Search results for: thermal deposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4256

Search results for: thermal deposition

1916 The Effect of the Reaction Time on the Microwave Synthesis of Magnesium Borates from MgCl2.6H2O, MgO and H3BO3

Authors: E. Moroydor Derun, P. Gurses, M. Yildirim, A. S. Kipcak, T. Ibroska, S. Piskin

Abstract:

Due to their strong mechanical and thermal properties magnesium borates have a wide usage area such as ceramic industry, detergent production, friction reducing additive and grease production. In this study, microwave synthesis of magnesium borates from MgCl2.6H2O (Magnesium chloride hexahydrate), MgO (Magnesium oxide) and H3BO3 (Boric acid) for different reaction times is researched. X-ray Diffraction (XRD) and Fourier Transform Infrared (FT-IR) Spectroscopy are used to find out how the reaction time sways on the products. The superficial properties are investigated with Scanning Electron Microscopy (SEM). According to XRD analysis, the synthesized compounds are 00-041-1407 pdf coded Shabinite (Mg5(BO3)4Cl2(OH)5.4(H2O)) and 01-073-2158 pdf coded Karlite (Mg7(BO3)3(OH,Cl)5).

Keywords: magnesium borate, microwave synthesis, XRD, SEM

Procedia PDF Downloads 336
1915 Monitoring the Effect of Deep Frying and the Type of Food on the Quality of Oil

Authors: Omar Masaud Almrhag, Frage Lhadi Abookleesh

Abstract:

Different types of food like banana, potato and chicken affect the quality of oil during deep fat frying. The changes in the quality of oil were evaluated and compared. Four different types of edible oils, namely, corn oil, soybean, canola, and palm oil were used for deep fat frying at 180°C ± 5°C for 5 h/d for six consecutive days. A potato was sliced into 7-8 cm length wedges and chicken was cut into uniform pieces of 100 g each. The parameters used to assess the quality of oil were total polar compound (TPC), iodine value (IV), specific extinction E1% at 233 nm and 269 nm, fatty acid composition (FAC), free fatty acids (FFA), viscosity (cp) and changes in the thermal properties. Results showed that, TPC, IV, FAC, Viscosity (cp) and FFA composition changed significantly with time (P< 0.05) and type of food. Significant differences (P< 0.05) were noted for the used parameters during frying of the above mentioned three products.

Keywords: frying potato, chicken, frying deterioration, quality of oil

Procedia PDF Downloads 411
1914 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: torrefaction, biomass pellets, model, heat, mass transfer

Procedia PDF Downloads 471
1913 Criticality of Adiabatic Length for a Single Branch Pulsating Heat Pipe

Authors: Utsav Bhardwaj, Shyama Prasad Das

Abstract:

To meet the extensive requirements of thermal management of the circuit card assemblies (CCAs), satellites, PCBs, microprocessors, any other electronic circuitry, pulsating heat pipes (PHPs) have emerged in the recent past as one of the best solutions technically. But industrial application of PHPs is still unexplored up to a large extent due to their poor reliability. There are several systems as well as operational parameters which not only affect the performance of an operating PHP, but also decide whether the PHP can operate sustainably or not. Functioning may completely be halted for some particular combinations of the values of system and operational parameters. Among the system parameters, adiabatic length is one of the important ones. In the present work, a simplest single branch PHP system with an adiabatic section has been considered. It is assumed to have only one vapour bubble and one liquid plug. First, the system has been mathematically modeled using film evaporation/condensation model, followed by the steps of recognition of equilibrium zone, non-dimensionalization and linearization. Then proceeding with a periodical solution of the linearized and reduced differential equations, stability analysis has been performed. Slow and fast variables have been identified, and averaging approach has been used for the slow ones. Ultimately, temporal evolution of the PHP is predicted by numerically solving the averaged equations, to know whether the oscillations are likely to sustain/decay temporally. Stability threshold has also been determined in terms of some non-dimensional numbers formed by different groupings of system and operational parameters. A combined analytical and numerical approach has been used, and it has been found that for each combination of all other parameters, there exists a maximum length of the adiabatic section beyond which the PHP cannot function at all. This length has been called as “Critical Adiabatic Length (L_ac)”. For adiabatic lengths greater than “L_ac”, oscillations are found to be always decaying sooner or later. Dependence of “L_ac” on some other parameters has also been checked and correlated at certain evaporator & condenser section temperatures. “L_ac” has been found to be linearly increasing with increase in evaporator section length (L_e), whereas the condenser section length (L_c) has been found to have almost no effect on it upto a certain limit. But at considerably large condenser section lengths, “L_ac” is expected to decrease with increase in “L_c” due to increased wall friction. Rise in static pressure (p_r) exerted by the working fluid reservoir makes “L_ac” rise exponentially whereas it increases cubically with increase in the inner diameter (d) of PHP. Physics of all such variations has been given a good insight too. Thus, a methodology for quantification of the critical adiabatic length for any possible set of all other parameters of PHP has been established.

