Search results for: task messages
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2497

Search results for: task messages

157 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 52
156 Ways to Prevent Increased Wear of the Drive Box Parts and the Central Drive of the Civil Aviation Turbo Engine Based on Tribology

Authors: Liudmila Shabalinskaya, Victor Golovanov, Liudmila Milinis, Sergey Loponos, Alexander Maslov, D. O. Frolov

Abstract:

The work is devoted to the rapid laboratory diagnosis of the condition of aircraft friction units, based on the application of the nondestructive testing method by analyzing the parameters of wear particles, or tribodiagnostics. The most important task of tribodiagnostics is to develop recommendations for the selection of more advanced designs, materials and lubricants based on data on wear processes for increasing the life and ensuring the safety of the operation of machines and mechanisms. The object of tribodiagnostics in this work are the tooth gears of the central drive and the gearboxes of the gas turbine engine of the civil aviation PS-90A type, in which rolling friction and sliding friction with slip occur. The main criterion for evaluating the technical state of lubricated friction units of a gas turbine engine is the intensity and rate of wear of the friction surfaces of the friction unit parts. When the engine is running, oil samples are taken and the state of the friction surfaces is evaluated according to the parameters of the wear particles contained in the oil sample, which carry important and detailed information about the wear processes in the engine transmission units. The parameters carrying this information include the concentration of wear particles and metals in the oil, the dispersion composition, the shape, the size ratio and the number of particles, the state of their surfaces, the presence in the oil of various mechanical impurities of non-metallic origin. Such a morphological analysis of wear particles has been introduced into the order of monitoring the status and diagnostics of various aircraft engines, including a gas turbine engine, since the type of wear characteristic of the central drive and the drive box is surface fatigue wear and the beginning of its development, accompanied by the formation of microcracks, leads to the formation of spherical, up to 10 μm in size, and in the aftermath of flocculent particles measuring 20-200 μm in size. Tribodiagnostics using the morphological analysis of wear particles includes the following techniques: ferrography, filtering, and computer analysis of the classification and counting of wear particles. Based on the analysis of several series of oil samples taken from the drive box of the engine during their operating time, a study was carried out of the processes of wear kinetics. Based on the results of the study and comparing the series of criteria for tribodiagnostics, wear state ratings and statistics of the results of morphological analysis, norms for the normal operating regime were developed. The study allowed to develop levels of wear state for friction surfaces of gearing and a 10-point rating system for estimating the likelihood of the occurrence of an increased wear mode and, accordingly, prevention of engine failures in flight.

Keywords: aviation, box of drives, morphological analysis, tribodiagnostics, tribology, ferrography, filtering, wear particle

Procedia PDF Downloads 260
155 Mental Health on Three Continents: A Comparison of Mental Health Disorders in the Usa, India and Brazil

Authors: Henry Venter, Murali Thyloth, Alceu Casseb

Abstract:

Historically, mental and substance use disorders were not a global health priority. Since the 1993 World Development Report, the importance of the contribution of mental health and substance abuse on the relative global burden associated with disease morbidity has been recognized with 300 million people worldwide suffering from depression alone. This led to an international effort to improve the mental health of populations around the world. Despite these efforts some countries remain at the top of the list of countries with the highest rate of mental illness. Important research questions were asked: Would there be commonalities regarding mental health between these countries; would there be common factors leading to the high prevalence of mental illness; and how prepared are these countries with mental health delivery? Findings from this research can aid organizations and institutions preparing mental health service providers to focus training and preparation to address specific needs revealed by the study. Methods: Researchers decided to compare three distinctly different countries at the top of the list of countries with the highest rate of mental illness, the USA, India and Brazil, situated on three different continents with different economies and lifestyles. Data were collected using archival research methodology, reviewing records and findings of international and national health and mental health studies to subtract and compare data and findings. Results: The findings indicated that India is the most depressed country in the world, followed by the USA (and China) with Brazil in Latin America with the greatest number of depressed individuals. By 2020 roughly 20% of India, acountry of over one billion citizens, will suffer from some form of mental illnees, yet there are less than 4,000 experts available. In the USA 164.8 million people were substance abusers and an estimate of 47.6 million adults, 18 or older, had any mental illness in 2018. That means that about one in five adults in the USA experiences some form of mental illness each year, but only 41% of those affected received mental health care or services in the past year. Brazil has the greatest number of depressed individuals, in Latin America. Adults living in Sao Paulo megacity has prevalence of mental disorders at greater levels than similar surveys conducted in other areas of the world with more than one million adults with serious impairment levels. Discussion: The results show that, despite the vast socioeconomic differences between the three countries, there are correlations regarding mental health prevalence and difficulty to provide adequate services including a lack of awareness of how serious mental illness is, stigma for seeking mental illness, with comorbidity a common phenomenon, and a lack of partnership between different levels of service providers, which weakens mental health service delivery. The findings also indicate that mental health training institutions have a monumental task to prepare personnel to address the future mental health needs in each of the countries compared, which will constitute the next phase of the research.

Keywords: mental health epidemiology, mental health disorder, mental health prevalence, mental health treatment

Procedia PDF Downloads 111
154 Development and Implementation of Early Childhood Media Literacy Education Program

Authors: Kim Haekyoung, Au Yunkyoung

Abstract:

As digital technology continues to advance and become more widely accessible, young children are also growing up experiencing various media from infancy. In this changing environment, educating young children on media literacy has become an increasingly important task. With the diversification of media, it has become more necessary for children to understand, utilize, and critically explore the meaning of multimodal texts, which include text, images, and sounds connected to each other. Early childhood is a period when media literacy can bloom, and educational and policy support are needed to enable young children to express their opinions, communicate, and participate fully. However, most current media literacy education for young children focuses solely on teaching how to use media, with limited practical application and utilization. Therefore, this study aims to develop an inquiry-based media literacy education program for young children using topic-specific media content and explore the program's potential and impact on children's media literacy learning. Based on a theoretical and literature review on media literacy education, analysis of existing educational programs, and a survey on the current status and teacher perception of media literacy education for young children, this study developed a media literacy education program for young children considering the components of media literacy (understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, social communication). To verify the effectiveness of the program, it was implemented with 20 five-year-old children from C City S Kindergarten, starting from March 24 to May 26, 2022, once a week for a total of 6 sessions. To explore quantitative changes before and after program implementation, repeated-measures analysis of variance was conducted, and qualitative analysis was used to analyze observed changes in the process. significant improvement in media literacy levels, such as understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication. The developed inquiry-based media literacy education program for young children in this study can be effectively applied to enhance children's media literacy education and help improve their media literacy levels. Observed changes in the process also confirmed that children improved their ability to learn various topics, express their thoughts, and communicate with others using media content. These findings emphasize the importance of developing and implementing media literacy education programs and can help children develop the ability to safely and effectively use media in their media environment. Based on exploring the potential and impact of the inquiry-based media literacy education program for young children, this study confirmed positive changes in children's media literacy levels as a result of the program's implementation. These findings suggest that beyond education on how to use media, it can help develop children's ability to safely and effectively use media in their media environment. Furthermore, to improve children's media literacy levels and create a safe media environment, a variety of content and methodologies are needed, and continuous development and evaluation of educational programs are anticipated.

