Search results for: evaluation accuracy
9624 On a Theoretical Framework for Language Learning Apps Evaluation
Authors: Juan Manuel Real-Espinosa
Abstract:
This paper addresses the first step to evaluate language learning apps: what theoretical framework to adopt when designing the app evaluation framework. The answer is not just one since there are several options that could be proposed. However, the question to be clarified is to what extent the learning design of apps is based on a specific learning approach, or on the contrary, on a fusion of elements from several theoretical proposals and paradigms, such as m-learning, mobile assisted language learning, and a number of theories about language acquisition. The present study suggests that the reality is closer to the second assumption. This implies that the theoretical framework against which the learning design of the apps should be evaluated must also be a hybrid theoretical framework, which integrates evaluation criteria from the different theories involved in language learning through mobile applications.Keywords: mobile-assisted language learning, action-oriented approach, apps evaluation, post-method pedagogy, second language acquisition
Procedia PDF Downloads 2149623 Satisfaction Evaluation on the Fundamental Public Services for a Large-Scale Indemnificatory Residential Community: A Case Study of Nanjing
Authors: Dezhi Li, Peng Cui, Bo Zhang, Tengyuan Chang
Abstract:
In order to solve the housing problem for the low-income families, the construction of affordable housing is booming in China. However, due to various reasons, the service facilities and systems in the indemnificatory residential community meet many problems. This article established a Satisfaction Evaluation System of the Fundamental Public Services for Large-scale Indemnificatory Residential Community based on the national standards and local criteria and developed evaluation methods and processes. At last, in the case of Huagang project in Nanjing, the satisfaction of basic public service is calculated according to a survey of local residents.Keywords: indemnificatory residential community, public services, satisfaction evaluation, structural equation modeling
Procedia PDF Downloads 3659622 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 2169621 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates
Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc
Abstract:
Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS
Procedia PDF Downloads 3599620 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: distillation, machine learning, neural networks, quantization
Procedia PDF Downloads 3329619 The Evaluation and Performance of SSRU Employee’s that Influence the Attitude towards Work, Job Satisfaction and Organization Commitment
Authors: Bella Llego
Abstract:
The purpose of this study was to explain and empirically test the influence of attitude towards work, job satisfaction and organizational commitment of SSRU employee’s evaluation and performance. Data used in this study was primary data which were collected through Organizational Commitment Questionnaire with 1-5 Likert Scale. The respondent of this study was 200 managerial and non-managerial staff of SSRU. The statistics to analyze the data provide the descriptive by the mean, standard deviation and test hypothesis by the use of multiple regression. The result of this study is showed that attitude towards work have positive but not significant effect to job satisfaction and employees evaluation and performance. Different with attitude towards work, the organizations commitment has positive and significant influence on job satisfaction and employee performance at SSRU. It means every improvement in organization’s commitment has a positive effect toward job satisfaction and employee evaluation and performance at SSRU.Keywords: attitude towards work, employee’s evaluation and performance, jobs satisfaction, organization commitment
Procedia PDF Downloads 4589618 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1309617 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.Keywords: autism disease, neural network, CPU, GPU, transfer learning
Procedia PDF Downloads 1249616 Hotel Guests’ Service Fulfillment: Bangkok, Thailand
Authors: Numtana Ladplee, Cherif Haberih
Abstract:
The value of service evaluation depends critically on guests’ understanding of the evaluation objectives and their roles. The present research presents a three-phase investigation of the impact of evaluating participants’ theories about their roles: (a) identifying the theories, (b) testing the process consequences of participants’ role theories, and (c) gaining insights into the impact of participants’ role theories by testing key moderator/s. The findings of this study will hopefully indicate that (a) when forewarned of an upcoming evaluation task, consumers tend to believe that the evaluation objective is to identify aspects that need improvement, (b) this expectation produces a conscious attempt to identify negative aspects, although the encoding of attribute information is not affected, and (c) cognitive load during the evaluation experience greatly decreases the negativity of expected evaluations. The present study can be applied to other market research techniques and thereby improve our understanding of consumer inputs derived from market research. Such insights can help diminish biases produced by participants’ correct or incorrect theories regarding their roles.Keywords: fulfillment, hotel guests, service, Thailand