Keywords: critical adiabatic length, evaporation/condensation, pulsating heat pipe (PHP), thermal management

Procedia PDF Downloads 215
1912 Developing Soil Accumulation Effect Correction Factor for Solar Photovoltaic Module

Authors: Kelebaone Tsamaase, Rapelang Kemoabe, Japhet Sakala, Edward Rakgati, Ishmael Zibani

Abstract:

Increasing demand for energy, depletion of non-renewable energy, effects of climate change, the abundance of renewable energy such as solar energy have increased the interest in investing in renewable energies, in particular solar photovoltaic (PV) energy. Solar photovoltaic energy systems as part of clean technology are considered to be environmentally friendly, freely available, offer clean production systems, long term costs benefits as opposed to conventional sources, and are the attractive power source for a wide range of applications in remote areas where there is no easy access to the national grid. To get maximum electrical power, maximum solar power should penetrate the module and be converted accordingly. However, some environmental and other geographical related factors reduce the electrical power. One of them is dust which accumulates on the surface of the module and forming a dust layer and in the process obstructing the solar power from penetrating PV module. This study intends to improve the performance of solar photovoltaic (PV) energy modules by establishing soil accumulation effects correction factor from dust characteristics and properties, and also from dust accumulation and retention pattern on PV module surface. The non-urban dry deposition flux model was adapted to determine monthly and yearly dust accumulation pattern. Consideration was done on prevailing environmental and other geographical conditions. Preliminary results showed that cumulative dust settlement increased during the months of July to October leading to a higher drop in module electrical output power.

Keywords: dust, electrical power output, PV module, soil correction factor

Procedia PDF Downloads 124
1911 Phase Transitions of Cerium and Neodymium

Authors: M. Khundadze, V. Varazashvili, N. Lejava, R. Jorbenadze

Abstract:

Phase transitions of cerium and neodymium are investigated by using high-temperature scanning calorimeter (HT-1500 Seteram). For cerium two types of transformation are detected: at 350-372 K - hexagonal close packing (hcp) - face-centered cubic lattice (fcc) transition, and at 880-960K the face-centered cubic lattice (fcc) transformation into body-centered cubic lattice (bcc). For neodymium changing of hexagonal close packing (hcp) into the body-centered cubic lattice (bcc) is detected at 1093-1113K. The thermal characteristics of transitions – enthalpy, entropy, temperature domains – are reported.

Keywords: cerium, calorimetry, enthalpy of phase transitions, neodymium

Procedia PDF Downloads 315
1910 Elastic and Thermal Behaviour of LaX (X= Cd, Hg) Intermetallics: A DFT Study

Authors: Gitanjali Pagare, Hansa Devi, S. P. Sanyal

Abstract:

Full-potential linearized augmented plane wave (FLAPW) method has been employed within the generalized gradient approximation (GGA) and local spin density approximation (LSDA) as the exchange correlation potential to investigate elastic properties of LaX (X = Cd and Hg) in their B2-type (CsCl) crystal structure. The calculated ground state properties such as lattice constant (a0), bulk modulus (B) and pressure derivative of bulk modulus (B') agree well with the available experimental results. The second order elastic constants (C11, C12 and C44) have been calculated. The ductility or brittleness of these intermetallic compounds is predicted by using Pugh’s rule B/GH and Cauchy’s pressure (C12-C44). The calculated results indicate that LaHg is the ductile whereas LaCd is brittle in nature.