Keywords: young children, media literacy, media literacy education program, media content

Procedia PDF Downloads 71
153 How Can Food Retailing Benefit from Neuromarketing Research: The Influence of Traditional and Innovative Tools of In-Store Communication on Consumer Reactions

Authors: Jakub Berčík, Elena Horská, Ľudmila Nagyová

Abstract:

Nowadays, the point of sale remains one of the few channels of communication which is not oversaturated yet and has great potential for the future. The fact that purchasing decisions are significantly affected by emotions, while up to 75 % of them are implemented at the point of sale, only demonstrates its importance. The share of impulsive purchases is about 60-75 %, depending on the particular product category. Nevertheless, habits predetermine the content of the shopping cart above all and hence in this regard the role of in-store communication is to disrupt the routine and compel the customer to try something new. This is the reason why it is essential to know how to work with this relatively young branch of marketing communication as efficiently as possible. New global trend in this discipline is evaluating the effectiveness of particular tools in the in-store communication. To increase the efficiency it is necessary to become familiar with the factors affecting the customer both consciously and unconsciously, and that is a task for neuromarketing and sensory marketing. It is generally known that the customer remembers the negative experience much longer and more intensely than the positive ones, therefore it is essential for marketers to avoid this negative experience. The final effect of POP (Point of Purchase) or POS (Point of Sale) tools is conditional not only on their quality and design, but also on the location at the point of sale which contributes to the overall positive atmosphere in the store. Therefore, in-store advertising is increasingly in the center of attention and companies are willing to spend even a third of their marketing communication budget on it. The paper deals with a comprehensive, interdisciplinary research of the impact of traditional as well as innovative tools of in-store communication on the attention and emotional state (valence and arousal) of consumers on the food market. The research integrates measurements with eye camera (Eye tracker) and electroencephalograph (EEG) in real grocery stores as well as in laboratory conditions with the purpose of recognizing attention and emotional response among respondents under the influence of selected tools of in-store communication. The object of the research includes traditional (e.g. wobblers, stoppers, floor graphics) and innovative (e.g. displays, wobblers with LED elements, interactive floor graphics) tools of in-store communication in the fresh unpackaged food segment. By using a mobile 16-channel electroencephalograph (EEG equipment) from the company EPOC, a mobile eye camera (Eye tracker) from the company Tobii and a stationary eye camera (Eye tracker) from the company Gazepoint, we observe the attention and emotional state (valence and arousal) to reveal true consumer preferences using traditional and new unusual communication tools at the point of sale of the selected foodstuffs. The paper concludes with suggesting possibilities for rational, effective and energy-efficient combination of in-store communication tools, by which the retailer can accomplish not only captivating and attractive presentation of displayed goods, but ultimately also an increase in retail sales of the store.

Keywords: electroencephalograph (EEG), emotion, eye tracker, in-store communication

Procedia PDF Downloads 392
152 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories

Authors: Rene Hellmuth

Abstract:

The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.

Keywords: augmented reality, digital factory model, factory planning, restructuring

Procedia PDF Downloads 134
151 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 119
150 Anaerobic Digestion of Spent Wash through Biomass Development for Obtaining Biogas

Authors: Sachin B. Patil, Narendra M. Kanhe

Abstract:

A typical cane molasses based distillery generates 15 L of waste water per liter of alcohol production. Distillery waste with COD of over 1,00,000 mg/l and BOD of over 30,000 mg/l ranks high amongst the pollutants produced by industries both in magnitude and strength. Treatment and safe disposal of this waste is a challenging task since long. The high strength of waste water renders aerobic treatment very expensive and physico-chemical processes have met with little success. Thermophilic anaerobic treatment of distillery waste may provide high degree of treatment and better recovery of biogas. It may prove more feasible in most part of tropical country like India, where temperature is suitable for thermophilic micro-organisms. Researchers have reviled that, at thermophilic conditions due to increased destruction rate of organic matter and pathogens, higher digestion rate can be achieved. Literature review reveals that the variety of anaerobic reactors including anaerobic lagoon, conventional digester, anaerobic filter, two staged fixed film reactors, sludge bed and granular bed reactors have been studied, but little attempts have been made to evaluate the usefulness of thermophilic anaerobic treatment for treating distillery waste. The present study has been carried out, to study feasibility of thermophilic anaerobic digestion to facilitate the design of full scale reactor. A pilot scale anaerobic fixed film fixed bed reactor (AFFFB) of capacity 25m3 was designed, fabricated, installed and commissioned for thermophilic (55-65°C) anaerobic digestion at a constant pH of 6.5-7.5, because these temperature and pH ranges are considered to be optimum for biogas recovery from distillery wastewater. In these conditions, working of the reactor was studied, for different hydraulic retention times (HRT) (0.25days to 12days) and variable organic loading rates (361.46 to 7.96 Kg COD/m3d). The parameters such as flow rate and temperature, various chemical parameters such as pH, chemical oxygen demands (COD), biogas quantity, and biogas composition were regularly monitored. It was observed that, with the increase in OLR, the biogas production was increased, but the specific biogas yield decreased. Similarly, with the increase in HRT, the biogas production got decrease, but the specific biogas yield was increased. This may also be due to the predominant activity of acid producers to methane producers at the higher substrate loading rates. From the present investigation, it can be concluded that for thermophilic conditions the highest COD removal percentage was obtained at an HRT of 08 days, thereafter it tends to decrease from 8 to 12 days HRT. There is a little difference between COD removal efficiency of 8 days HRT (74.03%) and 5 day HRT (78.06%), therefore it would not be feasible to increase the reactor size by 1.5 times for mere 4 percent more efficiency. Hence, 5 days HRT is considered to be optimum, at which the biogas yield was 98 m3/day and specific biogas yield was 0.385 CH4 m3/Kg CODr.

