Search results for: attitude and orbit control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11592

Search results for: attitude and orbit control

11592 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes

Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy

Abstract:

This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.

Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques

Procedia PDF Downloads 299
11591 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase

Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez

Abstract:

A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.

Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control

Procedia PDF Downloads 93
11590 Innovative Design Considerations for Adaptive Spacecraft

Authors: K. Parandhama Gowd

Abstract:

Space technologies have changed the way we live in the present day society and manage many aspects of our daily affairs through Remote sensing, Navigation & Communications. Further, defense and military usage of spacecraft has increased tremendously along with civilian purposes. The number of satellites deployed in space in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and the Geostationary Orbit (GEO) has gone up. The dependency on remote sensing and operational capabilities are most invariably to be exploited more and more in future. Every country is acquiring spacecraft in one way or other for their daily needs, and spacecraft numbers are likely to increase significantly and create spacecraft traffic problems. The aim of this research paper is to propose innovative design concepts for adaptive spacecraft. The main idea here is to improve existing design methods of spacecraft design and development to further improve upon design considerations for futuristic adaptive spacecraft with inbuilt features for automatic adaptability and self-protection. In other words, the innovative design considerations proposed here are to have future spacecraft with self-organizing capabilities for orbital control and protection from anti-satellite weapons (ASAT). Here, an attempt is made to propose design and develop futuristic spacecraft for 2030 and beyond due to tremendous advancements in VVLSI, miniaturization, and nano antenna array technologies, including nano technologies are expected.

Keywords: satellites, low earth orbit (LEO), medium earth orbit (MEO), geostationary earth orbit (GEO), self-organizing control system, anti-satellite weapons (ASAT), orbital control, radar warning receiver, missile warning receiver, laser warning receiver, attitude and orbit control systems (AOCS), command and data handling (CDH)

Procedia PDF Downloads 272
11589 The Strategy of Orbit Avoidance for Optical Remote Sensing Satellite

Authors: Dianxun Zheng, Wuxing Jing, Lin Hetong

Abstract:

Optical remote sensing satellite, always running on the Sun-synchronous orbit, equipped laser warning equipment to alert CCD camera from laser attack. There have three ways to protect the CCD camera, closing the camera cover satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes a satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-object avoid maneuvers. On occasions of fulfilling the orbit tasks of the satellite, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. and the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to avoidance for optical remote sensing satellite when encounter the laser hostile attacks.

Keywords: optical remote sensing satellite, always running on the sun-synchronous

Procedia PDF Downloads 375
11588 Preliminary Design Considerations for Achieving Stabilized Orbit, Telemetary, Command, and Ranging for HTS Communication Satellite

Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Samson Olufunmilayo Abodunrin, Muhammad Dokko Zubairu, Moshood Kareem

Abstract:

This paper discusses the consideration and trade-offs used for the implementation of robust systems for orbit stability; Telemetry, Command and Ranging (TC& R) for Nigcomsat-1R and applicability for planned NigComSat-2 satellites. NigComSat-1R satellite was built by China Academy of Space Technology (CAST). The Satellite designed with quad-band payload (L, C, Ku, and Ka) was launched on the 20th of December 2011. The functionality of all satellite is driven by robust systems including Attitude & Orbit Control System (AOCS) and TC&R. The planned Nigcomsat-2 is a high throughput Satellite expected to function with better AOCS and TC&R.

Keywords: AOCS, CAST, Nigcomsat-1R, TC&R

Procedia PDF Downloads 76
11587 Performance Assessment of GSO Satellites before and after Enhancing the Pointing Effect

Authors: Amr Emam, Joseph Victor, Mohamed Abd Elghany

Abstract:

The paper presents the effect of the orbit inclination on the pointing error of the satellite antenna and consequently on its footprint on earth for a typical Ku- band payload system. The performance assessment is examined both theoretically and by means of practical measurements, taking also into account all additional sources of pointing errors, such as East-West station keeping, orbit eccentricity and actual attitude control performance. An implementation and computation of the sinusoidal biases in satellite roll and pitch used to compensate the pointing error of the satellite antenna coverage is studied and evaluated before and after the pointing corrections performed. A method for evaluation of the performance of the implemented biases has been introduced through measuring satellite received level from a tracking 11m and fixed 4.8m transmitting antenna before and after the implementation of the pointing corrections.