Keywords: ductility/brittleness, elastic constants, equation of states, FP-LAPW method, intermetallics

Procedia PDF Downloads 436
1909 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell

Authors: Sujit Kumar Guchhait, Subir Paul

Abstract:

One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.

Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM

Procedia PDF Downloads 293
1908 Energy Saving of the Paint with Mineral Insulators: Simulation and Study on Different Climates

Authors: A. A. Azemati, H. Hosseini, B. Shirkavand Hadavand

Abstract:

By using an adequate thermal barrier coating in buildings the energy saving will be happened. In this study, a range of wall paints with different absorption coefficient in different climates has been investigated. In order to study these effects, heating and cooling loads of a common building with different ordinary paints and paint with mineral coating have been calculated. The effect of building paint in different climatic condition was studied and comparison was done between ordinary paints and paint with mineral insulators in temperate climate to obtain optimized energy consumption. The results have been shown that coatings with inorganic micro particles as insulation reduce the energy consumption of buildings around 14%.

Keywords: climate, energy consumption, inorganic, mineral coating

Procedia PDF Downloads 261
1907 Oxygen-Tolerant H₂O₂ Reduction Catalysis by Iron Phosphate Coated Iron Oxides

Authors: Chia-Ting Chang, Chia-Yu Lin

Abstract:

We report on the decisive role of iron phosphate (FePO₄), formed in-situ during the electrochemical characterization, played in the electrocatalytic activity, especially its oxygen tolerance of iron oxides towards H₂O₂ reduction. Iron oxides studied including, Nanorod arrays (NRs) of β-FeOOH, γ-Fe₂O₃, α-Fe₂O₃, α-Fe₂O₃ nanosheets (α-Fe₂O₃NS), α-Fe₂O₃ nanoparticles (α-Fe₂O₃NP), were synthesized using chemical bath deposition. The nanostructure was controlled simply by adjusting the composition of precursor solution and reaction duration for CBD process, whereas the crystal phase was controlled by adjusting the annealing temperature. It was found that iron phosphate (FePO₄) was deposited in-situ onto the surface of this nanostructured α-Fe₂O₃ during the electrochemical pretreatment in the phosphate electrolyte, and both FePO₄ and α-Fe₂O₃ showed the activity in catalysing the electrochemical reduction of H₂O₂. In addition, the interaction/compatibility between deposited FePO₄ and iron oxides has a decisive effect on the overall electrocatalytic activity of the resultant electrodes; FePO₄ only showed synergetic effect on the overall electrocatalytic activity of α-Fe₂O₃NR and α-Fe2O₃NS. Both α-Fe₂O₃NR and α-Fe₂O₃NS showed two reduction peaks in phosphate electrolyte containing H₂O₂, one being pH-dependent and related to the electrocatalytic properties of FePO₄, and the other one being pH-independent and only related to the intrinsic electrocatalytic properties of α-Fe₂O₃NR and α-Fe₂O₃NS. However, all iron oxides showed only one pH-independent reductive peak in non-phosphate electrolyte containing H₂O₂. The synergesitic catalysis exerted by FePO₄ with α-Fe₂O₃NR or α-Fe₂O₃NS providing additional oxygen-insensitive active site for H₂O₂ reduction, which allows their applications to electrochemical detection of H₂O₂ without the interference of O₂ involving in oxidase-catalyzed chemical processes.

Keywords: H₂O₂ reduction, Iron oxide, iron phosphate, O₂ tolerance

Procedia PDF Downloads 410
1906 Feasibility of Leukemia Cancer Treatment (K562) by Atmospheric Pressure Plasma Jet

Authors: Mashayekh Amir Shahriar, Akhlaghi Morteza, Rajaee Hajar, Khani Mohammad Reza, Shokri Babak

Abstract:

A new and novel approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper a pin-to-hole plasma jet suitable for biological applications is investigated, characterized and the possibility and feasibility of cancer cell treatment is evaluated. The characterization includes power consumption via Lissajous method, thermal behavior of plasma using Infra-red camera as a novel method, Optical Emission Spectroscopy (OES) to determine the species that are generated. Treatment of leukemia cancer cells is also implemented and MTT assay is used to evaluate viability.