Keywords: spent wash, anaerobic digestion, biomass, biogas

Procedia PDF Downloads 265
149 The Influence of Active Breaks on the Attention/Concentration Performance in Eighth-Graders

Authors: Christian Andrä, Luisa Zimmermann, Christina Müller

Abstract:

Introduction: The positive relation between physical activity and cognition is commonly known. Relevant studies show that in everyday school life active breaks can lead to improvement in certain abilities (e.g. attention and concentration). A beneficial effect is in particular attributed to moderate activity. It is still unclear whether active breaks are beneficial after relatively short phases of cognitive load and whether the postulated effects of activity really have an immediate impact. The objective of this study was to verify whether an active break after 18 minutes of cognitive load leads to enhanced attention/concentration performance, compared to inactive breaks with voluntary mobile phone activity. Methodology: For this quasi-experimental study, 36 students [age: 14.0 (mean value) ± 0.3 (standard deviation); male/female: 21/15] of a secondary school were tested. In week 1, every student’s maximum heart rate (Hfmax) was determined through maximum effort tests conducted during physical education classes. The task was to run 3 laps of 300 m with increasing subjective effort (lap 1: 60%, lap 2: 80%, lap 3: 100% of the maximum performance capacity). Furthermore, first attention/concentration tests (D2-R) took place (pretest). The groups were matched on the basis of the pretest results. During week 2 and 3, crossover testing was conducted, comprising of 18 minutes of cognitive preload (test for concentration performance, KLT-R), a break and an attention/concentration test after a 2-minutes transition. Different 10-minutes breaks (active break: moderate physical activity with 65% Hfmax or inactive break: mobile phone activity) took place between preloading and transition. Major findings: In general, there was no impact of the different break interventions on the concentration test results (symbols processed after physical activity: 185.2 ± 31.3 / after inactive break: 184.4 ± 31.6; errors after physical activity: 5.7 ± 6.3 / after inactive break: 7.0. ± 7.2). There was, however, a noticeable development of the values over the testing periods. Although no difference in the number of processed symbols was detected (active/inactive break: period 1: 49.3 ± 8.8/46.9 ± 9.0; period 2: 47.0 ± 7.7/47.3 ± 8.4; period 3: 45.1 ± 8.3/45.6 ± 8.0; period 4: 43.8 ± 7.8/44.6 ± 8.0), error rates decreased successively after physical activity and increased gradually after an inactive break (active/inactive break: period 1: 1.9 ± 2.4/1.2 ± 1.4; period 2: 1.7 ± 1.8/ 1.5 ± 2.0, period 3: 1.2 ± 1.6/1.8 ± 2.1; period 4: 0.9 ± 1.5/2.5 ± 2.6; p= .012). Conclusion: Taking into consideration only the study’s overall results, the hypothesis must be dismissed. However, more differentiated evaluation shows that the error rates decreased after active breaks and increased after inactive breaks. Obviously, the effects of active intervention occur with a delay. The 2-minutes transition (regeneration time) used for this study seems to be insufficient due to the longer adaptation time of the cardio-vascular system in untrained individuals, which might initially affect the concentration capacity. To use the positive effects of physical activity for teaching and learning processes, physiological characteristics must also be considered. Only this will ensure optimum ability to perform.

Keywords: active breaks, attention/concentration test, cognitive performance capacity, heart rate, physical activity

Procedia PDF Downloads 315
148 A Comparative Study on Compliment Response between Indonesian EFL Students and English Native Speakers

Authors: Maria F. Seran

Abstract:

In second language interaction, an EFL student always carries his knowledge of targeted language and sometimes gets influenced by his first language cultures which makes him transfer his utterances from the first language to the second language. The influence of L1 cultures somehow can lead to face-threatening act when it comes to responding on speech act, for instance, compliment. A speaker praises a compliment to show gratitude, and in return, he expects for compliment respond uttered by the hearer. While Western people use more acceptance continuum on compliment response, Indonesians utter more denial continuum which can somehow put the speakers into a face-threating situation and offense. This study investigated compliment response employed by EFL students and English native speakers. The study was distinct as none compliment response studies had been conducted to compare the compliment response between English native speakers and two different Indonesian EFL proficiency groups in which this research sought to meet this need. This study was significant for EFL teachers because it gave insight on cross-cultural understanding and brought pedagogical implication on explicit pragmatic instruction. Two research questions were set, 1. How do Indonesian EFL students and English native speakers respond compliments? 2. Is there any correlation between Indonesia EFL students’ proficiency and their compliment response use in English? The study involved three groups of participants; 5 English native speakers, 10 high-proficiency and 10 low-proficiency Indonesian EFL university students. The research instruments used in this study were as follows, an online TOEFL prediction test, focusing on grammar skill which was modified from Barron TOEFL exercise test, and a discourse completion task (DCT), consisting of 10 compliment respond items. Based on the research invitation, 20 second-year university students majoring in English education at Widya Mandira Catholic University, Kupang, East Nusa Tenggara, Indonesia who willingly participated in the research took the TOEFL prediction test online from the link provided. Students who achieved score 75-100 in test were categorized as high-proficiency students, while, students who attained score below 74 were considered as low-proficiency students. Then, the DCT survey was administered to these EFL groups and the native speaker group. Participants’ responses were coded and analyzed using categories of compliment response framework proposed by Tran. The study found out that 5 native speakers applied more compliment upgrades and appreciation token in compliment response, whereas, Indonesian EFL students combined some compliment response strategies in their utterance, such as, appreciation token, return and compliment downgrade. There is no correlation between students’ proficiency level and their CR responds as most EFL students in both groups produced less varied compliment responses and only 4 Indonesian high-proficiency students uttered more varied and were similar to the native speakers. The combination strategies used by EFL students can be explained as the influence of pragmatic transfer from L1 to L2; therefore, EFL teachers should explicitly teach more compliment response strategies to raise students’ awareness on English culture and elaborate their speaking to be more competence as close to native speakers as possible.

Keywords: compliment response, English native speakers, Indonesian EFL students, speech acts

Procedia PDF Downloads 148
147 The Impact of Anxiety on the Access to Phonological Representations in Beginning Readers and Writers

Authors: Regis Pochon, Nicolas Stefaniak, Veronique Baltazart, Pamela Gobin

Abstract:

Anxiety is known to have an impact on working memory. In reasoning or memory tasks, individuals with anxiety tend to show longer response times and poorer performance. Furthermore, there is a memory bias for negative information in anxiety. Given the crucial role of working memory in lexical learning, anxious students may encounter more difficulties in learning to read and spell. Anxiety could even affect an earlier learning, that is the activation of phonological representations, which are decisive for the learning of reading and writing. The aim of this study is to compare the access to phonological representations of beginning readers and writers according to their level of anxiety, using an auditory lexical decision task. Eighty students of 6- to 9-years-old completed the French version of the Revised Children's Manifest Anxiety Scale and were then divided into four anxiety groups according to their total score (Low, Median-Low, Median-High and High). Two set of eighty-one stimuli (words and non-words) have been auditory presented to these students by means of a laptop computer. Stimuli words were selected according to their emotional valence (positive, negative, neutral). Students had to decide as quickly and accurately as possible whether the presented stimulus was a real word or not (lexical decision). Response times and accuracy were recorded automatically on each trial. It was anticipated a) longer response times for the Median-High and High anxiety groups in comparison with the two others groups, b) faster response times for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups, c) lower response accuracy for Median-High and High anxiety groups in comparison with the two others groups, d) better response accuracy for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups. Concerning the response times, our results showed no difference between the four groups. Furthermore, inside each group, the average response times was very close regardless the emotional valence. Otherwise, group differences appear when considering the error rates. Median-High and High anxiety groups made significantly more errors in lexical decision than Median-Low and Low groups. Better response accuracy, however, is not found for negative-valence words in comparison with positive and neutral-valence words in the Median-High and High anxiety groups. Thus, these results showed a lower response accuracy for above-median anxiety groups than below-median groups but without specificity for the negative-valence words. This study suggests that anxiety can negatively impact the lexical processing in young students. Although the lexical processing speed seems preserved, the accuracy of this processing may be altered in students with moderate or high level of anxiety. This finding has important implication for the prevention of reading and spelling difficulties. Indeed, during these learnings, if anxiety affects the access to phonological representations, anxious students could be disturbed when they have to match phonological representations with new orthographic representations, because of less efficient lexical representations. This study should be continued in order to precise the impact of anxiety on basic school learning.

