Search results for: pyramidal optical flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6444

Search results for: pyramidal optical flow

4104 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 139
4103 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor

Authors: K.Narasimhulu, Y. Pydi Setty

Abstract:

The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.

Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water

Procedia PDF Downloads 454
4102 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting

Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira

Abstract:

The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.

Keywords: water splitting, bubble, electrolysis, hydrogen production

Procedia PDF Downloads 103
4101 Effect of Mineral Admixture on Self-Healing Performance in Concrete

Authors: Young-Cheol Choi, Sung-Won Yoo, Bong Chun Lee, Byoungsun Park, Sang-Hwa Jung

Abstract:

Cracks in concrete commonly provide the passages of ingresses of aggressive and harmful ions into concrete inside and thus reduce the durability of concrete members. In order to solve this problem, self-healing concrete based on mineral admixture has become a major issue. Self-healing materials are those which have the ability of autonomously repairing some damages or small cracks in concrete structures. Concrete has an inherent healing potential, called natural healing, which can take place in ordinary concrete elements but its power is limited and is not predictable. The main mechanism of self-healing in cracked concrete is the continued hydration of unreacted binder and the crystallization of calcium carbonate. Some mineral admixtures have been found to promote the self-healing of cementitious materials. The aim of this study is to investigate the effect of mineral admixture on the self-healing performances of high strength concrete. The potential capability of self-healing of cementitious materials was evaluated using isothermal conduction calorimeter. The self-healing efficiencies were studied by means of water flow tests on cracked concrete specimens. The results show a different healing behaviour depending on presence of the crystalline admixture.

Keywords: mineral admixture, self-healing, water flow test, crystallization

Procedia PDF Downloads 369
4100 Theoretical Analysis of Self-Starting Busemann Intake Family

Authors: N. Moradian, E. Timofeev, R. Tahir

Abstract:

In this work, startability of the Busemann intake family with weak/strong conical shock, as most efficient intakes, via overboard mass spillage method is theoretically analyzed. Masterix and Candifix codes are used to numerically simulate few models of this type of intake and verify the theoretical results. Portions of the intake corresponding to various flow capture angles are considered to have mass spillage in the starting process of this intake. This approach allows for overboard mass spillage via a V-shaped slot with the tip of V coinciding with the focal point of the Busemann flow. The theoretical results, achieved using two different theories, of self-started Busemann takes with weak/strong conical shock show that significant improve in intake startability using overboard spillage technique. The starting phenomena of Busemann intakes with weak conical shock and seven different capture angles are numerically simulated at freestream Mach number of 3 to find the minimum area ratios of self-started intakes. The numerical results confirm the theoretical ones achieved by authors.

Keywords: Busemann intake, conical shock, overboard spillage, startability

Procedia PDF Downloads 207
4099 Numerical Investigation of Wire Mesh Heat Pipe for Spacecraft Applications

Authors: Jayesh Mahitkar, V. K. Singh, Surendra Singh Kachhwaha

Abstract:

Wire Mesh Heat Pipe (WMHP) as an effective component of thermal control system in the payload of spacecraft, utilizing ammonia to transfer efficient amount of heat. One dimensional generic and robust mathematical model with partial-analytical hydraulic approach (PAHA) is developed to study inside behaviour of WMHP. In this model, inside performance during operation is investigated like mass flow rate, and velocity along the wire mesh as well as vapour core is modeled respectively. This numerical model investigate heat flow along length, pressure drop along wire mesh as well as vapour line in axial direction. Furthermore, WMHP is modeled into equivalent resistance network such that total thermal resistance of heat pipe, temperature drop across evaporator end and condenser end is evaluated. This numerical investigation should be carried out for single layer and double layer wire mesh each with heat input at evaporator section is 10W, 20 W and 30 W at condenser temperature maintained at 20˚C.