Keywords: Atmospheric Pressure Plasma Jet (APPJ), Plasma Medicine, Cancer cell treatment, leukemia, Optical Emission

Procedia PDF Downloads 645
1905 Passive Solar Water Concepts for Human Comfort

Authors: Eyibo Ebengeobong Eddie

Abstract:

Taking advantage of the sun's position to design buildings to ensure human comfort has always been an important aspect in an architectural design. Using cheap and less expensive methods and systems for gaining solar energy, heating and cooling has always been a great advantage to users and occupants of a building. As the years run by, daily techniques and methods have been created and more are being discovered to help reduce the energy demands of any building. Architects have made effective use of a buildings orientation, building materials and elements to achieve less energy demand. This paper talks about the various techniques used in solar heating and passive cooling of buildings and through water techniques and concepts to achieve thermal comfort.

Keywords: comfort, passive, solar, water

Procedia PDF Downloads 447
1904 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films

Authors: Tariku Nefo Duke

Abstract:

Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.

Keywords: polyimide, corrosion resistance, electroactive, Tg

Procedia PDF Downloads 185
1903 Long-Term Cohort of Patients with Beta Thalassemia; Prevailing Role of Serum Ferritin Levels in Hypocalcemia and Growth Retardation

Authors: Shervin Rashidinia, Sara Shahmoradi, Seyyed Shahin Eftekhari, Mohsen Talebizadeh, Mohammad Saleh Sadeghi

Abstract:

Background: Beta-thalassemia Major (BTM) is a kind of hereditary hemolytic anemia which depended on regular monthly blood transfusion. However, iron deposition into the organs leads to multi-organ damage. The present study is the first study which aimed to evaluate the average of five-years serum ferritin level and compared by the prevalence of short stature and hypocalcemia. Materials/Methods: A cross-sectional retrospective study which a total of 140 patients with beta-thalassemia who were referred to Qom Thalassemia Clinic between February 2011 and July 2016 were enrolled to be reviewed. The exclusion criteria were consisting of incomplete medical records, diagnosis less than 2-years-ago and the blood transfusion less than every 4 weeks. The data including age, gender, weight, height, age of initial blood transfusion, age of initial chelation therapy, ferritin, and calcium were collected and analysis by SPSS version 24. Results: A total of 140 patients were enrolled. Of them, 75 (53.4%) were female. The mean age of the patients was 13.4±4.6 years.The mean age of initial diagnosis was 20.2±7.4 months. Hypocalcemia and short stature were occurred in 41 (29.3%) and 37 (26.4%) patients, respectively. The mean five-years serum ferritin level was significantly higher in the patients with short stature and hypocalcemia (P<0.0001). However, rise in serum ferritin level significantly increases the risk of short-stature and hypocalcemia (1.0004- and 1.0029 fold, respectively). Conclusion: We demonstrated that prevalence of short stature and hypocalcemia were significantly higher in the BTM.However, ferritin significantly increases the risk of short stature and hypocalcemia.

Keywords: beta-thalassemia, ferritin, growth retardation, hypocalcemia

Procedia PDF Downloads 316
1902 Hemodynamics of a Cerebral Aneurysm under Rest and Exercise Conditions

Authors: Shivam Patel, Abdullah Y. Usmani

Abstract:

Physiological flow under rest and exercise conditions in patient-specific cerebral aneurysm models is numerically investigated. A finite-volume based code with BiCGStab as the linear equation solver is used to simulate unsteady three-dimensional flow field through the incompressible Navier-Stokes equations. Flow characteristics are first established in a healthy cerebral artery for both physiological conditions. The effect of saccular aneurysm on cerebral hemodynamics is then explored through a comparative analysis of the velocity distribution, nature of flow patterns, wall pressure and wall shear stress (WSS) against the reference configuration. The efficacy of coil embolization as a potential strategy of surgical intervention is also examined by modelling coil as a homogeneous and isotropic porous medium where the extended Darcy’s law, including Forchheimer and Brinkman terms, is applicable. The Carreau-Yasuda non-Newtonian blood model is incorporated to capture the shear thinning behavior of blood. Rest and exercise conditions correspond to normotensive and hypertensive blood pressures respectively. The results indicate that the fluid impingement on the outer wall of the arterial bend leads to abnormality in the distribution of wall pressure and WSS, which is expected to be the primary cause of the localized aneurysm. Exercise correlates with elevated flow velocity, vortex strength, wall pressure and WSS inside the aneurysm sac. With the insertion of coils in the aneurysm cavity, the flow bypasses the dilatation, leading to a decline in flow velocities and WSS. Particle residence time is observed to be lower under exercise conditions, a factor favorable for arresting plaque deposition and combating atherosclerosis.