Keywords: satellite, inclined orbit, pointing errors, coverage optimization

Procedia PDF Downloads 365
11586 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite

Authors: Zheng DianXun, Cheng Bo, Lin Hetong

Abstract:

This paper focuses on the orbit avoidance strategies of optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. There are three ways to protect the CCD camera: closing the camera cover, satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. Thereinto, the avoid maneuvers adopts pulse guidance. And the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.

Keywords: optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver

Procedia PDF Downloads 375
11585 A Simple Thermal Control Technique for the First Egyptian Pico Satellite

Authors: Maged Assem Soliman Mossallam

Abstract:

One of the main prospectives on the demand of space exploration is to reduce the costs and efforts for satellite design. Concerning this issue satellite down scaling attracts space scientists and engineers. Picosatellite is the smallest category of satellites. The overall mass is less than 1 kg and dimensions are 10x10x3 cm3. Thermal control target is to keep the Pico-satellite board temperature within the permissible limits of temperature. Thermal design is completely passive which relies mainly on the enhancement of the thermo-optical properties of aluminum using anodization. Transient analysis is given for two different orbits, ISS orbit and 600 km altitude orbit. Results show that board temperature lies within 3 oC to 22 oC using black anodization which is a permissible limit for the satellite internal electronic board.

Keywords: satellite thermal control, small satellites, thermooptical properties , transient orbit analysis

Procedia PDF Downloads 78
11584 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme

Authors: Arun Kumar Yadav, Badam Singh Kushvah

Abstract:

In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.

Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control

Procedia PDF Downloads 163
11583 Synchronization of a Perturbed Satellite Attitude Motion

Authors: Sadaoui Djaouida

Abstract:

In this paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.

Keywords: predictive control, synchronization, satellite attitude, control engineering

Procedia PDF Downloads 531
11582 Development of Star Image Simulator for Star Tracker Algorithm Validation

Authors: Zoubida Mahi

Abstract:

A successful satellite mission in space requires a reliable attitude and orbit control system to command, control and position the satellite in appropriate orbits. Several sensors are used for attitude control, such as magnetic sensors, earth sensors, horizon sensors, gyroscopes, and solar sensors. The star tracker is the most accurate sensor compared to other sensors, and it is able to offer high-accuracy attitude control without the need for prior attitude information. There are mainly three approaches in star sensor research: digital simulation, hardware in the loop simulation, and field test of star observation. In the digital simulation approach, all of the processes are done in software, including star image simulation. Hence, it is necessary to develop star image simulation software that could simulate real space environments and various star sensor configurations. In this paper, we present a new stellar image simulation tool that is used to test and validate the stellar sensor algorithms; the developed tool allows to simulate of stellar images with several types of noise, such as background noise, gaussian noise, Poisson noise, multiplicative noise, and several scenarios that exist in space such as the presence of the moon, the presence of optical system problem, illumination and false objects. On the other hand, we present in this paper a new star extraction algorithm based on a new centroid calculation method. We compared our algorithm with other star extraction algorithms from the literature, and the results obtained show the star extraction capability of the proposed algorithm.

Keywords: star tracker, star simulation, star detection, centroid, noise, scenario

Procedia PDF Downloads 60
11581 Numerical Solving Method for Specific Dynamic Performance of Unstable Flight Dynamics with PD Attitude Control

Authors: M. W. Sun, Y. Zhang, L. M. Zhang, Z. H. Wang, Z. Q. Chen

Abstract:

In the realm of flight control, the Proportional- Derivative (PD) control is still widely used for the attitude control in practice, particularly for the pitch control, and the attitude dynamics using PD controller should be investigated deeply. According to the empirical knowledge about the unstable flight dynamics, the control parameter combination conditions to generate sole or finite number of closed-loop oscillations, which is a quite smooth response and is more preferred by practitioners, are presented in analytical or numerical manners. To analyze the effects of the combination conditions of the control parameters, the roots of several polynomials are sought to obtain feasible solutions. These conditions can also be plotted in a 2-D plane which makes the conditions be more explicit by using multiple interval operations. Finally, numerical examples are used to validate the proposed methods and some comparisons are also performed.

