries, treatment methods, and outcome of fractures in the Covid-19 period was studied. Results: The incidence oftibial plateau fracture was 9 per 100000 during Covid-19, and 8.5 per 100000, and both were similar to previous studies. The average age was 52, and female to male ratio was 1:1 in both control and study group. High energy injury was seen in only 20% of the patients and 35% in the control groups (2=12, p<0025). 14% of the covid-19 population sustained other injuries as opposed 16% in the control group(2=0.09, p>0.95). Lower severity isolated lateral condyle fracturesinjury (Schatzker 1-3) were seen in 40% of fractures this was 60% in the control populations. Higher bicondylar and shaft fractures (Schatzker 5-6) were seen in 60% of the Covid-19 group and 35% in the control groups(2=7.8, p<0.02). Treatment mode was not impacted by Covid-19. The complication rate was low in spite of higher number of complex fractures and the impact of covid-19 pandemic. Conclusion: The associated injuries were similar in spite of a significantly lower mechanism of injury. There were unexpectedly worst tibial plateau fracture based Schatzker classification in the Covid-19 period as compared to the control groups. This was especially relevant for medial condyle and shaft fractures. This was postulated to be caused by reduction in bone density caused by lack of vitamin D and reduction in activity. The treatment mode and outcome was not impacted by the impact of Covid-19 on care for tibial plateau fractures.

Keywords: Covid-19, knee, tibial plateau fracture, trauma

Procedia PDF Downloads 99
9540 The Management of Urban Facilities in the City of Chlef

Authors: Belakhdar Salah Brahim

Abstract:

The Urban management is a major element of social control of public space and thus the functioning of society. As such, it is a key element of a social conception of sustainable development. Also, it is a cross-cutting sector that relies on land management, infrastructure management, habitat management, management of social services, the management of economic development, etc. This study aims to study how urban management focusing on the study of problems related to urban waste management in developing countries. It appears from the study that the city management is to improve infrastructure and urban services in order to increase the city's development and improve living conditions in cities. It covers various aspects including management of urban space, economic management, administrative management, asset management or infrastructure and finally waste management. Environmental management is important because it solves the pollution problems of life and preserve resources for future generations. Changing perceptions of waste has led to the definition of new policies for integrated waste management requirements appropriate to the urban site.

Keywords: urbanization, urban management, environmental management, waste management

Procedia PDF Downloads 402
9539 A Framework for Customer Knowledge Management (CKM) as a Key Role in Relationship

Authors: Mehrnoosh Askarizadeh

Abstract:

The customer’s value has become obvious for the leading companies in today’s competitive environment. Therefore they are constantly trying to improve their relationship with customers. Customer Knowledge has been recognized as a strategic resource and a key to the success of any company. Talking about the Customer Knowledge Management is closely associated with Knowledge Management and Customer Relationship Management (CRM). Recent studies conducted in the fields of Knowledge Management (KM) and Customer Relationship Management (CRM) has explained that the two approaches can have great synergies. In this paper, our aim is to provide an understanding of Customer Knowledge Management (CKM) as an integrated management approach and competence it requires. We describe CKM as an ongoing process of generating, disseminating and using customer knowledge within an organization and between an organization and its customers. In addition, we propose a comprehensive framework of CKM, the ability to integrate customer knowledge into customer relationship management processes.

Keywords: e-commerce, knowledge management (KM), customer relationship management (CRM), customer knowledge management (CKM)

Procedia PDF Downloads 520
9538 3D Vision Transformer for Cervical Spine Fracture Detection and Classification

Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi

Abstract:

In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.

Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score

Procedia PDF Downloads 76
9537 Anesthesia for Spinal Stabilization Using Neuromuscular Blocking Agents in Dog: Case Report

Authors: Agata Migdalska, Joanna Berczynska, Ewa Bieniek, Jacek Sterna

Abstract:

Muscle relaxation is considered important during general anesthesia for spine stabilization. In a presented case peripherally acting muscle relaxant was applied during general anesthesia for spine stabilization surgery. The patient was a dog, 11-years old, 26 kg, male, mix breed. Spine fracture was situated between Th13-L1-L2, probably due to the car accident. Preanesthetic physical examination revealed no sign underlying health issues. The dog was premedicated with midazolam 0.2 mg IM and butorphanol 2.4 mg IM. General anesthesia was induced with propofol IV. After the induction, the dog was intubated with an endotracheal tube and connected to an open-ended rebreathing system and maintained with the use of inhalation anesthesia with isoflurane in oxygen. 0,5 mg/ kg of rocuronium was given IV. Use of muscle relaxant was accompanied by an assessment of the degree of neuromuscular blockade by peripheral nerve stimulator. Electrodes were attached to the skin overlying at the peroneal nerve at the lateral cranial tibia. Four electrical pulses were applied to the nerve over a 2 second period. When satisfying nerve block was detected dog was prepared for the surgery. No further monitoring of the effectiveness of blockade was performed during surgery. Mechanical ventilation was kept during anesthesia. During surgery dog maintain stable, and no anesthesiological complication occur. Intraoperatively surgeon claimed that neuromuscular blockade results in a better approach to the spine and easier muscle manipulation which was helpful in order to see the fracture and replace bone fragments. Finally, euthanasia was performed intraoperatively as a result of vast myelomalacia process of the spinal cord. This prevented examination of the recovering process. Neuromuscular blocking agents act at the neuromuscular junction to provide profound muscle relaxation throughout the body. Muscle blocking agents are neither anesthetic nor analgesic; therefore inappropriately used may cause paralysis in fully conscious and feeling pain patient. They cause paralysis of all skeletal muscles, also diaphragm and intercostal muscles when given in higher doses. Intraoperative management includes maintaining stable physiological conditions, which involves adjusting hemodynamic parameters, ensuring proper ventilation, avoiding variations in temperature, maintain normal blood flow to promote proper oxygen exchange. Neuromuscular blocking agent can cause many side effects like residual paralysis, anaphylactic or anaphylactoid reactions, delayed recovery from anesthesia, histamine release, recurarization. Therefore reverse drug like neostigmine (with glikopyrolat) or edrofonium (with atropine) should be used in case of a life-threatening situation. Another useful drug is sugammadex, although the cost of this drug strongly limits its use. Muscle relaxant improves surgical conditions during spinal surgery, especially in heavily muscled individuals. They are also used to facilitate the replacement of dislocated joints as they improve conditions during fracture reduction. It is important to emphasize that in a patient with muscle weakness neuromuscular blocking agents may result in intraoperative and early postoperative cardiovascular and respiratory complications, as well as prolonged recovery from anesthesia. This should not appear in patients with recent spine fracture or luxation. Therefore it is believed that neuromuscular blockers could be useful during spine stabilization procedures.

Keywords: anesthesia, dog, neuromuscular block, spine surgery

Procedia PDF Downloads 155
9536 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 102
9535 The Contemporary Issues of Quality Management: Relationship between Total Quality Management and Knowledge Management

Authors: Mehrnoosh Askarizadeh

Abstract:

To meet the challenges of the new global environment, companies have started paying great attention towards quality management as an integral part of their strategic business plans. The purpose of this article is to investigate the relationship between total quality management (TQM) and knowledge management (KM). Successful total quality management implementation throughout the organizations requires major changes in the main four aspects of knowledge management, namely: Creating, storage, sharing and application. Skill, knowledge and productivity are important factors in organization’s success and have important role. Therefore, TQM management system pays special attention to it. However, knowledge as the source is essential for organization’s survival. Our study points out how the quality management and knowledge management have been incorporated into each other for the development of the quality culture within the organization.

Keywords: knowledge management (KM), total quality management (TQM), organizational performance (OP), deming cycle

Procedia PDF Downloads 452
9534 Analyzing the Performance Properties of Stress Absorbing Membrane Interlayer Modified with Recycled Crumb Rubber

Authors: Seyed Mohammad Asgharzadeh, Moein Biglari

Abstract:

Asphalt overlay is the most commonly used technique of pavement rehabilitation. However, the reflective cracks which occur on the overlay surface after a short period of time are the most important distresses threatening the durability of new overlays. Stress Absorbing Membrane Interlayers (SAMIs) are used to postpone the reflective cracking in the overlays. Sand asphalt mixtures, in unmodified or crumb rubber modified (CRM) conditions, can be used as an SAMI material. In this research, the performance properties of different SAMI applications were evaluated in the laboratory using an Indirect Tensile (IDT) fracture energy. The IDT fracture energy of sand asphalt samples was also evaluated and then compared to that of the regular dense graded asphalt used as an overlay. Texas boiling water and modified Lottman tests were also conducted to evaluate the moisture susceptibility of sand asphalt mixtures. The test results showed that sand asphalt mixtures can stand higher levels of energy before cracking, and this is even more pronounced for the CRM sand mix. Sand asphalt mixture using CRM binder was also shown to be more resistance to moisture induced distresses.