Keywords: 3D FVM, Cerebral aneurysm, hypertension, coil embolization, non-Newtonian fluid

Procedia PDF Downloads 222
1901 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature

Authors: Ishak Hashim, Ammar Alsabery

Abstract:

The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.

Keywords: conjugate free convection, square cavity, nanofluid, spatial temperature

Procedia PDF Downloads 349
1900 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System

Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k

Abstract:

Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.

Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving

Procedia PDF Downloads 245
1899 Temperature Dependence of Photoluminescence Intensity of Europium Dinuclear Complex

Authors: Kwedi L. M. Nsah, Hisao Uchiki

Abstract:

Quantum computation is a new and exciting field making use of quantum mechanical phenomena. In classical computers, information is represented as bits, with values either 0 or 1, but a quantum computer uses quantum bits in an arbitrary superposition of 0 and 1, enabling it to reach beyond the limits predicted by classical information theory. lanthanide ion quantum computer is an organic crystal, having a lanthanide ion. Europium is a favored lanthanide, since it exhibits nuclear spin coherence times, and Eu(III) is photo-stable and has two stable isotopes. In a europium organic crystal, the key factor is the mutual dipole-dipole interaction between two europium atoms. Crystals of the complex were formed by making a 2 :1 reaction of Eu(fod)3 and bpm. The transparent white crystals formed showed brilliant red luminescence with a 405 nm laser. The photoluminescence spectroscopy was observed both at room and cryogenic temperatures (300-14 K). The luminescence spectrum of [Eu(fod)3(μ-bpm) Eu(fod)3] showed characteristic of Eu(III) emission transitions in the range 570–630 nm, due to the deactivation of 5D0 emissive state to 7Fj. For the application of dinuclear Eu3+ complex to q-bit device, attention was focused on 5D0 -7F0 transition, around 580 nm. The presence of 5D0 -7F0 transition at room temperature revealed that at least one europium symmetry had no inversion center. Since the line was unsplit by the crystal field effect, any multiplicity observed was due to a multiplicity of Eu3+ sites. For q-bit element, more narrow line width of 5D0 → 7F0 PL band in Eu3+ ion was preferable. Cryogenic temperatures (300 K – 14 K) was applicable to reduce inhomogeneous broadening and distinguish between ions. A CCD image sensor was used for low temperature Photoluminescence measurement, and a far better resolved luminescent spectrum was gotten by cooling the complex at 14 K. A red shift by 15 cm-1 in the 5D0 - 7F0 peak position was observed upon cooling, the line shifted towards lower wavenumber. An emission spectrum at the 5D0 - 7F0 transition region was obtained to verify the line width. At this temperature, a peak with magnitude three times that at room temperature was observed. The temperature change of the 5D0 state of Eu(fod)3(μ-bpm)Eu(fod)3 showed a strong dependence in the vicinity of 60 K to 100 K. Thermal quenching was observed at higher temperatures than 100 K, at which point it began to decrease slowly with increasing temperature. The temperature quenching effect of Eu3+ with increase temperature was caused by energy migration. 100 K was the appropriate temperature for the observation of the 5D0 - 7F0 emission peak. Europium dinuclear complex bridged by bpm was successfully prepared and monitored at cryogenic temperatures. At 100 K the Eu3+-dope complex has a good thermal stability and this temperature is appropriate for the observation of the 5D0 - 7F0 emission peak. Sintering the sample above 600o C could also be a method to consider but the Eu3+ ion can be reduced to Eu2+, reasons why cryogenic temperature measurement is preferably over other methods.