Keywords: attitude control, dynamic performance, numerical solving method, interval, unstable flight dynamics

Procedia PDF Downloads 543
11580 Delusive versus Genuine Needs: Examining Human Needs within the Islamic Framework of Orbit of Needs

Authors: Abdolmoghset Banikamal

Abstract:

This study looks at the issue of human needs from Islamic perspectives. The key objective of the study is to contribute in regulating the persuasion of needs. It argues that all needs are not necessarily genuine, rather a significant part of them are delusive. To distinguish genuine needs from delusive ones, the study suggests looking at the purpose of the persuasion of that particular need as a key criterion. In doing so, the paper comes with a model namely Orbit of Needs. The orbit has four circles. The central one is a necessity, followed by comfort, beautification, and exhibition. According to the model, all those needs that fall into one of the first three circles in terms of purpose are genuine, while any need which falls into the fourth circle is delusive.

Keywords: desire, human need, Islam, orbit of needs

Procedia PDF Downloads 255
11579 Quadrotor in Horizontal Motion Control and Maneuverability

Authors: Ali Oveysi Sarabi

Abstract:

In this paper, controller design for the attitude and altitude dynamics of an outdoor quadrotor, which is constructed with low cost actuators and drivers, is aimed. Before designing the controller, the quadrotor is modeled mathematically in Matlab-Simulink environment. To control attitude dynamics, linear quadratic regulator (LQR) based controllers are designed, simulated and applied to the system. Two different proportional-integral-derivative action (PID) controllers are designed to control yaw and altitude dynamics. During the implementation of the designed controllers, different test setups are used. Designed controllers are implemented and tuned on the real system using xPC Target. Tests show that these basic control structures are successful to control the attitude and altitude dynamics.

Keywords: helicopter balance, flight dynamics, autonomous landing, control robotics

Procedia PDF Downloads 484
11578 Knowledge Attitude and Practices of COVID-19 among Tamil Nadu Residence

Authors: Shivanand Pawar

Abstract:

In India, a collective range of measurements had been adopted to control the massive spread of the COVID-19 pandemic, but World Health Organization (2022) revealed 525 930 fatalities and 43,847,065 confirmed cases. There are currently 30,857 cases per million people. Lack of knowledge, attitude and practices are the main causes thought to be increased COVID-19. The present study aims to assess the knowledge, attitude, and practice among Tamil Nadu residents. The participants (N=332) were aged 20 to 50 (mean=42.78, & SD=13.98) and were selected using purposive sampling, and data were collected online using knowledge, attitude and practice scale. Data were analyzed using person correlation and multiple regression analysis. The result found that 31.30% had satisfactory knowledge, 68.70% had non-satisfactory knowledge, followed by 45.20% had a positive attitude, 54.80% had a negative attitude, and 34.30% had a good practice, and 65.70% had poor practice towards COVID-19. Correlation results revealed that age has a negative and significant relationship with Knowledge and Practice towards COVID-19. The current study results contribute to the existing literature on knowledge, attitude and practice of COVID-19 to reduce the COVID-19 cases by managing unhealthy knowledge, attitude and practice to control the massive spread of COVID-19.

Keywords: COVID-19, knowledge, practice, attitude, Fisherman community

Procedia PDF Downloads 83
11577 Designing and Costing the Concept of Servicer Satellites That Can Be Used to De-Orbit Space Debris

Authors: Paras Adlakha

Abstract:

Today the major threat to our existing and future satellites is space debris; the collision of bodies like defunct satellites with any other objects in space, including the new age ASAT (anti-satellite) weaponry system, are the main causes of the increasing amount of space debris every year. After analyzing the current situation of space debris, low earth orbit is found to be having a large density of debris as compared to any other orbit range; that's why it is selected as the target orbit for space debris removal mission. In this paper, the complete data of 24000 debris is studied based on size, altitude, inclination, mass, number of existing satellites threaten by each debris from which the rocket bodies are the type of wreckage found to be most suited for removal. The optimal method of active debris removal using a robotic arm for capturing the body to attach a de-orbit kit is used to move the debris from its orbit without making the actual contact of servicer with the debris to reduce the further the threat of collision with defunct material. The major factors which are brought into consideration while designing the concept of debris removal are tumbling, removal of debris under a low-cost mission and decreasing the factor of collisions during the mission.