Keywords: ammonia, heat transfer, modeling, wire mesh

Procedia PDF Downloads 282
4098 Study of Fire Propagation and Soot Flow in a Pantry Car of Railway Locomotive

Authors: Juhi Kaushik, Abhishek Agarwal, Manoj Sarda, Vatsal Sanjay, Arup Kumar Das

Abstract:

Fire accidents in trains bring huge disaster to human life and property. Evacuation becomes a major challenge in such incidents owing to confined spaces, large passenger density and trains moving at high speeds. The pantry car in Indian Railways trains carry inflammable materials like cooking fuel and LPG and electrical fittings. The pantry car is therefore highly susceptible to fire accidents. Numerical simulations have been done in a pantry car of Indian locomotive train using computational fluid dynamics based software. Different scenarios of a fire outbreak have been explored by varying Heat Release Rate per Unit Area (HRRPUA) of the fire source, introduction of exhaust in the cooking area, and taking a case of an air conditioned pantry car. Temporal statures of flame and soot have been obtained for each scenario and differences have been studied and reported. Inputs from this study can be used to assess casualties in fire accidents in locomotive trains and development of smoke control/detection systems in Indian trains.

Keywords: fire propagation, flame contour, pantry fire, soot flow

Procedia PDF Downloads 341
4097 Shear Stress and Oxygen Concentration Manipulation in a Micropillars Microfluidic Bioreactor

Authors: Deybith Venegas-Rojas, Jens Budde, Dominik Nörz, Manfred Jücker, Hoc Khiem Trieu

Abstract:

Microfluidics is a promising approach for biomedicine cell culture experiments with microfluidic bioreactors (MBR), which can provide high precision in volume and time control over mass transport and microenvironments in small-scale studies. Nevertheless, shear stress and oxygen concentration are important factors that affect the microenvironment and then the cell culture. It is presented a novel MBR design in which differences in geometry, shear stress, and oxygen concentration were studied and optimized for cell culture. The aim is to mimic the in vivo condition with biocompatible materials and continuous perfusion of nutrients, a healthy shear stress, and oxygen concentration. The design consists of a capture system of PDMS micropillars which keep cells in place, so it is not necessary any hydrogel or complicated scaffolds for cells immobilization. Besides, the design allows continuous supply with nutrients or even any other chemical for cell experimentation. Finite element method simulations were used to study and optimize the effect of parameters such as flow rate, shear stress, oxygen concentration, micropillars shape, and dimensions. The micropillars device was fabricated with microsystem technology such as soft-lithography, deep reactive ion etching, self-assembled monolayer, replica molding, and oxygen plasma bonding. Eight different geometries were fabricated and tested, with different flow rates according to the simulations. During the experiments, it was observed the effect of micropillars size, shape, and configuration for stability and shear stress control when increasing flow rate. The device was tested with several successful HepG2 3D cell cultures. With this MBR, the aforementioned parameters can be controlled in order to keep a healthy microenvironment according to specific necessities of different cell types, with no need of hydrogels and can be used for a wide range of experiments with cells.

Keywords: cell culture, micro-bioreactor, microfluidics, micropillars, oxygen concentration, shear stress

Procedia PDF Downloads 294
4096 Comparative Performance Analysis of Parabolic Trough Collector Using Twisted Tape Inserts

Authors: Atwari Rawani, Hari Narayan Singh, K. D. P. Singh

Abstract:

In this paper, an analytical investigation of the enhancement of thermal performance of parabolic trough collector (PTC) with twisted tape inserts in the absorber tube is being reported. A comparative study between the absorber with various types of twisted tape inserts and plain tube collector has been performed in turbulent flows conditions. The parametric studies were conducted to investigate the effects of system and operating parameters on the performance of the collector. The parameters such as heat gain, overall heat loss coefficient, air rise temperature and efficiency are used to analyze the relative performance of PTC. The results show that parabolic through collector with serrated twisted tape insert shows the best performance under same set of conditions under range of parameters investigated. Results reveal that for serrated twisted tape with x=1, Nusselt number/heat transfer coefficient is found to be 4.38 and 3.51 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 15.7% and 5.41% respectively.