Keywords: Eu(fod)₃, europium dinuclear complex, europium ion, quantum bit, quantum computer, 2, 2-bipyrimidine

Procedia PDF Downloads 170
1898 Effect of Coriolis Force on Magnetoconvection in an Anisotropic Porous Medium

Authors: N. F. M. Mokhtar, N. Z. A. Hamid

Abstract:

This paper reports an analytical investigation of the stability and thermal convection in a horizontal anisotropic porous medium in the presence of Coriolis force and magnetic field. The Darcy model is used in the momentum equation and Boussinesq approximation is considered for the density variation of the porous medium. The upper and lower boundaries of the porous medium are assumed to be conducting to temperature perturbation and we used first order Chebyshev polynomial Tau method to solve the resulting eigenvalue problem. Analytical solution is obtained for the case of stationary convection. It is found that the porous layer system becomes unstable when the mechanical anisotropy parameter elevated and increasing the Coriolis force and magnetic field help to stabilize the anisotropy porous medium.

Keywords: anisotropic, Chebyshev tau method, Coriolis force, Magnetic field

Procedia PDF Downloads 203
1897 Heat and Mass Transfer Study of Supercooled Large Droplet Icing

Authors: Du Yanxia, Stephan E. Bansmer, Gui Yewei, Xiao Guangming, Yang Xiaofeng

Abstract:

The heat and mass transfer characteristics of icing coupled with film flow is studied and the coupled model of the thermal behavior with the flow simulation by single-step method is developed. The behavior of ice and water was analyzed. The results show that under supercooled large droplet (SLD) icing conditions, the film flow is an important phonomena in icing accretion process. The pressure gradient, gravity and shear stress are the main factors affecting the film flow on icing surface, which has important influence on the shape and rate of icing. To predict SLD ice accretion accurately, the heat and mass transfer of ice and film flow should be taken into account.

Keywords: SLD, aircraft, icing, heat and mass transfer

Procedia PDF Downloads 619
1896 Predicting the Lifetime of Weathered Polyolefins by Relating Mechanics to Microstructure

Authors: Marta Chiapasco, Alexandra Porter, Finn Giuliani

Abstract:

Designing polymers with a specific microstructure can affect how the polymer degrades once released in the environment. Not only the amount but also the distribution of different phases determines a polymers’ degradability. The following research investigates the use of a combination of spectroscopy analysis and thermal analysis to study changes of polymers’ amorphous and crystalline phases during degradation, comparing different microstructures of polypropylene and polyethylene. The use of nanoindentation helps study how degradation proceeds across a material by looking at changes in phases, while bulk tensile test describes when the material fails. The first results demonstrate that different microstructures have different degrading rates, with homopolymer having a linear and faster degradation compared to copolymers. The goal is to create materials that degrade at faster rates without releasing microplastics into the environment.

Keywords: degradation, microstructure, nanoindentation, Raman spectroscopy

Procedia PDF Downloads 142
1895 A Rapid Prototyping Tool for Suspended Biofilm Growth Media

Authors: Erifyli Tsagkari, Stephanie Connelly, Zhaowei Liu, Andrew McBride, William Sloan

Abstract:

Biofilms play an essential role in treating water in biofiltration systems. The biofilm morphology and function are inextricably linked to the hydrodynamics of flow through a filter, and yet engineers rarely explicitly engineer this interaction. We develop a system that links computer simulation and 3-D printing to optimize and rapidly prototype filter media to optimize biofilm function with the hypothesis that biofilm function is intimately linked to the flow passing through the filter. A computational model that numerically solves the incompressible time-dependent Navier Stokes equations coupled to a model for biofilm growth and function is developed. The model is imbedded in an optimization algorithm that allows the model domain to adapt until criteria on biofilm functioning are met. This is applied to optimize the shape of filter media in a simple flow channel to promote biofilm formation. The computer code links directly to a 3-D printer, and this allows us to prototype the design rapidly. Its validity is tested in flow visualization experiments and by microscopy. As proof of concept, the code was constrained to explore a small range of potential filter media, where the medium acts as an obstacle in the flow that sheds a von Karman vortex street that was found to enhance the deposition of bacteria on surfaces downstream. The flow visualization and microscopy in the 3-D printed realization of the flow channel validated the predictions of the model and hence its potential as a design tool. Overall, it is shown that the combination of our computational model and the 3-D printing can be effectively used as a design tool to prototype filter media to optimize biofilm formation.