Keywords: de-orbit, debris, servicer, satellite, space junk

Procedia PDF Downloads 108
11576 Microsatellite Passive Thermal Design Using Anodized Titanium

Authors: Maged Assem Soliman Mossallam

Abstract:

Microsatellites' low available power limits the usage of active thermal control techniques in these categories of satellites. Passive thermal control techniques are preferred due to their high reliability and power saving which increase the satellite's survivability in orbit. Steady-state and transient simulations are applied to the microsatellite design in order to define severe conditions in orbit. Satellite thermal orbital three-dimensional simulation is performed using thermal orbit propagator coupled with Comsol Multiphysics finite element solver. Sensitivity study shows the dependence of the satellite temperatures on the internal heat dissipation and the thermooptical properties of anodization coatings. The critical case is defined as low power orbiting mode at the eclipse zone. Using black anodized aluminum drops the internal temperatures to severe values which exceed the permissible cold limits. Replacement with anodized titanium returns the internal subsystems' temperatures back to adequate temperature fluctuations limits.

Keywords: passive thermal control, thermooptical, anodized titanium, emissivity, absorbtiviy

Procedia PDF Downloads 107
11575 Analysis the Trajectory of the Spacecraft during the Transition to the Planet's Orbit Using Aerobraking in the Atmosphere of the Planet

Authors: Zaw Min Tun

Abstract:

The paper focuses on the spacecraft’s trajectory transition from interplanetary hyperbolic orbit to the planet’s orbit using the aerobraking in the atmosphere of the planet. A considerable mass of fuel is consumed during the spacecraft transition from the planet’s gravitation assist trajectory into the planet’s satellite orbit. To reduce the fuel consumption in this transition need to slow down the spacecraft’s velocity in the planet’s atmosphere and reduce its orbital transition time. The paper is devoted to the use of the planet’s atmosphere for slowing down the spacecraft during its transition into the satellite orbit with uncertain atmospheric parameters. To reduce the orbital transition time of the spacecraft is controlled by the change of attack angles’ values at the aerodynamic deceleration path and adjusting the minimum flight altitude of the spacecraft at the pericenter of the planet’s upper atmosphere.

Keywords: aerobraking, atmosphere of the planet, orbital transition time, Spacecraft’s trajectory

Procedia PDF Downloads 277
11574 An Implementation of a Dual-Spin Spacecraft Attitude Reorientation Using Properties of Its Chaotic Motion

Authors: Anton V. Doroshin

Abstract:

This article contains a description of main ideas for the attitude reorientation of spacecraft (small dual-spin spacecraft, nanosatellites) using properties of its chaotic attitude motion under the action of internal perturbations. The considering method based on intentional initiations of chaotic modes of attitude motion with big amplitudes of the nutation oscillations, and also on the redistributions of the angular momentum between coaxial bodies of the dual-spin spacecraft (DSSC), which perform in the purpose of system’s phase space changing.

Keywords: spacecraft, attitude dynamics, control, chaos

Procedia PDF Downloads 364
11573 Orbit Determination Modeling with Graphical Demonstration

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.

Keywords: orbit determination, STK, Matlab-GUI, satellite tracking

Procedia PDF Downloads 241
11572 Influence of High-Resolution Satellites Attitude Parameters on Image Quality

Authors: Walid Wahballah, Taher Bazan, Fawzy Eltohamy

Abstract:

One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias.

Keywords: high-resolution satellites, pointing accuracy, attitude stability, TDI-CCD, smear, MTF

Procedia PDF Downloads 374
11571 Analysis of Autonomous Orbit Determination for Lagrangian Navigation Constellation with Different Dynamical Models

Authors: Gao Youtao, Zhao Tanran, Jin Bingyu, Xu Bo

Abstract:

Global navigation satellite system(GNSS) can deliver navigation information for spacecraft orbiting on low-Earth orbits and medium Earth orbits. However, the GNSS cannot navigate the spacecraft on high-Earth orbit or deep space probes effectively. With the deep space exploration becoming a hot spot of aerospace, the demand for a deep space satellite navigation system is becoming increasingly prominent. Many researchers discussed the feasibility and performance of a satellite navigation system on periodic orbits around the Earth-Moon libration points which can be called Lagrangian point satellite navigation system. Autonomous orbit determination (AOD) is an important performance for the Lagrangian point satellite navigation system. With this ability, the Lagrangian point satellite navigation system can reduce the dependency on ground stations. AOD also can greatly reduce total system cost and assure mission continuity. As the elliptical restricted three-body problem can describe the Earth-Moon system more accurately than the circular restricted three-body problem, we study the autonomous orbit determination of Lagrangian navigation constellation using only crosslink range based on elliptical restricted three body problem. Extended Kalman filter is used in the autonomous orbit determination. In order to compare the autonomous orbit determination results based on elliptical restricted three-body problem to the results of autonomous orbit determination based on circular restricted three-body problem, we give the autonomous orbit determination position errors of a navigation constellation include four satellites based on the circular restricted three-body problem. The simulation result shows that the Lagrangian navigation constellation can achieve long-term precise autonomous orbit determination using only crosslink range. In addition, the type of the libration point orbit will influence the autonomous orbit determination accuracy.