Keywords: efficiency, heat transfer, twisted tape ratio, turbulent flow

Procedia PDF Downloads 292
4095 Large Eddy Simulation of Particle Clouds Using Open-Source CFD

Authors: Ruo-Qian Wang

Abstract:

Open-source CFD has become increasingly popular and promising. The recent progress in multiphase flow enables new CFD applications, which provides an economic and flexible research tool for complex flow problems. Our numerical study using four-way coupling Euler-Lagrangian Large-Eddy Simulations to resolve particle cloud dynamics with OpenFOAM and CFDEM will be introduced: The fractioned Navier-Stokes equations are numerically solved for fluid phase motion, solid phase motion is addressed by Lagrangian tracking for every single particle, and total momentum is conserved by fluid-solid inter-phase coupling. The grid convergence test was performed, which proves the current resolution of the mesh is appropriate. Then, we validated the code by comparing numerical results with experiments in terms of particle cloud settlement and growth. A good comparison was obtained showing reliability of the present numerical schemes. The time and height at phase separations were defined and analyzed for a variety of initial release conditions. Empirical formulas were drawn to fit the results.

Keywords: four-way coupling, dredging, land reclamation, multiphase flows, oil spill

Procedia PDF Downloads 429
4094 Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids

Authors: A. Ghadbane, M. N. Bouaziz, S. Hanini, B. Baggoura, M. Abbaci

Abstract:

The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate.

Keywords: PWR fuel assembly, spacer grid, mixing vane, swirl flow, turbulent heat transfer, CFD

Procedia PDF Downloads 491
4093 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: loading factor performance, centrifugal compressor, impeller, modeling

Procedia PDF Downloads 355
4092 Assessment of the Effects of Water Harvesting Technology on Downstream Water Availability Using SWAT Model

Authors: Ayalkibet Mekonnen, Adane Abebe

Abstract:

In hydrological cycle there are many water-related human interventions that modify the natural systems. Rainwater harvesting is one such intervention that involves harnessing of water in the upstream. Water harvesting used in upstream prevents water runoff on downstream mainly disturbance on biodiversity and ecosystems. The main objectives of the study are to assess the effects of water harvesting technologies on downstream water availability in the Woreda. To address the above problem, SWAT model, cost-benefit ratio and optimal control approach was used to analyse the hydrological and socioeconomic impact and tradeoffs on water availability of the community, respectively. The downstream impacts of increasing water consumption in the upstream rain-fed areas of the Bilate and Shala Catchment are simulated using the semi-distributed SWAT model. The two land use scenarios tested at sub basin levels (1) conventional land use represents the current land use practice (Agri-CON) and (2) in-field rainwater harvesting (IRWH), improving soil water availability through rainwater harvesting land use scenario. The simulated water balance results showed that the highest peak mean monthly direct flow obtained from Agri-CON land use (127.1 m3/ha), followed by Agri-IRWH land use (11.5 mm) and LULC 2005 (90.1 m3/ha). The Agri-IRWH scenario reduced direct flow by 10% compared to Agri-CON and more groundwater flow contributed by Agri-IRWH (190 m3/ha) than Agri-CON (125 m3/ha). The overall result suggests that the water yield of the Woreda may not be negatively affected by the Agri-IRWH land use scenario. The technology in the Woreda benefited positively having an average benefit cost ratio of 4.2. Water harvesting for domestic use was not optimal that the value of the water per demand harvested was less than the amount of water needed. Storage tanks, series of check dams, gravel filled dams are an alternative solutions for water harvesting.

Keywords: water harvesting, SWAT model, land use scenario, Agri-CON, Agri-IRWH, trade off, benefit cost ratio

Procedia PDF Downloads 335
4091 Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer

Authors: Bhavesh N. Bhatt, Zozimus D. Labana

Abstract:

This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends.