Keywords: anxiety, emotional valence, childhood, lexical access

Procedia PDF Downloads 288
146 Looking at Women’s Status in India through Different Lenses: Evidence from Second Wave of IHDS Data

Authors: Vidya Yadav

Abstract:

In every society, males and females are expected to behave in certain ways, and in every culture, those expectation, values and norms are different and vary accordingly. Many of the inequalities between men and women are rooted in institutional structure such as in educational field, labour market, wages, decision-making power, access to services as well as in accessing the health and well-being care also. The marriage and kinship pattern shape both men’s and women’s lives. Earlier many studies have highlighted the gender disparities which vary tremendously between regions, social classes, and communities. This study will try to explore the prominent indicators to show the status of women and well-being condition in Indian society. Primarily this paper concern with firstly identification of indicators related to gender in each area like education, work status, mobility, women participation in public and private decision making, autonomy and domestic violence etc. And once the indicators are identified next task is to define them. The indicators which are selected here are for a comparison of women’s status across Indian states. Recent Indian Human Development Survey, 2011-12 has been procured to show the current situation of women. Result shows that in spite of rising levels of education and images of growing westernization in India, love marriages remain in rarity even among urban elite. In India marriage is universal, and most of the men and women marry at relatively young age. Even though the legal age of marriage is 18, but more than 60 percent are married before the legal age. Not surprisingly, but Bihar and Rajasthan are the states with earliest age at marriage. Most of them reported that they have very limited contact with their husband before marriages. Around 69 percent of women met their husbands on the day of the wedding or shortly before. In spite of decline in fertility, still childbearing remains essential to women’s lives. Mostly women aged 25 and older had at least one child. Women’s control over household resources, physical space and mobility is also limited. Indian women’s, mostly rely on men to purchase day to day necessities, as well as medicines, as well as other necessary items. This ultimately reduces the likelihood that women have cash in hand for such purchases. The story is quite different when it comes to have control over decision over purchasing household assets such as TVs or refrigerator, names on the bank account, and home ownership papers. However, the likelihood of ownership rises among urbanite educated women’s. Women’s still have to the cultural norms and the practice of purdah or ghunghat, familial control over women’s physical movement. Wife beating and domestic violence still remain pervasive, and beaten for minor transgression like going out without permission. Development of India cannot be realized without the very significant component of gender. Therefore detailed examinations of different indicators are required to understand, strategize, plan and formulate programmes.

Keywords: autonomy, empowerment, gender, violence

Procedia PDF Downloads 297
145 Pandemic-Related Disruption to the Home Environment and Early Vocabulary Acquisition

Authors: Matthew McArthur, Margaret Friend

Abstract:

The COVID-19 pandemic disrupted the stability of the home environment for families across the world. Potential disruptions include parent work modality (in-person vs. remote), levels of health anxiety, family routines, and caregiving. These disruptions may have interfered with the processes of early vocabulary acquisition, carrying lasting effects over the life course. Our justification for this research is as follows: First, early, stable, caregiver-child reciprocal interactions, which may have been disrupted during the pandemic, contribute to the development of the brain architecture that supports language, cognitive, and social-emotional development. Second, early vocabulary predicts several cognitive outcomes, such as numeracy, literacy, and executive function. Further, disruption in the home is associated with adverse cognitive, academic, socio-emotional, behavioral, and communication outcomes in young children. We are interested in how disruptions related to the COVID-19 pandemic are associated with vocabulary acquisition in children born during the first two waves of the pandemic. We are conducting a moderated online experiment to assess this question. Participants are 16 children (10F) ranging in age from 19 to 39 months (M=25.27) and their caregivers. All child participants were screened for language background, health history, and history of language disorders, and were typically developing. Parents completed a modified version of the COVID-19 Family Stressor Scale (CoFaSS), a published measure of COVID-19-related family stressors. Thirteen items from the original scale were replaced to better capture change in family organization and stability specifically related to disruptions in income, anxiety, family relations, and childcare. Following completion of the modified CoFaSS, children completed a Web-Based version of the Computerized Comprehension Task and the Receptive One Word Picture Vocabulary if 24 months or older or the MacArthur-Bates Communicative Development Inventory if younger than 24 months. We report our preliminary data as a partial correlation analysis controlling for age. Raw vocabulary scores on the CCT, ROWPVT-4, and MCDI were all negatively associated with pandemic-related disruptions related to anxiety (r12=-.321; r1=-.332; r9=-.509), family relations (r12=-.590*; r1=-.155; r9=-.468), and childcare (r12=-.294; r1=-.468; r9=-.177). Although the small sample size for these preliminary data limits our power to detect significance, this trend is in the predicted direction, suggesting that increased pandemic-related disruption across multiple domains is associated with lower vocabulary scores. We anticipate presenting data on a full sample of 50 monolingual English participants. A sample of 50 participants would provide sufficient statistical power to detect a moderate effect size, adhering to a nominal alpha of 0.05 and ensuring a power level of 0.80.

Keywords: COVID-19, early vocabulary, home environment, language acquisition, multiple measures

Procedia PDF Downloads 62
144 Regularizing Software for Aerosol Particles

Authors: Christine Böckmann, Julia Rosemann

Abstract:

We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.

Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization

Procedia PDF Downloads 343
143 Transducers for Measuring Displacements of Rotating Blades in Turbomachines

Authors: Pavel Prochazka

Abstract:

The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.

Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors

Procedia PDF Downloads 129
142 Perceived Procedural Justice and Organizational Citizenship Behavior: Evidence from a Security Organization

Authors: Noa Nelson, Orit Appel, Rachel Ben-ari

Abstract:

Organizational Citizenship Behavior (OCB) is voluntary employee behavior that contributes to the organization beyond formal job requirements. It can take different forms, such as helping teammates (OCB toward individuals; hence, OCB-I), or staying after hours to attend a task force (OCB toward the organization; hence, OCB-O). Generally, OCB contributes substantially to organizational climate, goals, productivity, and resilience, so organizations need to understand what encourages it. This is particularly challenging in security organizations. Security work is characterized by high levels of stress and burnout, which is detrimental to OCB, and security organizational design emphasizes formal rules and clear hierarchies, leaving employees with less freedom for voluntary behavior. The current research explored the role of Perceived Procedural Justice (PPJ) in enhancing OCB in a security organization. PPJ refers to how fair decision-making processes are perceived to be. It involves the sense that decision makers are objective, attentive to everyone's interests, respectful in their communications and participatory - allowing individuals a voice in decision processes. Justice perceptions affect motivation, and it was specifically suggested that PPJ creates an attachment to one's organization and personal interest in its success. Accordingly, PPJ had been associated with OCB, but hardly any research tested their association with security organizations. The current research was conducted among prison guards in the Israel Prison Service, to test a correlational and a causal association between PPJ and OCB. It differentiated between perceptions of direct commander procedural justice (CPJ), and perceptions of organization procedural justice (OPJ), hypothesizing that CPJ would relate to OCB-I, while OPJ would relate to OCB-O. In the first study, 336 prison guards (305 male) from 10 different prisons responded to questionnaires measuring their own CPJ, OPJ, OCB-I, and OCB-O. Hierarchical linear regression analyses indicated the significance of commander procedural justice (CPJ): It associated with OCB-I and also associated with OPJ, which, in turn, associated with OCB-O. The second study tested CPJ's causal effects on prison guards' OCB-I and OCB-O; 311 prison guards (275 male) from 14 different prisons read scenarios that described either high or low CPJ, and then evaluated the likelihood of that commander's prison guards performing OCB-I and OCB-O. In this study, CPJ enhanced OCB-O directly. It also contributed to OCB-I, indirectly: CPJ enhanced the motivation for collaboration with the commander, which respondents also evaluated after reading scenarios. Collaboration, in turn, associated with OCB-I. The studies demonstrate that procedural justice, especially commander's PJ, promotes OCB in security work environments. This is important because extraordinary teamwork and motivation are needed to deal with emergency situations and with delicate security challenges. Following the studies, the Israel Prison Service implemented personal procedural justice training for commanders and unit level programs for procedurally just decision processes. From a theoretical perspective, the studies extend the knowledge on PPJ and OCB to security work environments and contribute evidence on PPJ's causal effects. They also call for further research, to understand the mechanisms through which different types of PPJ affect different types of OCB.

Keywords: organizational citizenship behavior, perceived procedural justice, prison guards, security organizations

Procedia PDF Downloads 221
141 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 123
140 A Comparative Human Rights Analysis of Expulsion as a Counterterrorism Instrument: An Evaluation of Belgium

Authors: Louise Reyntjens

Abstract:

Where criminal law used to be the traditional response to cope with the terrorist threat, European governments are increasingly relying on administrative paths. The reliance on immigration law fits into this trend. Terrorism is seen as a civilization menace emanating from abroad. In this context, the expulsion of dangerous aliens, immigration law’s core task, is put forward as a key security tool. Governments all over Europe are focusing on removing dangerous individuals from their territory rather than bringing them to justice. This research reflects on the consequences for the expelled individuals’ fundamental rights. For this, the author selected four European countries for a comparative study: Belgium, France, the United Kingdom and Sweden. All these countries face similar social and security issues, igniting the recourse to immigration law as a counterterrorism tool. Yet, they adopt a very different approach on this: the United Kingdom positions itself on the repressive side of the spectrum. Sweden on the other hand, also 'securitized' its immigration policy after the recent terrorist hit in Stockholm, but remains on the tolerant side of the spectrum. Belgium and France are situated in between. This paper addresses the situation in Belgium. In 2017, the Belgian parliament introduced several legislative changes by which it considerably expanded and facilitated the possibility to expel unwanted aliens. First, the expulsion measure was subjected to new and questionably definitions: a serious attack on the nation’s safety used to be required to expel certain categories of aliens. Presently, mere suspicions suffice to fulfil the new definition of a 'serious threat to national security'. A definition which fails to respond to the principle of legality; the law, nor the prepatory works clarify what is meant by 'a threat to national security'. This creates the risk of submitting this concept’s interpretation almost entirely to the discretion of the immigration authorities. Secondly, in name of intervening more quickly and efficiently, the automatic suspensive appeal for expulsions was abolished. The European Court of Human Rights nonetheless requires such an automatic suspensive appeal under Article 13 and 3 of the Convention. Whether this procedural reform will stand to endure, is thus questionable. This contribution also raises questions regarding expulsion’s efficacy as a key security tool. In a globalized and mobilized world, particularly in a European Union with no internal boundaries, questions can be raised about the usefulness of this measure. Even more so, by simply expelling a dangerous individual, States avoid their responsibility and shift the risk to another State. Criminal law might in these instances be more capable of providing a conclusive and long term response. This contribution explores the human rights consequences of expulsion as a security tool in Belgium. It also offers a critical view on its efficacy for protecting national security.

Keywords: Belgium, counter-terrorism and human rights, expulsion, immigration law

Procedia PDF Downloads 127
139 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry

Authors: C. A. Barros, Ana P. Barroso

Abstract:

Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.

Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis

Procedia PDF Downloads 214
138 Chronic Care Management for the Medically Vulnerable during the Pandemic: Experiences of Family Caregivers of Youth with Substance Use Disorders in Zambia

Authors: Ireen Manase Kabembo, Patrick Chanda

Abstract:

Background: Substance use disorders are among the chronic conditions that affect all age groups. Worldwide, there is an increase in young people affected by SUDs, which implies that more family members are transitioning into the caregiver role. Family caregivers play a buffering role in the formal healthcare system due to their involvement in caring for persons with acute and chronic conditions in the home setting. Family carers of youth with problematic alcohol and marijuana use experience myriad challenges in managing daily care for this medically vulnerable group. In addition, the poor health-seeking behaviours of youth with SUDs characterized by eluding treatment and runaway tendencies coupled with the effects of the pandemic made caregiving a daunting task for most family caregivers. Issues such as limited and unavailable psychotropic medications, social stigma and discrimination, financial hurdles, systemic barriers in adolescent and young adult mental healthcare services, and the lack of a perceived vulnerability to Covid-19 by youth with SUDs are experiences of family caretakers. Methods: A qualitative study with 30 family caregivers of youth aged 16-24 explored their lived experiences and subjective meanings using two in-depth semi-structured interviews, a caregiving timeline, and participant observation. Findings: Results indicate that most family caregivers had challenges managing care for treatment elusive youth, let alone having them adhere to Covid-19 regulations. However, youth who utilized healthcare services and adhered to treatment regimens had positive outcomes and sustained recovery. The effects of the pandemic, such as job losses and the closure of businesses, further exacerbated the financial challenges experienced by family caregivers, making it difficult to purchase needed medications and daily necessities for the youth. The unabated stigma and discrimination of families of substance-dependent youth in Zambian communities further isolated family caregivers, leaving them with limited support. Conclusion: Since young people with SUDs have a compromised mental capacity due to the cognitive impairments that come with continued substance abuse, they often have difficulties making sound judgements, including the need to utilize SUD recovery services. Also, their tendency to not adhere to the Covid-19 pandemic requirements places them at a higher risk for adverse health outcomes in the (post) pandemic era. This calls for urgent implementation of robust youth mental health services that address prevention and recovery for these emerging adults grappling with substance use disorders. Support for their family caregivers, often overlooked, cannot be overemphasized.