Procedia PDF Downloads 2819615 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning
Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin
Abstract:
This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing
Procedia PDF Downloads 349614 Simultaneous Determination of Cefazolin and Cefotaxime in Urine by HPLC
Authors: Rafika Bibi, Khaled Khaladi, Hind Mokran, Mohamed Salah Boukhechem
Abstract:
A high performance liquid chromatographic method with ultraviolet detection at 264nm was developed and validate for quantitative determination and separation of cefazolin and cefotaxime in urine, the mobile phase consisted of acetonitrile and phosphate buffer pH4,2(15 :85) (v/v) pumped through ODB 250× 4,6 mm, 5um column at a flow rate of 1ml/min, loop of 20ul. In this condition, the validation of this technique showed that it is linear in a range of 0,01 to 10ug/ml with a good correlation coefficient ( R>0,9997), retention time of cefotaxime, cefazolin was 9.0, 10.1 respectively, the statistical evaluation of the method was examined by means of within day (n=6) and day to day (n=5) and was found to be satisfactory with high accuracy and precision.Keywords: cefazolin, cefotaxime, HPLC, bioscience, biochemistry, pharmaceutical
Procedia PDF Downloads 3669613 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques
Procedia PDF Downloads 3339612 Comparison of Medical Students Evaluation by Serious Games and Clinical Case-Multiple Choice Questions
Authors: Chamtouri I., Kechida M.
Abstract:
Background: Evaluation has a prominent role in medical education and graduation. This evaluation has usually done in face-to-face, by written or oral questions. Simulation is increasingly taking a part as a method of evaluation. Due to the Covid-19 pandemic, which disrupted face-to-face evaluation, simulation using serious games (SG) is emerging in the field of training and assessment of medical students. The aim of our study is to compare the results of the evaluation of medical students by virtual simulation by online serious games versus clinical case-multiple choice questions (MCQ) and to assess the degree of satisfaction from these two evaluation methods. Methods: Medical students from the same study level were voluntarily participated in this study. Groupe 1 had an evaluation by SG dealing with “diagnosis and management of ST-segment elevationmyocardialinfarction (STEMI)alreadyprepared on the website www.Mediactiv.com. Groupe 2 were evaluated by clinical case-MCQ having thes same topic as SG. Results of the two groups were compared. Satisfaction questionnaire was filled by the two groups. Satisfaction degree was compared between the two groups. Results. In this study, 64 medical students (G1:31 and G2: 33) were enrolled. Obtaining complete notes in the "questioning" and "clinical examination" parts is significantly more important in-group 1 compared to group 2. No significant difference detected between the two groups in terms of “ECG interpretation” and “diagnosis of STEMI” parts. A greater number of students of group 1 obtained the full note compared to group 2 in “the initial treatment part” (54.8% vs. 39.4%; p = 0.04). Thirty learners (96.8%) in-group 1 obtained a total score ≥ 50% versus 69.7% in-group 2 (p = 0.004). The full score of 100% was obtained in three learners in-group1, while no student scored 100% in-group2 (p = 0.027). Medical evaluation using SG was reported as more innovative, fun, and realistic compared to evaluation by clinical case-MCQ. No significant difference detected between the two methods in terms of stress. Conclusion: Simulation by SG can be considered as an innovative and effective method in evaluating medical students with a higher degree of satisfaction.Keywords: evaluation, serious games, medical students, satisfaction
Procedia PDF Downloads 1469611 The Accuracy of Measures for Screening Adults for Spiritual Suffering in Health Care Settings: A Systematic Review
Authors: Sayna Bahraini, Wendy Gifford, Ian Graham, Liquaa Wazni, Suzettee Bremault-Phillips, Rebekah Hackbusch, Catrine Demers, Mary Egan
Abstract:
Objective: Guidelines for palliative and spiritual care emphasize the importance of screening patients for spiritual suffering. The aim of this review was to synthesize the research evidence on the accuracy of measures used to screen adults for spiritual suffering. Methods: A systematic review has been conducted. We searched five scientific databases to identify relevant articles. Two independent reviewers screened extracted data and assessed study methodological quality. Results: We identified five articles that yielded information on 24 spiritual screening measures. Among all identified measures, the 2-item Meaning/Joy & Self-Described Struggle has the highest sensitivity (82-87%), and the revised Rush protocol has the highest specificity (81-90%). The methodological quality of all included studies was low. Significance of Results: While most of the identified spiritual screening measures are brief (comprise 1 to 12 number of items), few have sufficient accuracy to effectively screen patients for spiritual suffering. We advise clinicians to use their critical appraisal skills and clinical judgment when selecting and using any of the identified measures to screen for spiritual suffering.Keywords: screening, suffering, spirituality, diagnostic test accuracy, systematic review
Procedia PDF Downloads 1449610 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination
Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan
Abstract:
The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.Keywords: confidence interval, handwriting, kernel density estimator, KDE, logistic regression LoR, repeatability, reproducibility
Procedia PDF Downloads 1309609 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 1089608 Optimizing of the Micro EDM Parameters in Drilling of Titanium Ti-6Al-4V Alloy for Higher Machining Accuracy-Fuzzy Modelling
Authors: Ahmed A. D. Sarhan, Mum Wai Yip, M. Sayuti, Lim Siew Fen
Abstract:
Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy
Procedia PDF Downloads 4989607 A New Model for Production Forecasting in ERP
Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang
Abstract:
ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.Keywords: ERP, grey system, LSSVM, production forecasting
Procedia PDF Downloads 4719606 Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics' Accuracy and Benefits in Heart Monitoring
Authors: Goran Begović
Abstract:
In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device.Keywords: data science, ECG, heart rate, holter monitor, LED sensors
Procedia PDF Downloads 1349605 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces
Authors: Monika Rawat, Rahul Kumar
Abstract:
Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation
Procedia PDF Downloads 1999604 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1599603 A Study on Low Stress Mechanical Properties of Denim Fabric for Hand Evaluation
Authors: S. P. Raut, S. K. Soni, A. W. Kolhatkar
Abstract:
Denim is widely used by every age of people all over the world. As the use of denim is increasing progressively, till now the handle properties of denim fabric not reported at significant level. In the present study, five commercial denim fabric samples were used. Denim samples, weighing from 8.5oz/sq yds to 14.5 oz/sq yds, were processed as per standard commercial procedure for denim finishing. These finished denim samples were tested on Kawabata Evaluation System(KES) for low stress mechanical properties. The results of KES values are used for calculation of Total Hand value(THV) using equation for summer suit. The obtained result for THV using equation for summer suit for denim samples is in the range from 1.62 to 3.30. These values of low stress mechanical properties values given by KES, can be used to engineer the denim fabric for bottom wear.Keywords: denim, handle value, Kawabata evaluation system, objective evaluation
Procedia PDF Downloads 2859602 Utilization of Hybrid Teaching Methods to Improve Writing Skills of Undergraduate Students
Authors: Tahira Zaman
Abstract:
The paper intends to discover the utility of hybrid teaching methods to aid undergraduate students to improve their English academic writing skills. A total of 45 undergraduate students were selected randomly from three classes from varying language abilities, with the research design of monitoring and rubrics evaluation as a means of measure. Language skills of the students were upgraded with the help of experiential learning methods using reflective writing technique, guided method in which students were merely directed to correct form of writing techniques along with self-guided method for the students to produce a library research-based article measured through a standardized rubrics provided. The progress of the students was monitored and checked through rubrics and self-evaluation and concluded that a change was observed in the students’ writing abilities.Keywords: self evaluation, hybrid, self evaluation, reflective writing
Procedia PDF Downloads 1679601 Effect of Site Amplification on Seismic Safety Evaluation of Flyover Pier
Authors: Mohammad Raihan Mukhlis, M. Abdur Rahman Bhuiyan
Abstract:
Bangladesh is a developing country in which a lot of multi-span simply/continuous supported flyovers are being constructed in its major cities. Being situated in a seismically active region, seismic safety evaluation of flyovers is essential for seismic risk reduction. Effects of site amplification on seismic safety evaluation of flyover piers are the main concern of this study. In this regard, failure mode, lateral strength and displacement ductility of piers of a typical multi-span simply supported flyover have been evaluated by Japan Road Association (JRA) recommended guidelines, with and without considering site amplification. Ultimate flexural strengths of piers have been computed using the pushover analysis results. Shear capacity of piers has been calculated using the guidelines of JRA. Lateral strengths have been determined depending on the failure modes of the piers. Displacement ductility of piers has been computed using yield and ultimate displacements of the piers obtained from the pushover analysis results. Selected earthquake time history is used in seismic safety evaluation of the flyover piers. Finally, the ductility design method is used to conduct the seismic safety evaluation of the piers with and without considering site amplification. From the numerical results, it has been revealed that the effects of site amplification on seismic safety evaluation of bridge structures should be carefully taken into account.Keywords: displacement ductility, flyover pier, lateral strength, safety evaluation, site amplification
Procedia PDF Downloads 1749600 A Study to Connect the Objective Interface Design Characters To Ergonomic Safety
Authors: Gaoguang Yang, Shan Fu
Abstract:
Human-machine interface (HMI) intermediate system information to human operators to facilitate human ability to manage and control the system. Well-designed HMI would enhance human ability. An evaluation must be performed to confirm that the designed HMI would enhance but not degrade human ability. However, the prevalent HMI evaluation techniques have difficulties in more thoroughly and accurately evaluating the suitability and fitness of a given HMI for the wide variety of uncertainty contained in both the existing HMI evaluation techniques and the large number of task scenarios. The first limitation should be attributed to the subjective and qualitative analysis characteristics of these evaluation methods, and the second one should be attributed to the cost balance. This study aims to explore the connection between objective HMI characters and ergonomic safety and step forward toward solving these limitations with objective, characterized HMI parameters. A simulation experiment was performed with the time needed for human operators to recognize the HMI information as characterized HMI parameter, and the result showed a strong correlation between the parameter and ergonomic safety level.Keywords: Human-Machine Interface (HMI), evaluation, objective, characterization, simulation
Procedia PDF Downloads 699599 Performance Evaluation of Arrival Time Prediction Models
Abstract:
Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours.Keywords: bus transit, arrival time prediction, link-based, path-based
Procedia PDF Downloads 3659598 Cluster Analysis of Students’ Learning Satisfaction
Authors: Purevdolgor Luvsantseren, Ajnai Luvsan-Ish, Oyuntsetseg Sandag, Javzmaa Tsend, Akhit Tileubai, Baasandorj Chilhaasuren, Jargalbat Puntsagdash, Galbadrakh Chuluunbaatar
Abstract:
One of the indicators of the quality of university services is student satisfaction. Aim: We aimed to study the level of satisfaction of students in the first year of premedical courses in the course of Medical Physics using the cluster method. Materials and Methods: In the framework of this goal, a questionnaire was collected from a total of 324 students who studied the medical physics course of the 1st course of the premedical course at the Mongolian National University of Medical Sciences. When determining the level of satisfaction, the answers were obtained on five levels of satisfaction: "excellent", "good", "medium", "bad" and "very bad". A total of 39 questionnaires were collected from students: 8 for course evaluation, 19 for teacher evaluation, and 12 for student evaluation. From the research, a database with 39 fields and 324 records was created. Results: In this database, cluster analysis was performed in MATLAB and R programs using the k-means method of data mining. Calculated the Hopkins statistic in the created database, the values are 0.88, 0.87, and 0.97. This shows that cluster analysis methods can be used. The course evaluation sub-fund is divided into three clusters. Among them, cluster I has 150 objects with a "good" rating of 46.2%, cluster II has 119 objects with a "medium" rating of 36.7%, and Cluster III has 54 objects with a "good" rating of 16.6%. The teacher evaluation sub-base into three clusters, there are 179 objects with a "good" rating of 55.2% in cluster II, 108 objects with an "average" rating of 33.3% in cluster III, and 36 objects with an "excellent" rating in cluster I of 11.1%. The sub-base of student evaluations is divided into two clusters: cluster II has 215 objects with an "excellent" rating of 66.3%, and cluster I has 108 objects with an "excellent" rating of 33.3%. Evaluating the resulting clusters with the Silhouette coefficient, 0.32 for the course evaluation cluster, 0.31 for the teacher evaluation cluster, and 0.30 for student evaluation show statistical significance. Conclusion: Finally, to conclude, cluster analysis in the model of the medical physics lesson “good” - 46.2%, “middle” - 36.7%, “bad” - 16.6%; 55.2% - “good”, 33.3% - “middle”, 11.1% - “bad” in the teacher evaluation model; 66.3% - “good” and 33.3% of “bad” in the student evaluation model.Keywords: questionnaire, data mining, k-means method, silhouette coefficient
Procedia PDF Downloads 569597 Evaluation of Clinical Decision Support System in Electronic Medical Record System: A Case of Malawi National Art Electronic Medical Record System
Authors: Pachawo Bisani, Goodall Nyirenda
Abstract:
The Malawi National Antiretroviral Therapy (NART) Electronic Medical Record (EMR) system was designed and developed with guidance from the Ministry of Health through the Department of HIV and AIDS (DHA) with the aim of supporting the management of HIV patient data and reporting in high prevalence ART clinics. As of 2021, the system has been scaled up to over 206 facilities across the country. The system is integrated with the clinical decision support system (CDSS) to assist healthcare providers in making a decision about an individual patient at a particular point in time. Despite NART EMR undergoing several evaluations and assessments, little has been done to evaluate the clinical decision support system in the NART EMR system. Hence, the study aimed to evaluate the use of CDSS in the NART EMR system in Malawi. The study adopted a mixed-method approach, and data was collected through interviews, observations, and questionnaires. The study has revealed that the CDSS tools were integrated into the ART clinic workflow, making it easy for the user to use it. The study has also revealed challenges in system reliability and information accuracy. Despite the challenges, the study further revealed that the system is effective and efficient, and overall, users are satisfied with the system. The study recommends that the implementers focus more on the logic behind the clinical decision-support intervention in order to address some of the concerns and enhance the accuracy of the information supplied. The study further suggests consulting the system's actual users throughout implementation.Keywords: clinical decision support system, electronic medical record system, usability, antiretroviral therapy
Procedia PDF Downloads 1109596 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria
Authors: Aminu Yakubu Umar
Abstract:
X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.Keywords: radiation, X-ray output, quality control, half-value layer, mA linearity, KVp variation
Procedia PDF Downloads 6119595 Fear of Negative Evaluation, Social Support and Wellbeing in People with Vitiligo
Authors: Rafia Rafique, Mutmina Zainab
Abstract:
The present study investigated the relationship between fear of negative evaluation (FNE), social support and well-being in people with Vitiligo. It was hypothesized that low level of FNE and greater social support is likely to predict well-being. It was also hypothesized that social support is likely to moderate the relationship between FNE and well-being. Correlational research design was used for the present study. Non-probability purposive sampling technique was used to collect a sample (N=122) of people with Vitiligo. Hierarchical Moderated Regression analysis was used to test prediction and moderation. Brief Fear of Negative Evaluation Scale, Multidimensional Scale of Perceived Social Support (MSPSS) and Mental Health Continuum-Short form (MHC-SF) were used to evaluate the study variables. Fear of negative evaluation negatively predicted well-being (emotional and psychological). Social support from significant others and friends predicted social well-being. Social Support from family predicted emotional and psychological well-being. It was found that social support from significant others moderated the relationship between FNE and emotional well-being and social support from family moderated the relationship between FNE and social well-being. Dermatologists treating people with Vitiligo need to educate them and their families about the buffering role of social support (family and significant others). Future studies need to focus on other important mediating factors that can possibly explain the relationship between fear of negative evaluation and wellbeing.Keywords: fear of negative evaluation, hierarchical moderated regression, vitiligo, well-being
Procedia PDF Downloads 308