Keywords: SAMI, sand asphalt, crumb rubber, indirect tensile test

Procedia PDF Downloads 204
9533 Epidemiology and Risk Factors of Injury and Stress Fractures in Male and Female Runners

Authors: Balazs Patczai, Katalin Gocze, Gabriella Kiss, Dorottya Szabo, Tibor Mintal

Abstract:

Introduction: Running has become increasingly popular on a global scale in the past decades. Amateur athletes are taking their sport to a new level in an attempt to surpass their performance goals. The aim of our study was to assess the musculoskeletal condition of amateur runners and the prevalence of injuries with a special focus on stress fracture risk. Methods: The cross sectional analysis included ankle mobility, hamstring and lower back flexibility, the use of Renne’s test for iliotibial band syndrome, functional tests for trunk and rotary stability, and measurements of bone density. Data was collected at 2 major half-marathon events in Hungary. Results: Participants (n=134) mean age was 41.76±8.57 years (males: 40.67±8.83, females: 42.08±8.56). Measures of hamstring and lower back flexibility fell into the category of good for both genders (males: 7.13±6.83cm, females: 10.17±6.67cm). No side asymmetry nor gender differences were characteristic in the case of ankle mobility. Trunk stability was significantly better for males than in females (p=0.004). Markers of bone health were in the low normal range for females and were significantly better for males (T-score: p=0.003, T-ratio: p=0.014, Z-score: p=0.034, Z-ratio: p=0.011). 5.2% of females had a previous stress fracture and 24.1% experienced irregular menstrual cycles during the past year. As for the knowledge on the possible association of energy deficiency, menstrual disturbances and their effect on bone health, Only 8.6% of females have heard of the female athlete triad either during their studies or from a health professional. Discussion: The overall musculoskeletal state was satisfactory for both genders both physically and functionally. More attention and effort should be placed on primary and secondary prevention of amateur runners. Very few active women are well informed about the effects of low energy availability and menstrual dysfunction and the negative impact these have on bone health.

Keywords: bone health, flexibility, running, stress fracture

Procedia PDF Downloads 101
9532 Strategic Maintenance Management of Built Facilities in an Organisation

Authors: Anita D. Adamu, Winston M. W. Shakantu

Abstract:

Maintenance management is no longer a stand-alone activity. It has now assumed a strategic position in many organisations that have recognised its importance in achieving primary goals and a key aspect of effective management of facilities. This paper aims at providing an understanding of the role and function of strategic management in creating and sustaining an effective maintenance management system in an organisation. The background provides an articulated concept and principles of strategic management. The theoretical concepts paved way for a conceptual framework for which strategic management can be integrated into the maintenance management system of an organisation to improve effectiveness in the maintenance of facilities.

Keywords: facilities, maintenance management, organisations, strategic management

Procedia PDF Downloads 371
9531 Detecting Natural Fractures and Modeling Them to Optimize Field Development Plan in Libyan Deep Sandstone Reservoir (Case Study)

Authors: Tarek Duzan

Abstract:

Fractures are a fundamental property of most reservoirs. Despite their abundance, they remain difficult to detect and quantify. The most effective characterization of fractured reservoirs is accomplished by integrating geological, geophysical, and engineering data. Detection of fractures and defines their relative contribution is crucial in the early stages of exploration and later in the production of any field. Because fractures could completely change our thoughts, efforts, and planning to produce a specific field properly. From the structural point of view, all reservoirs are fractured to some point of extent. North Gialo field is thought to be a naturally fractured reservoir to some extent. Historically, natural fractured reservoirs are more complicated in terms of their exploration and production efforts, and most geologists tend to deny the presence of fractures as an effective variable. Our aim in this paper is to determine the degree of fracturing, and consequently, our evaluation and planning can be done properly and efficiently from day one. The challenging part in this field is that there is no enough data and straightforward well testing that can let us completely comfortable with the idea of fracturing; however, we cannot ignore the fractures completely. Logging images, available well testing, and limited core studies are our tools in this stage to evaluate, model, and predict possible fracture effects in this reservoir. The aims of this study are both fundamental and practical—to improve the prediction and diagnosis of natural-fracture attributes in N. Gialo hydrocarbon reservoirs and accurately simulate their influence on production. Moreover, the production of this field comes from 2-phase plan; a self depletion of oil and then gas injection period for pressure maintenance and increasing ultimate recovery factor. Therefore, well understanding of fracturing network is essential before proceeding with the targeted plan. New analytical methods will lead to more realistic characterization of fractured and faulted reservoir rocks. These methods will produce data that can enhance well test and seismic interpretations, and that can readily be used in reservoir simulators.