Keywords: chronic care management, Covid-19 pandemic, family caregivers, youth with substance use disorders

Procedia PDF Downloads 104
137 Exploring the Neural Correlates of Different Interaction Types: A Hyperscanning Investigation Using the Pattern Game

Authors: Beata Spilakova, Daniel J. Shaw, Radek Marecek, Milan Brazdil

Abstract:

Hyperscanning affords a unique insight into the brain dynamics underlying human interaction by simultaneously scanning two or more individuals’ brain responses while they engage in dyadic exchange. This provides an opportunity to observe dynamic brain activations in all individuals participating in interaction, and possible interbrain effects among them. The present research aims to provide an experimental paradigm for hyperscanning research capable of delineating among different forms of interaction. Specifically, the goal was to distinguish between two dimensions: (1) interaction structure (concurrent vs. turn-based) and (2) goal structure (competition vs cooperation). Dual-fMRI was used to scan 22 pairs of participants - each pair matched on gender, age, education and handedness - as they played the Pattern Game. In this simple interactive task, one player attempts to recreate a pattern of tokens while the second player must either help (cooperation) or prevent the first achieving the pattern (competition). Each pair played the game iteratively, alternating their roles every round. The game was played in two consecutive sessions: first the players took sequential turns (turn-based), but in the second session they placed their tokens concurrently (concurrent). Conventional general linear model (GLM) analyses revealed activations throughout a diffuse collection of brain regions: The cooperative condition engaged medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC); in the competitive condition, significant activations were observed in frontal and prefrontal areas, insula cortices and the thalamus. Comparisons between the turn-based and concurrent conditions revealed greater precuneus engagement in the former. Interestingly, mPFC, PCC and insulae are linked repeatedly to social cognitive processes. Similarly, the thalamus is often associated with a cognitive empathy, thus its activation may reflect the need to predict the opponent’s upcoming moves. Frontal and prefrontal activation most likely represent the higher attentional and executive demands of the concurrent condition, whereby subjects must simultaneously observe their co-player and place his own tokens accordingly. The activation of precuneus in the turn-based condition may be linked to self-other distinction processes. Finally, by performing intra-pair correlations of brain responses we demonstrate condition-specific patterns of brain-to-brain coupling in mPFC and PCC. Moreover, the degree of synchronicity in these neural signals related to performance on the game. The present results, then, show that different types of interaction recruit different brain systems implicated in social cognition, and the degree of inter-player synchrony within these brain systems is related to nature of the social interaction.

Keywords: brain-to-brain coupling, hyperscanning, pattern game, social interaction

Procedia PDF Downloads 339
136 Detection the Ice Formation Processes Using Multiple High Order Ultrasonic Guided Wave Modes

Authors: Regina Rekuviene, Vykintas Samaitis, Liudas Mažeika, Audrius Jankauskas, Virginija Jankauskaitė, Laura Gegeckienė, Abdolali Sadaghiani, Shaghayegh Saeidiharzand

Abstract:

Icing brings significant damage to aviation and renewable energy installations. Air-conditioning, refrigeration, wind turbine blades, airplane and helicopter blades often suffer from icing phenomena, which cause severe energy losses and impair aerodynamic performance. The icing process is a complex phenomenon with many different causes and types. Icing mechanisms, distributions, and patterns are still relevant to research topics. The adhesion strength between ice and surfaces differs in different icing environments. This makes the task of anti-icing very challenging. The techniques for various icing environments must satisfy different demands and requirements (e.g., efficient, lightweight, low power consumption, low maintenance and manufacturing costs, reliable operation). It is noticeable that most methods are oriented toward a particular sector and adapting them to or suggesting them for other areas is quite problematic. These methods often use various technologies and have different specifications, sometimes with no clear indication of their efficiency. There are two major groups of anti-icing methods: passive and active. Active techniques have high efficiency but, at the same time, quite high energy consumption and require intervention in the structure’s design. It’s noticeable that vast majority of these methods require specific knowledge and personnel skills. The main effect of passive methods (ice-phobic, superhydrophobic surfaces) is to delay ice formation and growth or reduce the adhesion strength between the ice and the surface. These methods are time-consuming and depend on forecasting. They can be applied on small surfaces only for specific targets, and most are non-biodegradable (except for anti-freezing proteins). There is some quite promising information on ultrasonic ice mitigation methods that employ UGW (Ultrasonic Guided Wave). These methods are have the characteristics of low energy consumption, low cost, lightweight, and easy replacement and maintenance. However, fundamental knowledge of ultrasonic de-icing methodology is still limited. The objective of this work was to identify the ice formation processes and its progress by employing ultrasonic guided wave technique. Throughout this research, the universal set-up for acoustic measurement of ice formation in a real condition (temperature range from +240 C to -230 C) was developed. Ultrasonic measurements were performed by using high frequency 5 MHz transducers in a pitch-catch configuration. The selection of wave modes suitable for detection of ice formation phenomenon on copper metal surface was performed. Interaction between the selected wave modes and ice formation processes was investigated. It was found that selected wave modes are sensitive to temperature changes. It was demonstrated that proposed ultrasonic technique could be successfully used for the detection of ice layer formation on a metal surface.

Keywords: ice formation processes, ultrasonic GW, detection of ice formation, ultrasonic testing

Procedia PDF Downloads 64
135 Transient Heat Transfer: Experimental Investigation near the Critical Point

Authors: Andreas Kohlhepp, Gerrit Schatte, Wieland Christoph, Spliethoff Hartmut

Abstract:

In recent years the research of heat transfer phenomena of water and other working fluids near the critical point experiences a growing interest for power engineering applications. To match the highly volatile characteristics of renewable energies, conventional power plants need to shift towards flexible operation. This requires speeding up the load change dynamics of steam generators and their heating surfaces near the critical point. In dynamic load transients, both a high heat flux with an unfavorable ratio to the mass flux and a high difference in fluid and wall temperatures, may cause problems. It may lead to deteriorated heat transfer (at supercritical pressures), dry-out or departure from nucleate boiling (at subcritical pressures), all cases leading to an extensive rise of temperatures. For relevant technical applications, the heat transfer coefficients need to be predicted correctly in case of transient scenarios to prevent damage to the heated surfaces (membrane walls, tube bundles or fuel rods). In transient processes, the state of the art method of calculating the heat transfer coefficients is using a multitude of different steady-state correlations for the momentarily existing local parameters for each time step. This approach does not necessarily reflect the different cases that may lead to a significant variation of the heat transfer coefficients and shows gaps in the individual ranges of validity. An algorithm was implemented to calculate the transient behavior of steam generators during load changes. It is used to assess existing correlations for transient heat transfer calculations. It is also desirable to validate the calculation using experimental data. By the use of a new full-scale supercritical thermo-hydraulic test rig, experimental data is obtained to describe the transient phenomena under dynamic boundary conditions as mentioned above and to serve for validation of transient steam generator calculations. Aiming to improve correlations for the prediction of the onset of deteriorated heat transfer in both, stationary and transient cases the test rig was specially designed for this task. It is a closed loop design with a directly electrically heated evaporation tube, the total heating power of the evaporator tube and the preheater is 1MW. To allow a big range of parameters, including supercritical pressures, the maximum pressure rating is 380 bar. The measurements contain the most important extrinsic thermo-hydraulic parameters. Moreover, a high geometric resolution allows to accurately predict the local heat transfer coefficients and fluid enthalpies.