Keywords: extended Kalman filter, autonomous orbit determination, quasi-periodic orbit, navigation constellation

Procedia PDF Downloads 259
11570 Optimal Peer-to-Peer On-Orbit Refueling Mission Planning with Complex Constraints

Authors: Jing Yu, Hongyang Liu, Dong Hao

Abstract:

On-Orbit Refueling is of great significance in extending space crafts' lifetime. The problem of minimum-fuel, time-fixed, Peer-to-Peer On-Orbit Refueling mission planning is addressed here with the particular aim of assigning fuel-insufficient satellites to the fuel-sufficient satellites and optimizing each rendezvous trajectory. Constraints including perturbation, communication link, sun illumination, hold points for different rendezvous phases, and sensor switching are considered. A planning model has established as well as a two-level solution method. The upper level deals with target assignment based on fuel equilibrium criterion, while the lower level solves constrained trajectory optimization using special maneuver strategies. Simulations show that the developed method could effectively resolve the Peer-to-Peer On-Orbit Refueling mission planning problem and deal with complex constraints.

Keywords: mission planning, orbital rendezvous, on-orbit refueling, space mission

Procedia PDF Downloads 198
11569 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control

Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha

Abstract:

This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.

Keywords: attitude control, flexible satellite, vibration control, disturbance observer

Procedia PDF Downloads 54
11568 Attitude Stabilization of Satellites Using Random Dither Quantization

Authors: Kazuma Okada, Tomoaki Hashimoto, Hirokazu Tahara

Abstract:

Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators.

Keywords: quantized control, nonlinear systems, random dither quantization

Procedia PDF Downloads 214
11567 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 67
11566 Impacts of Computer Assisted Instruction and Gender on High-Flyers Pre-Service Teachers' Attitude towards Agricultural Economics in Southwest Nigeria

Authors: Alice Morenike Olagunju, Olufemi A. Fakolade, Abiodun Ezekiel Adesina, Olufemi Akinloye Bolaji, Oriyomi Rabiu

Abstract:

The use of computer-assisted instruction(CAI) has been suggested as a way out of the problem of Colleges of Education (CoE) in Southwest, Nigeria persistent high failure rate in and negative attitude towards Agricultural Economics (AE).The impacts of this are yet unascertained on high-flyers. This study, therefore, determined the impacts of CAI onhigh-flyers pre-service teachers’ attitude towards AE concepts in Southwest, Nigeria. The study adopted pretest-posttest, control group, quasi-experimental design. Six CoE with e-library facilities were purposively selected. Fourty-nine 200 level Agricultural education students offering introduction to AE course across the six CoE were participants. The participants were assigned to two groups (CAI, 22 and control, 27). Treatment lasted eight weeks. The AE Attitude Scale(r=0.80), Instructional guides and Teacher Performance Assessment Sheets were used for data collection. Data were analysed using t-test. The participants were 62.8% male with mean age of 22 years. Treatment had significant effects on high-flyers pre-service teachers’ attitude (t = 17.44; df = 47, p < .5). Participants in CAI ( =71.03) had higher post attitude mean score compared to those in control ( = 64.92) groups. Gender had no significant effect on attitude (t= 3.06; df= 47, p > .5). The computer assisted instructional mode enhanced students’ attitude towards Agricultural Economics concepts. Therefore, CAI should be adopted for improved attitude towards agricultural economics concepts among high-flyers pre-service teachers.