Keywords: natural fracture, sandstone reservoir, geological, geophysical, and engineering data

Procedia PDF Downloads 74
9530 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model

Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu

Abstract:

In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.

Keywords: road edge lines extraction, energy function, intersection fracture, Snake model

Procedia PDF Downloads 320
9529 Midface Trauma: Outpatient Follow-Up and Surgical Treatment Times

Authors: Divya Pathak, James Sloane

Abstract:

Surgical treatment of midface fractures should ideally occur within two weeks of injury, after which bony healing and consolidation make the repair more difficult for the operating surgeon. The oral and maxillofacial unit at the Royal Surrey Hospital is the tertiary referral center for maxillofacial trauma from five regional hospitals. This is a complete audit cycle of midface trauma referrals managed over a one year period. The standard set was that clinical assessment of the midface fracture would take place in a consultant led outpatient clinic within 7 days, and when indicated, surgical fixation would occur within 10 days of referral. Retrospective data was collected over one year (01/11/2018 - 31/12/2019). Three key changes were implemented: an IT referral mailbox, standardization of an on-call trauma table, and creation of a trauma theatre list. Re-audit was carried out over six months completing the cycle. 283 midface fracture referrals were received, of which 22 patients needed surgical fixation. The average time from referral to outpatient follow-up improved from 14.5 days to 8.3 days, and time from referral to surgery improved from 21.5 days to 11.6 days. Changes implemented in this audit significantly improved patient prioritization to appropriate outpatient clinics and shortened time to surgical intervention.

Keywords: maxillofacial trauma, midface trauma, oral and maxillofacial surgery, surgery fixation

Procedia PDF Downloads 116
9528 Modeling of Ductile Fracture Using Stress-Modified Critical Strain Criterion for Typical Pressure Vessel Steel

Authors: Carlos Cuenca, Diego Sarzosa

Abstract:

Ductile fracture occurs by the mechanism of void nucleation, void growth and coalescence. Potential sites for initiation are second phase particles or non-metallic inclusions. Modelling of ductile damage at the microscopic level is very difficult and complex task for engineers. Therefore, conservative predictions of ductile failure using simple models are necessary during the design and optimization of critical structures like pressure vessels and pipelines. Nowadays, it is well known that the initiation phase is strongly influenced by the stress triaxiality and plastic deformation at the microscopic level. Thus, a simple model used to study the ductile failure under multiaxial stress condition is the Stress Modified Critical Strain (SMCS) approach. Ductile rupture has been study for a structural steel under different stress triaxiality conditions using the SMCS method. Experimental tests are carried out to characterize the relation between stress triaxiality and equivalent plastic strain by notched round bars. After calibration of the plasticity and damage properties, predictions are made for low constraint bending specimens with and without side grooves. Stress/strain fields evolution are compared between the different geometries. Advantages and disadvantages of the SMCS methodology are discussed.

Keywords: damage, SMSC, SEB, steel, failure

Procedia PDF Downloads 276
9527 Recurrent Anterior Gleno-Humeral Instability Management by Modified Latarjet Procedure

Authors: Tarek Aly

Abstract:

The shoulder is the most mobile joint whose stability requires the interaction of both dynamic and static stabilizers. Its wide range of movement predisposes to a high susceptibility to dislocation, accounting for nearly 50% of all dislocations. This trauma typically results in ligament injury (e.g., labral tear, capsular strain) or bony fracture (e.g., loss of glenoid or humeral head bone), which frequently causes recurrent instability. Patients with significant glenoid defects may require Latarjet procedure, which involves transferring the coracoid to the antero-inferior glenoid rim. In spite of outstanding results, 15 to 30% of cases suffer complications. In this article, we discuss the diagnosis of recurrent shoulder instability, the surgical technique and various complications of Latarjet procedure.