Keywords: biofilm, biofilter, computational model, von karman vortices, 3-D printing.

Procedia PDF Downloads 133
1894 The Effect of Bath Composition for Hot-Dip Aluminizing of AISI 4140 Steel

Authors: Aptullah Karakas, Murat Baydogan

Abstract:

Hot-dip aluminizing (HDA) is one of the several aluminizing methods to form a wear-, corrosion- and oxidation-resistant aluminide layers on the surface. In this method, the substrate is dipped into a molten aluminum bath, hold in the bath for several minutes, and cooled down to the room temperature in air. A subsequent annealing after the HDA process is generally performed. The main advantage of HDA is its very low investment cost in comparison with other aluminizing methods such as chemical vapor deposition (CVD), pack aluminizing and metalizing. In the HDA process, Al or Al-Si molten baths are mostly used. However, in this study, three different Al alloys such as Al4043 (Al-Mg), Al5356 (Al-Si) and Al7020 (Al-Zn) were used as the molten bath in order to see their effects on morphological and mechanical properties of the resulting aluminide layers. AISI 4140 low alloyed steel was used as the substrate. Parameters of the HDA process were bath composition, bath temperature, and dipping time. These parameters were considered within a Taguchi L9 orthogonal array. After the HDA process and subsequent diffusion annealing, coating thickness measurement, microstructural analysis and hardness measurement of the aluminide layers were conducted. The optimum process parameters were evaluated according to coating morphology, such as cracks, Kirkendall porosity and hardness of the coatings. According to the results, smooth and clean aluminide layer with less Kirkendall porosity and cracks were observed on the sample, which was aluminized in the molten Al7020 bath at 700 C for 10 minutes and subsequently diffusion annealed at 750 C. Hardness of the aluminide layer was in between 1100-1300 HV and the coating thickness was approximately 400 µm. The results were promising such that a hard and thick aluminide layer with less Kirkendall porosity and cracks could be formed. It is, therefore, concluded that Al7020 bath may be used in the HDA process of AISI 4140 steel substrate.

Keywords: hot-dip aluminizing, microstructure, hardness measurement, diffusion annealing

Procedia PDF Downloads 63
1893 An Investigation of New Phase Diagram of Ag2SO4-CaSO4

Authors: Ravi V. Joat, Pravin S. Bodke, Shradha S. Binani, S. S. Wasnik

Abstract:

A phase diagram of the Ag2SO4 - CaSO4 (Silver sulphate – Calcium Sulphate) binaries system using conductivity, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis) data is constructed. The eutectic reaction (liquid -» a-Ag2SO4 + CaSO4) is observed at 10 mole% CaSO4 and 645°C. Room temperature solid solubility limit up to 5.27 mole % of Ca 2+ in Ag2SO4 is set using X-ray powder diffraction and scanning electron microscopy results. All compositions beyond this limit are two-phase mixtures below and above the transition temperature (≈ 416°C). The bulk conductivity, obtained following complex impedance spectroscopy, is found decreasing with increase in CaSO4 content. Amongst other binary compositions, the 80AgSO4-20CaSO4 gave improved sinterability/packing density.

Keywords: phase diagram, Ag2SO4-CaSO4 binaries system, conductivity, XRD, DTA

Procedia PDF Downloads 614
1892 The Effect of Solution Density on the Synthesis of Magnesium Borate from Boron-Gypsum

Authors: N. Tugrul, E. Sariburun, F. T. Senberber, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Boron-gypsum is a waste which occurs in the boric acid production process. In this study, the boron content of this waste is evaluated for the use in synthesis of magnesium borates and such evaluation of this kind of waste is useful more than storage or disposal. Magnesium borates, which are a sub-class of boron minerals, are useful additive materials for the industries due to their remarkable thermal and mechanical properties. Magnesium borates were obtained hydrothermally at different temperatures. Novelty of this study is the search of the solution density effects to magnesium borate synthesis process for the increasing the possibility of boron-gypsum usage as a raw material. After the synthesis process, products are subjected to XRD and FT-IR to identify and characterize their crystal structure, respectively.