Keywords: attitude towards agricultural economics concepts, colleges of education in southwest Nigeria, computer-assisted instruction, high-flyers pre-service teachers

Procedia PDF Downloads 217
11565 The Effect of Intimate Partner Violence on Child Abuse in South Korea: Focused on the Moderating Effects of Patriarchal Attitude and Informal Social Control

Authors: Hye Lin Yang, Clifton R. Emery

Abstract:

Purpose: The purpose of this study is to examine the effects of intimate partner violence on child abuse, whether patriarchal attitude and informal social control moderate the relationship between intimate partner violence and child abuse. This study was conducted with data from The Seoul Families and Neighborhoods Study (SFNS). The SFNS is a representative random probability 3-stage cluster sample of 541 cohabiting couples in Seoul, South Korea collected in 2012. To verify research models, Random effect analysis were used. All analyses were performed using the Stata program. Results: Crucial findings are the following. First, intimate partner violence showed a significantly positive relationship with Child abuse. Second, there are significant moderating effects of informal social control on intimate partner violence - child abuse. Third, there are significant moderating effects of patriarchal attitude on intimate partner violence - child abuse. In other words, Patriarchal attitude is a significant risk factor of child abuse and informal social control is a significant Protection factor of child abuse. Based on results, the policy and practical implications for preventing child abuse, promoting informal social control were discussed.

Keywords: Intimate partner violence, child abuse, informal social control, patriarchal attitude

Procedia PDF Downloads 266
11564 Level of Knowledge, Attitude, Perceived Behavior Control, Subjective Norm and Behavior of Household Solid Waste towards Zero Waste Management among Malaysian Consumer

Authors: M. J. Zuroni, O. Syuhaily, M. A. Afida Mastura, M. S. Roslina, A. K. Nurul Aini

Abstract:

The impact of country development has caused an increase of solid waste. The increase in population causes of excess usage thus effecting the sustainable environment. Zero waste management involves maximizing practices of recycling and minimizing residual waste. This paper seeks to analyze the relationship between knowledge, attitude, perceived behavior control, subjective norm and behavior of household solid waste towards household solid waste management among urban households in 8 states that have been implemented and enforced regulations under the Solid Waste Management and Public Cleansing Act 2007 (Act 672) in Malaysia. A total of respondents are 605 and we used a purposive sampling for location and simple sampling for sample size. Data collected by using self-administered questionnaire and were analyzed using SPSS software. The Pearson Correlation Test is to examine the relationship between four variables. Results show that knowledge scores are high because they have an awareness of the importance of managing solid waste. For attitude, perceived behavior control, subjective norm and behavioral scores at a moderate level in solid waste management activities. The findings show that there is a significant relationship between knowledge and behavior of household solid waste (r = 0.136 **, p = 0.001), there is a significant relationship between attitude and behavior (r = 0.238 **, p = 0.000), there is a significant relationship between perceived behavior control and behavior (r = 0.516 **, p = 0.000) and there is a significant relationship between subjective norm and behavior (r = 0.494 **, p = 0.000). The conclusion is that there is a relationship between knowledge, attitude, perceived behavior control and subjective norm toward the behavior of household solid waste management. Therefore, in the findings of the study, all parties including the government should work together to enhance the knowledge, attitude, perceived behavior control and behavior of household solid waste management in other states that have not implemented and enforced regulations under the Solid Waste and Public Cleansing Management Act 2007 (Act 672).

Keywords: solid waste management, knowledge, attitude, perceived behavior control, subjective norm, behavior

Procedia PDF Downloads 288
11563 Autonomous Rendezvous for Underactuated Spacecraft

Authors: Espen Oland

Abstract:

This paper presents a solution to the problem of autonomous rendezvous for spacecraft equipped with one main thruster for translational control and three reaction wheels for rotational control. With fewer actuators than degrees of freedom, this constitutes an underactuated control problem, requiring a coupling between the translational and rotational dynamics to facilitate control. This paper shows how to obtain this coupling, and applies the results to autonomous rendezvous between a follower spacecraft and a leader spacecraft. Additionally, since the thrust is constrained between zero and an upper bound, no negative forces can be generated to slow down the speed of the spacecraft. A combined speed and attitude control logic is therefore created that can be divided into three main phases: 1) The orbital velocity vector is pointed towards the desired position and the thrust is used to obtain the desired speed, 2) during the coasting phase, the attitude is changed to facilitate deceleration using the main thruster, 3) the speed is decreased as the spacecraft reaches its desired position. The results are validated through simulations, showing the capabilities of the proposed approach.

Keywords: attitude control, spacecraft rendezvous, translational control, underactuated rigid body

Procedia PDF Downloads 270