Keywords: recurrent, anterior gleno-humeral instability, latarjet, unstable shoulder

Procedia PDF Downloads 49
9526 A Unified Model for Predicting Particle Settling Velocity in Pipe, Annulus and Fracture

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li

Abstract:

Transports of solid particles through the drill pipe, drill string-hole annulus and hydraulically generated fractures are important dynamic processes encountered in oil and gas well drilling and completion operations. Different from particle transport in infinite space, the transports of cuttings, proppants and formation sand are hindered by a finite boundary. Therefore, an accurate description of the particle transport behavior under the bounded wall conditions encountered in drilling and hydraulic fracturing operations is needed to improve drilling safety and efficiency. In this study, the particle settling experiments were carried out to investigate the particle settling behavior in the pipe, annulus and between the parallel plates filled with power-law fluids. Experimental conditions simulated the particle Reynolds number ranges of 0.01-123.87, the dimensionless diameter ranges of 0.20-0.80 and the fluid flow behavior index ranges of 0.48-0.69. Firstly, the wall effect of the annulus is revealed by analyzing the settling process of the particles in the annular geometry with variable inner pipe diameter. Then, the geometric continuity among the pipe, annulus and parallel plates was determined by introducing the ratio of inner diameter to an outer diameter of the annulus. Further, a unified dimensionless diameter was defined to confirm the relationship between the three different geometry in terms of the wall effect. In addition, a dimensionless term independent from the settling velocity was introduced to establish a unified explicit settling velocity model applicable to pipes, annulus and fractures with a mean relative error of 8.71%. An example case study was provided to demonstrate the application of the unified model for predicting particle settling velocity. This paper is the first study of annulus wall effects based on the geometric continuity concept and the unified model presented here will provide theoretical guidance for improved hydraulic design of cuttings transport, proppant placement and sand management operations.

Keywords: wall effect, particle settling velocity, cuttings transport, proppant transport in fracture

Procedia PDF Downloads 136
9525 Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water

Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang

Abstract:

Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW.

Keywords: Inconel 617, steam, supercritical water, stress corrosion cracking

Procedia PDF Downloads 130
9524 Stability Assessment of Chamshir Dam Based on DEM, South West Zagros

Authors: Rezvan Khavari

Abstract:

The Zagros fold-thrust belt in SW Iran is a part of the Alpine-Himalayan system which consists of a variety of structures with different sizes or geometries. The study area is Chamshir Dam, which is located on the Zohreh River, 20 km southeast of Gachsaran City (southwest Iran). The satellite images are valuable means available to geologists for locating geological or geomorphological features expressing regional fault or fracture systems, therefore, the satellite images were used for structural analysis of the Chamshir dam area. As well, using the DEM and geological maps, 3D Models of the area have been constructed. Then, based on these models, all the acquired fracture traces data were integrated in Geographic Information System (GIS) environment by using Arc GIS software. Based on field investigation and DEM model, main structures in the area consist of Cham Shir syncline and two fault sets, the main thrust faults with NW-SE direction and small normal faults in NE-SW direction. There are three joint sets in the study area, both of them (J1 and J3) are the main large fractures around the Chamshir dam. These fractures indeed consist with the normal faults in NE-SW direction. The third joint set in NW-SE is normal to the others. In general, according to topography, geomorphology and structural geology evidences, Chamshir dam has a potential for sliding in some parts of Gachsaran formation.

Keywords: DEM, chamshir dam, zohreh river, satellite images

Procedia PDF Downloads 462
9523 Robustness of Steel Beam to Column Moment Resisting Joints

Authors: G. Culache, M. P. Byfield, N. S. Ferguson, A. Tyas

Abstract:

Steel joints in building structures represent a weak link in the case of accidental transient loading. This type of loading can occur due to blast effects or impact with moving vehicles and will result in large deformations in the material as well as large rotations. This paper addresses the lack of experimental investigations into the response of moment resisting connections subjected to such loading. The current design philosophy was used to create test specimens with flush and extended end plates. The specimens were tested in a specially designed testing rig capable of delivering the sustained loading even beyond the point of failure. Types of failure that the authors attempted to obtain were bolt fracture, flange crushing and end plate fracture. Experimental data is presented, described and analyzed. The tests show that the strength and ductility can be significantly improved by replacing ordinary mild-steel bolts with their stainless steel equivalents. This minor modification is demonstrated to significantly improve the robustness when subjected to loading that results in high deformations and rotation, where loading is maintained during failure. Conclusions are drawn about the wider implications of this research and recommendations made on the direction of future research in this field.