Keywords: departure from nucleate boiling, deteriorated heat transfer, dryout, supercritical working fluid, transient operation of steam generators

Procedia PDF Downloads 222
134 The Effectiveness of Using Dramatic Conventions as the Teaching Strategy on Self-Efficacy for Children With Autism Spectrum Disorder

Authors: Tso Sheng-Yang, Wang Tien-Ni

Abstract:

Introduction and Purpose: Previous researchers have documented children with ASD (Autism Spectrum Disorders) prefer to escaping internal privates and external privates when they face tough conditions they can’t control or they don’t like.Especially, when children with ASD need to learn challenging tasks, such us Chinese language, their inappropriate behaviors will occur apparently. Recently, researchers apply positive behavior support strategies for children with ASD to enhance their self-efficacy and therefore to reduce their adverse behaviors. Thus, the purpose of this research was to design a series of lecture based on art therapy and to evaluate its effectiveness on the child’s self-efficacy. Method: This research was the single-case design study that recruited a high school boy with ASD. Whole research can be separated into three conditions. First, baseline condition, before the class started and ended, the researcher collected participant’s competencies of self-efficacy every session. In intervention condition, the research used dramatic conventions to teach the child in Chinese language twice a week.When the data was stable across three documents, the period entered to the maintenance condition. In maintenance condition, the researcher only collected the score of self-efficacynot to do other interventions five times a month to represent the effectiveness of maintenance.The time and frequency of data collection among three conditions are identical. Concerning art therapy, the common approach, e.g., music, drama, or painting is to use art medium as independent variable. Due to visual cues of art medium, the ASD can be easily to gain joint attention with teachers. Besides, the ASD have difficulties in understanding abstract objectives Thus, using the drama convention is helpful for the ASD to construct the environment and understand the context of Classical Chinese. By real operation, it can improve the ASD to understand the context and construct prior knowledge. Result: Bassd on the 10-points Likert scale and research, we product following results. (a) In baseline condition, the average score of self-efficacyis 1.12 points, rangedfrom 1 to 2 points, and the level change is 0 point. (b)In intervention condition, the average score of self-efficacy is 7.66 points rangedfrom 7 to 9 points, and the level change is 1 point. (c)In maintenance condition, the average score of self-efficacy is 6.66 points rangedfrom 6 to 7 points, and the level change is 1 point. Concerning immediacy of change, between baseline and intervention conditions, the difference is 5 points. No overlaps were found between these two conditions. Conclusion: According to the result, we find that it is effective that using dramatic conventions a s teaching strategies to teach children with ASD. The result presents the score of self-efficacyimmediately enhances when the dramatic conventions commences. Thus, we suggest the teacher can use this approach and adjust, based on the student’s trait, to teach the ASD on difficult task.

Keywords: dramatic conventions, autism spectrum disorder, slef-efficacy, teaching strategy

Procedia PDF Downloads 83
133 Linguistic Cyberbullying, a Legislative Approach

Authors: Simona Maria Ignat

Abstract:

Bullying online has been an increasing studied topic during the last years. Different approaches, psychological, linguistic, or computational, have been applied. To our best knowledge, a definition and a set of characteristics of phenomenon agreed internationally as a common framework are still waiting for answers. Thus, the objectives of this paper are the identification of bullying utterances on Twitter and their algorithms. This research paper is focused on the identification of words or groups of words, categorized as “utterances”, with bullying effect, from Twitter platform, extracted on a set of legislative criteria. This set is the result of analysis followed by synthesis of law documents on bullying(online) from United States of America, European Union, and Ireland. The outcome is a linguistic corpus with approximatively 10,000 entries. The methods applied to the first objective have been the following. The discourse analysis has been applied in identification of keywords with bullying effect in texts from Google search engine, Images link. Transcription and anonymization have been applied on texts grouped in CL1 (Corpus linguistics 1). The keywords search method and the legislative criteria have been used for identifying bullying utterances from Twitter. The texts with at least 30 representations on Twitter have been grouped. They form the second corpus linguistics, Bullying utterances from Twitter (CL2). The entries have been identified by using the legislative criteria on the the BoW method principle. The BoW is a method of extracting words or group of words with same meaning in any context. The methods applied for reaching the second objective is the conversion of parts of speech to alphabetical and numerical symbols and writing the bullying utterances as algorithms. The converted form of parts of speech has been chosen on the criterion of relevance within bullying message. The inductive reasoning approach has been applied in sampling and identifying the algorithms. The results are groups with interchangeable elements. The outcomes convey two aspects of bullying: the form and the content or meaning. The form conveys the intentional intimidation against somebody, expressed at the level of texts by grammatical and lexical marks. This outcome has applicability in the forensic linguistics for establishing the intentionality of an action. Another outcome of form is a complex of graphemic variations essential in detecting harmful texts online. This research enriches the lexicon already known on the topic. The second aspect, the content, revealed the topics like threat, harassment, assault, or suicide. They are subcategories of a broader harmful content which is a constant concern for task forces and legislators at national and international levels. These topic – outcomes of the dataset are a valuable source of detection. The analysis of content revealed algorithms and lexicons which could be applied to other harmful contents. A third outcome of content are the conveyances of Stylistics, which is a rich source of discourse analysis of social media platforms. In conclusion, this corpus linguistics is structured on legislative criteria and could be used in various fields.

Keywords: corpus linguistics, cyberbullying, legislation, natural language processing, twitter

Procedia PDF Downloads 86
132 Newly Designed Ecological Task to Assess Cognitive Map Reading Ability: Behavioral Neuro-Anatomic Correlates of Mental Navigation

Authors: Igor Faulmann, Arnaud Saj, Roland Maurer

Abstract:

Spatial cognition consists in a plethora of high level cognitive abilities: among them, the ability to learn and to navigate in large scale environments is probably one of the most complex skills. Navigation is thought to rely on the ability to read a cognitive map, defined as an allocentric representation of ones environment. Those representations are of course intimately related to the two geometrical primitives of the environment: distance and direction. Also, many recent studies point to a predominant hippocampal and para-hippocampal role in spatial cognition, as well as in the more specific cluster of navigational skills. In a previous study in humans, we used a newly validated test assessing cognitive map processing by evaluating the ability to judge relative distances and directions: the CMRT (Cognitive Map Recall Test). This study identified in topographically disorientated patients (1) behavioral differences between the evaluation of distances and of directions, and (2) distinct causality patterns assessed via VLSM (i.e., distinct cerebral lesions cause distinct response patterns depending on the modality (distance vs direction questions). Thus, we hypothesized that: (1) if the CMRT really taps into the same resources as real navigation, there would be hippocampal, parahippocampal, and parietal activation, and (2) there exists underlying neuroanatomical and functional differences between the processing of this two modalities. Aiming toward a better understanding of the neuroanatomical correlates of the CMRT in humans, and more generally toward a better understanding of how the brain processes the cognitive map, we adapted the CMRT as an fMRI procedure. 23 healthy subjects (11 women, 12 men), all living in Geneva for at least 2 years, underwent the CMRT in fMRI. Results show, for distance and direction taken together, than the most active brain regions are the parietal, frontal and cerebellar parts. Additionally, and as expected, patterns of brain activation differ when comparing the two modalities. Furthermore, distance processing seems to rely more on parietal regions (compared to other brain regions in the same modality and also to direction). It is interesting to notice that no significant activity was observed in the hippocampal or parahippocampal areas. Direction processing seems to tap more into frontal and cerebellar brain regions (compared to other brain regions in the same modality and also to distance). Significant hippocampal and parahippocampal activity has been shown only in this modality. This results demonstrated a complex interaction of structures which are compatible with response patterns observed in other navigational tasks, thus showing that the CMRT taps at least partially into the same brain resources as real navigation. Additionally, differences between the processing of distances and directions leads to the conclusion that the human brain processes each modality distinctly. Further research should focus on the dynamics of this processing, allowing a clearer understanding between the two sub-processes.

Keywords: cognitive map, navigation, fMRI, spatial cognition

Procedia PDF Downloads 294
131 Phage Display-Derived Vaccine Candidates for Control of Bovine Anaplasmosis

Authors: Itzel Amaro-Estrada, Eduardo Vergara-Rivera, Virginia Juarez-Flores, Mayra Cobaxin-Cardenas, Rosa Estela Quiroz, Jesus F. Preciado, Sergio Rodriguez-Camarillo

Abstract:

Bovine anaplasmosis is an infectious, tick-borne disease caused mainly by Anaplasma marginale; typical signs include anemia, fever, abortion, weight loss, decreased milk production, jaundice, and potentially death. Sick bovine can recover when antibiotics are administered; however, it usually remains as carrier for life, being a risk of infection for susceptible cattle. Anaplasma marginale is an obligate intracellular Gram-negative bacterium with genetic composition highly diverse among geographical isolates. There are currently no vaccines fully effective against bovine anaplasmosis; therefore, the economic losses due to disease are present. Vaccine formulation became a hard task for several pathogens as Anaplasma marginale, but peptide-based vaccines are an interesting proposal way to induce specific responses. Phage-displayed peptide libraries have been proved one of the most powerful technologies for identifying specific ligands. Screening of these peptides libraries is also a tool for studying interactions between proteins or peptides. Thus, it has allowed the identification of ligands recognized by polyclonal antiserums, and it has been successful for the identification of relevant epitopes in chronic diseases and toxicological conditions. Protective immune response to bovine anaplasmosis includes high levels of immunoglobulins subclass G2 (IgG2) but not subclass IgG1. Therefore, IgG2 from the serum of protected bovine can be useful to identify ligands, which can be part of an immunogen for cattle. In this work, phage display random peptide library Ph.D. ™ -12 was incubating with IgG2 or blood sera of immunized bovines against A. marginale as targets. After three rounds of biopanning, several candidates were selected for additional analysis. Subsequently, their reactivity with sera immunized against A. marginale, as well as with positive and negative sera to A. marginale was evaluated by immunoassays. A collection of recognized peptides tested by ELISA was generated. More than three hundred phage-peptides were separately evaluated against molecules which were used during panning. At least ten different peptides sequences were determined from their nucleotide composition. In this approach, three phage-peptides were selected by their binding and affinity properties. In the case of the development of vaccines or diagnostic reagents, it is important to evaluate the immunogenic and antigenic properties of the peptides. Immunogenic in vitro and in vivo behavior of peptides will be assayed as synthetic and as phage-peptide for to determinate their vaccine potential. Acknowledgment: This work was supported by grant SEP-CONACYT 252577 given to I. Amaro-Estrada.

Keywords: bovine anaplasmosis, peptides, phage display, veterinary vaccines

Procedia PDF Downloads 141
130 Health Care Teams during COVID-19: Roles, Challenges, Emotional State and Perceived Preparedness to the Next Pandemic

Authors: Miriam Schiff, Hadas Rosenne, Ran Nir-Paz, Shiri Shinan Altman

Abstract:

To examine (1) the level, predictors, and subjective perception of professional quality of life (PRoQL), posttraumatic growth, roles, task changes during the pandemic, and perceived preparedness for the next pandemic. These variables were added as part of an international study on social workers in healthcare stress, resilience, and perceived preparedness we took part in, along with Australia, Canada, China, Hong Kong, Singapore, and Taiwan. (2) The extent to which background variables, rate of exposure to the virus, working in COVID wards, profession, personal resilience, and resistance to organizational change predict posttraumatic growth, perceived preparedness, and PRoQL (the latter was examined among social workers only). (3) The teams' perceptions of how the pandemic impacted them at the personal, professional, and organizational levels and what assisted them. Methodologies: Mixed quantitative and qualitative methods were used. 1039 hospital healthcare workers from various professions participated in the quantitative study while 32 participated in in-depth interviews. The same methods were used in six other countries. Findings: The level of PRoQL was moderate, with higher burnout and secondary traumatization level than during routine times. Differences between countries in the level of PRoQL were found as well. Perceived preparedness for the next pandemic at the personal level was moderate and similar among the different health professions. Higher exposure to the virus was associated with lower perceived preparedness of the hospitals. Compared to other professions, doctors and nurses perceived hospitals as significantly less prepared for the next pandemic. The preparedness of the State of Israel for the next pandemic is perceived as low by all healthcare professionals. A moderate level of posttraumatic growth was found. Staff who worked at the COVID ward reported a greater level of growth. Doctors reported the lowest level of growth. The staff's resilience was high, with no differences among professions or levels of exposure. Working in the COVID ward and resilience predicted better preparedness, while resistance to organizational change predicted worse preparedness. Findings from the qualitative part of the study revealed that healthcare workers reported challenges at the personal, professional and organizational level during the different waves of the pandemic. They also report on internal and external resources they either owned or obtained during that period. Conclusion: Exposure to the COVID-19 virus is associated with secondary traumatization on one hand and personal posttraumatic growth on the other hand. Personal and professional discoveries and a sense of mission helped cope with the pandemic that was perceived as a historical event, war, or mass casualty event. Personal resilience, along with the support of colleagues, family, and direct management, were seen as significant components of coping. Hospitals should plan ahead and improve their preparedness to the next pandemic.

Keywords: covid-19, health-care, social workers, burnout, preparedness, international perspective

Procedia PDF Downloads 74
129 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
128 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 100