Keywords: gas turbine, conjugate heat transfer, NASA C3X Blade, circular film cooling channel

Procedia PDF Downloads 339
4090 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index

Procedia PDF Downloads 94
4089 Thermodynamic Modeling of Methane Injection in Gas-Condensate Reservoir Core: A Case Study

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the core of Sarkhoon Gas Condensate Reservoir located in the south of Iran was thermodynamically modeled in order to study the natural depletion process and methane injection phenomena for enhanced gas-condensate recovery using the Eclipse 300 compositional simulator. Modeling was performed for three different core lengths with different production and injection flow rates in both vertical and horizontal cases. According to the results, the final condensate in place value in the natural depletion process is approximately independent of the production rate for a given pressure drop. The final condensate in place value is lower in vertical cases compared to horizontal cases. An increase in the injection flow rate leads to a decrease in the percentage of gascondensate recovery. In cores of equal length, gas condensate recovery percent is higher in vertical cases in comparison to horizontal cases. For a constant injection rate, decreasing the core length leads to a decrease in gas condensate recovery.

Keywords: reservoir simulation, methane injection, enhanced condensate recovery, reservoir core, modeling

Procedia PDF Downloads 99
4088 Zinc Oxide Nanowires: Device Fabrication and Optical Properties

Authors: Igori Wallace

Abstract:

Zinc oxide (ZnO) nanowires with hexagonal structure were successfully synthesized by the chemical bath deposition technique. The obtained nanowires were characterized by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The SEM micrographs revealed the morphology of ZnO nanowires with the diameter between 170.3 and 481nm and showed that the normal pH of the bath solution, 8.1 is the optimized value to form ZnO nanowires with the hexagonal shape. The compositional (EDX) analysis revealed the elemental compositions of samples and confirmed the presence of Zn and O.

Keywords: crystallite, chemical bath deposition technique, hexagonal, morphology, nanowire

Procedia PDF Downloads 311
4087 Application of Computational Fluid Dynamics in the Analysis of Water Flow in Rice Leaves

Authors: Marcio Mesquita, Diogo Henrique Morato de Moraes, Henrique Fonseca Elias de Oliveira, Rilner Alves Flores, Mateus Rodrigues Ferreira, Dalva Graciano Ribeiro

Abstract:

This study aimed to analyze the movement of water in irrigated and non-irrigated rice (Oryza sativa L.) leaves, from the xylem to the stomata, through numerical simulations. Through three-dimensional modeling, it was possible to determine how the spacing of parenchyma cells and the permeability of these cells influence the apoplastic flow and the opening of the stomata. The thickness of the cuticle and the number of vascular bundles are greater in plants subjected to water stress, indicating an adaptive response of plants to environments with water deficit. In addition, numerical simulations revealed that the opening of the stomata, the permeability of the parenchyma cells and the cell spacing have significant impacts on the energy loss and the speed of water movement. It was observed that a more open stoma facilitates water flow, decreasing the resistance and energy required for transport, while higher levels of permeability reduce energy loss, indicating that a more permeable tissue allows for more efficient water transport. Furthermore, it was possible to note that stomatal aperture, parenchyma permeability and cell spacing are crucial factors in the efficient water management of plants, especially under water stress conditions. These insights are essential for the development of more effective agricultural management strategies and for the breeding of plant varieties that are more resistant to adverse growing conditions. Computed fluid dynamics has allowed us to overcome the limitations of conventional techniques by providing a means to visualize and understand the complex hydrodynamic processes within the vascular system of plants.

Keywords: numerical modeling, vascular anatomy, vascular hydrodynamics, xylem, Oryza sativa L.

Procedia PDF Downloads 22
4086 A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines

Authors: P. Jost, L. Muckova, M. Matula, J. Pejchal, D. Jun, R. Stetina

Abstract:

Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.

Keywords: apoptosis, cell cycle, cytotoxicity, sulfur mustard

Procedia PDF Downloads 196
4085 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface

Authors: Renata Gerhardt, Detlev Belder

Abstract:

Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.

Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS

Procedia PDF Downloads 250
4084 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet

Procedia PDF Downloads 435
4083 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness

Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed

Abstract:

A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.

Keywords: artificial roughness, lid-driven cavity, mixed convection heat transfer, rotating cylinder, URANS method

Procedia PDF Downloads 200
4082 Numerical Reproduction of Hemodynamic Change Induced by Acupuncture to ST-36

Authors: Takuya Suzuki, Atsushi Shirai, Takashi Seki

Abstract:

Acupuncture therapy is one of the treatments in traditional Chinese medicine. Recently, some reports have shown the effectiveness of acupuncture. However, its full acceptance has been hindered by the lack of understanding on mechanism of the therapy. Acupuncture applied to Zusanli (ST-36) enhances blood flow volume in superior mesenteric artery (SMA), yielding peripheral vascular resistance – regulated blood flow of SMA dominated by the parasympathetic system and inhibition of sympathetic system. In this study, a lumped-parameter approximation model of blood flow in the systemic arteries was developed. This model was extremely simple, consisting of the aorta, carotid arteries, arteries of the four limbs and SMA, and their peripheral vascular resistances. Here, the individual artery was simplified to a tapered tube and the resistances were modelled by a linear resistance. We numerically investigated contribution of the peripheral vascular resistance of SMA to the systemic blood distribution using this model. In addition to the upstream end of the model, which correlates with the left ventricle, two types of boundary condition were applied; mean left ventricular pressure which correlates with blood pressure (BP) and mean cardiac output which corresponds to cardiac index (CI). We examined it to reproduce the experimentally obtained hemodynamic change, in terms of the ratio of the aforementioned hemodynamic parameters from their initial values before the acupuncture, by regulating the peripheral vascular resistances and the upstream boundary condition. First, only the peripheral vascular resistance of SMA was changed to show contribution of the resistance to the change in blood flow volume in SMA, expecting reproduction of the experimentally obtained change. It was found, however, this was not enough to reproduce the experimental result. Then, we also changed the resistances of the other arteries together with the value given at upstream boundary. Here, the resistances of the other arteries were changed simultaneously in the same amount. Consequently, we successfully reproduced the hemodynamic change to find that regulation of the upstream boundary condition to the value experimentally obtained after the stimulation is necessary for the reproduction, though statistically significant changes in BP and CI were not observed in the experiment. It is generally known that sympathetic and parasympathetic tones take part in regulation of whole the systemic circulation including the cardiac function. The present result indicates that stimulation to ST-36 could induce vasodilation of peripheral circulation of SMA and vasoconstriction of that of other arteries. In addition, it implies that experimentally obtained small changes in BP and CI induced by the acupuncture may be involved in the therapeutic response.

Keywords: acupuncture, hemodynamics, lumped-parameter approximation, modeling, systemic vascular resistance

Procedia PDF Downloads 227
4081 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells

Authors: Victorita Radulescu

Abstract:

Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.

Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils

Procedia PDF Downloads 159
4080 Open Forging of Cylindrical Blanks Subjected to Lateral Instability

Authors: A. H. Elkholy, D. M. Almutairi

Abstract:

The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.

Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen

Procedia PDF Downloads 295
4079 Characterization of Calcined Clay Blended Self Compacting Concrete-Correlation between Super-Plasticizer Dosage and Self Compacting Concrete Properties

Authors: Kumator Josiphiah Taku

Abstract:

Sustainability in construction is essential to the economic construction and can be achieved by the use of locally available construction materials. This research work, thus, uses locally available materials –calcined clay and Sandcrete SPR-300 superplasticizer in the production of Self Compacting Concrete (SCC) by investigating the correlation between the superplasticizer dosage and the fresh and hardened states properties of a grade 50 SCC made by incorporating a Calcined Clay (CC) – Portland Limestone Cement (PLC) blend as the cementitious matter at 20% replacement of PLC with CC and using CC as filler. The superplasticizer dosage was varied from 0.4 to 3.0% by weight of cementitious material and the slump, v-funnel, L-box and strength parameters investigated. The result shows a positive correlation between the increased dosage of the superplasticizer and the fresh and hardened states properties of the SCC up to 2% dosage. The J¬Spread¬, t¬500J¬, Slump flow, L-box H¬2¬/H¬1 ¬ratio and strength, all increases with SP dosage while the V-funnel flow decreased with SP dosage. Overall, SP ratio of 0.5 to 2.0 can be used in improving the properties of SCC produced using calcined clay both as filler and cementitious material.