Keywords: steel moment connections, high strain rates, dynamic loading, experimental testing

Procedia PDF Downloads 305
9522 Avoidance of Brittle Fracture in Bridge Bearings: Brittle Fracture Tests and Initial Crack Size

Authors: Natalie Hoyer

Abstract:

Bridges in both roadway and railway systems depend on bearings to ensure extended service life and functionality. These bearings enable proper load distribution from the superstructure to the substructure while permitting controlled movement of the superstructure. The design of bridge bearings, according to Eurocode DIN EN 1337 and the relevant sections of DIN EN 1993, increasingly requires the use of thick plates, especially for long-span bridges. However, these plate thicknesses exceed the limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with DIN EN 1993-1-10 regulations regarding material toughness and through-thickness properties necessitates further modifications. Consequently, these standards cannot be directly applied to the selection of bearing materials without supplementary guidance and design rules. In this context, a recommendation was developed in 2011 to regulate the selection of appropriate steel grades for bearing components. Prior to the initiation of the research project underlying this contribution, this recommendation had only been available as a technical bulletin. Since July 2023, it has been integrated into guideline 804 of the German railway. However, recent findings indicate that certain bridge-bearing components are exposed to high fatigue loads, which necessitate consideration in structural design, material selection, and calculations. Therefore, the German Centre for Rail Traffic Research called a research project with the objective of defining a proposal to expand the current standards in order to implement a sufficient choice of steel material for bridge bearings to avoid brittle fracture, even for thick plates and components subjected to specific fatigue loads. The results obtained from theoretical considerations, such as finite element simulations and analytical calculations, are validated through large-scale component tests. Additionally, experimental observations are used to calibrate the calculation models and modify the input parameters of the design concept. Within the large-scale component tests, a brittle failure is artificially induced in a bearing component. For this purpose, an artificially generated initial defect is introduced at the previously defined hotspot into the specimen using spark erosion. Then, a dynamic load is applied until the crack initiation process occurs to achieve realistic conditions in the form of a sharp notch similar to a fatigue crack. This initiation process continues until the crack length reaches a predetermined size. Afterward, the actual test begins, which requires cooling the specimen with liquid nitrogen until a temperature is reached where brittle fracture failure is expected. In the next step, the component is subjected to a quasi-static tensile test until failure occurs in the form of a brittle failure. The proposed paper will present the latest research findings, including the results of the conducted component tests and the derived definition of the initial crack size in bridge bearings.

Keywords: bridge bearings, brittle fracture, fatigue, initial crack size, large-scale tests

Procedia PDF Downloads 9
9521 Graphene-Reinforced Silicon Oxycarbide Composite with Lamellar Structures Prepared by the Phase Transfer Method

Authors: Min Yu, Olivier T. Picot, Theo Graves Saunders, Ivo Dlouhy, Amit Mahajan, Michael J. Reece

Abstract:

Graphene was successfully introduced into a polymer-derived silicon oxycarbide (SiOC) matrix by phase transfer of graphene oxide (GO) from an aqueous (GO dispersed in water) to an organic phase (copolymer as SiOC precursor in diethyl ether). With GO concentrations increasing up to 2 vol%, graphene-containing flakes self-assembled into a lamellar structure in the matrix leading to composite with the anisotropic property. Spark plasma sintering (SPS) was applied to densify the composites with four different GO concentrations (0, 0.5, 1 and 2 vol%) up to ~2.3 g/cm3. The fracture toughness of SiOC-2 vol% GO composites was significantly increased by ~91% (from 0.70 to 1.34 MPa·m¹/²), at the expense of a decrease in the flexural strength (from 85MPa to 55MPa), compared to SiOC-0 vol% GO composites. Moreover, the electrical conductivity in the perpendicular direction (σ┴=3×10⁻¹ S/cm) in SiOC-2 vol% GO composite was two orders of magnitude higher than the parallel direction (σ║=4.7×10⁻³ S/cm) owing to the self-assembled lamellar structure of graphene in the SiOC matrix. The composites exhibited increased electrical conductivity (σ┴) from 8.4×10⁻³ to 3×10⁻¹ S/cm, with the increasing GO content from 0.5 to 2 vol%. The SiOC-2 vol% GO composites further showed the better electrochemical performance of oxygen reduction reaction (ORR) than pure graphene, exhibiting a similar onset potential (~0.75V vs. RHE) and more positive half-wave potential (~0.6V vs. RHE).

Keywords: composite, fracture toughness, flexural strength, electrical conductivity, electrochemical performance

Procedia PDF Downloads 147
9520 Automatic Detection of Defects in Ornamental Limestone Using Wavelets

Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas

Abstract:

A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.

Keywords: automatic detection, defects, fracture lines, wavelets

Procedia PDF Downloads 229