Keywords: boron-gypsum, hydrothermal synthesis, magnesium borate, solution density

Procedia PDF Downloads 379
1891 Distribution and Historical Trends of PAHs Deposition in Recent Sediment Cores of the Imo River, SE Nigeria

Authors: Miranda I. Dosunmu, Orok E. Oyo-Ita, Inyang O. Oyo-Ita

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are a class of priority listed organic pollutants due to their carcinogenicity, mutagenity, acute toxicity and persistency in the environment. The distribution and historical changes of PAHs contamination in recent sediment cores from the Imo River were investigated using gas chromatography coupled with mass spectrometer. The concentrations of total PAHs (TPAHs) ranging from 402.37 ng/g dry weight (dw) at the surface layer of the Estuary zone (ESC6; 0-5 cm) to 92,388.59 ng/g dw at the near surface layer of the Afam zone (ASC5; 5-10 cm) indicate that PAHs contamination was localized not only between sample sites but also within the same cores. Sediment-depth profiles for the four (Afam, Mangrove, Estuary and illegal Petroleum refinery) cores revealed irregular distribution patterns in the TPAH concentrations except the fact that these levels became maximized at the near surface layers (5-10 cm) corresponding to a geological time-frame of about 1996-2004. This time scale coincided with the period of intensive bunkering and oil pipeline vandalization by the Niger Delta militant groups. Also a general slight decline was found in the TPAHs levels from near the surface layers (5-10 cm) to the most recent top layers (0-5 cm) of the cores, attributable to the recent effort by the Nigerian government in clamping down the illegal activity of the economic saboteurs. Therefore, the recent amnesty period granted to the militant groups should be extended. Although mechanism of perylene formation still remains enigmatic, examination of its distributions down cores indicates natural biogenic, pyrogenic and petrogenic origins for the compound at different zones. Thus, the characteristic features of the Imo River environment provide a means of tracing diverse origins for perylene.

Keywords: perylene, historical trend, distribution, origin, Imo River

Procedia PDF Downloads 243
1890 How to Improve Immersiveness in Virtual Reality Through Advanced Sense of Presence: A Literature Review

Authors: Bochen Jia, Francesco Zhu

Abstract:

People are constantly surprised at how real and immersive virtual reality (VR) is, even though the technology is still rudimentary, and we are only scratching the surface of its possibilities. Therefore, this literature review built a body of knowledge of existing technology that can be used to improve immersiveness in VR. For this paper, "Sense of Presence (SoP)" was chosen as the terminology to describe immersiveness in VR. Eight studies that tested VR technologies were identified. Many other studies were included to back up the incentives behind these technologies. VR technologies include vibration, airflow, thermal components, EMS, and quadcopters. Study results from selected papers were analyzed, compared, and generally positive. Seven studies had positive results, and only one had negative results. Vibration is the most effective option to improve SoP.

Keywords: virtual reality, sense of presence, self-awareness, literature review

Procedia PDF Downloads 118
1889 Transient Heat Conduction in Nonuniform Hollow Cylinders with Time Dependent Boundary Condition at One Surface

Authors: Sen Yung Lee, Chih Cheng Huang, Te Wen Tu

Abstract:

A solution methodology without using integral transformation is proposed to develop analytical solutions for transient heat conduction in nonuniform hollow cylinders with time-dependent boundary condition at the outer surface. It is shown that if the thermal conductivity and the specific heat of the medium are in arbitrary polynomial function forms, the closed solutions of the system can be developed. The influence of physical properties on the temperature distribution of the system is studied. A numerical example is given to illustrate the efficiency and the accuracy of the solution methodology.

Keywords: analytical solution, nonuniform hollow cylinder, time-dependent boundary condition, transient heat conduction

Procedia PDF Downloads 492
1888 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 110
1887 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian

Abstract:

The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: life prediction, condenser tube, neural network, fuzzy logic

Procedia PDF Downloads 340