Keywords: calcined clay, compressive strength, fresh-state properties of SCC, self compacting concrete, superplasticizer dosage

Procedia PDF Downloads 170
4078 Aiding Water Flow in Irrigation Technology with a Pedal Operated Manual Pump

Authors: Isaac Ali Kwasu, Aje Tokan

Abstract:

The research was set to design a manually pedal operated water pump to aid water flow technology for irrigation activities for rural farmers. The development was carried out first by a prototype design to guide the fabrication. All items needed for the fabrication were used for the final product. The machine is operated manually by pedaling. This engages all the parts of the machine into active motion. Energy is generated and transfer finally to the pumping unit which is wired with plastic pipes. The pumping unit which is wired with PVC pipes, both linked to the water source and the reservoir respectively. The (rpm) revolution per minute of the machine is approximated at 3130 depending on the pedaling speed of the user. The machine does not have gear arrangement yet can give high (rpm) for effective performance. The pumping performance of the machine is 125 liters in one minute and can sustain small scale irrigation farming activities and to supplement water management system to sustain crop growth.

Keywords: pump, development, manual, flywheel, sprocket, pulley, machine, v belt, chain, hub, pipe, steel, mechanism, irrigation, prototype, fabrication

Procedia PDF Downloads 207
4077 Oil Logistics for Refining to Northern Europe

Authors: Vladimir Klepikov

Abstract:

To develop the programs to supply crude oil to North European refineries, it is necessary to take into account the refineries’ location, crude refining capacity, and the transport infrastructure capacity. Among the countries of the region, we include those having a marine boundary along the Northern Sea and the Baltic Sea (from France in the west to Finland in the east). The paper envisages the geographic allocation of the refineries and contains the evaluation of the refineries’ capacities for the region under review. The sustainable operations of refineries in the region are determined by the transportation system capacity to supply crude oil to them. The assessment of capacity of crude oil transportation to the refineries is conducted. The research is performed for the period of 2005/2015, using the quantitative analysis method. The countries are classified by the refineries’ aggregate capacities and the crude oil output on their territory. The crude oil output capacities in the region in the period under review are determined. The capacities of the region’s transportation system to supply crude oil produced in the region to the refineries are revealed. The analysis suggested that imported raw materials are the main source of oil for the refineries in the region. The main sources of crude oil supplies to North European refineries are reviewed. The change in the refineries’ capacities in the group of countries and each particular country, as well as the utilization of the refineries' capacities in the region in the period under review, was studied. The input suggests that the bulk of crude oil is supplied by marine and pipeline transport. The paper contains the assessment of the crude oil transportation by pipeline transport in the overall crude oil cargo flow. The refineries’ production rate for the groups of countries under the review and for each particular country was the subject of study. Our study yielded the trend towards the increase in the crude oil refining at the refineries of the region and reduction in the crude oil output. If this trend persists in the near future, the cargo flow of imported crude oil and the utilization of the North European logistics infrastructure may increase. According to the study, the existing transport infrastructure in the region is able to handle the increasing imported crude oil flow.

Keywords: European region, infrastructure, oil terminal capacity, pipeline capacity, tanker draft

Procedia PDF Downloads 175
4076 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations

Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam

Abstract:

Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.

Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD

Procedia PDF Downloads 421
4075 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry

Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood

Abstract:

The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.

Keywords: ADV, experimental data, multiple Reynolds number, post-processing

Procedia PDF Downloads 153