Search results for: legal judgment prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4027

Search results for: legal judgment prediction

1687 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 552
1686 Criminal Liability for Copyright and Related Rights Infringement: Albania Legislation Perspective

Authors: Ilda Muçmataj, Anjeza Liçenji, Borana Kalemi

Abstract:

Copyright and related rights have been pivotal in driving the economic growth of nations worldwide and fostering culture and new forms of entertainment. The introduction of the internet and technological advancement has significantly expanded the opportunities for creators and rights holders to promote their works and boost their revenues. However, this digital era has also brought about complex challenges, leading to a more extensive range of copyright infringement, primarily due to the substantial surge in piracy and counterfeiting. Despite being reported internationally, the mechanisms to tackle and the responsibility for enforcing copyright infringements often remain rooted in national jurisdictions, resulting in a gap between the scale of the problem and the efficacy of enforcement measures. Thus, it is essential to ensure adequate legal protection, a vital safeguard for authors' economic and moral interests, information security, innovative development promotion, and intellectual creativity preservation. This paper describes Albanian criminal law-based copyright enforcement legislation, focusing on doctrinal guidance and practical judicial considerations. Lastly, the paper offers recommendations for enhancing copyright protection and related rights.

Keywords: author, copyright infringement, copyright, criminal liability, intellectual property, piracy

Procedia PDF Downloads 42
1685 Blocking of Random Chat Apps at Home Routers for Juvenile Protection in South Korea

Authors: Min Jin Kwon, Seung Won Kim, Eui Yeon Kim, Haeyoung Lee

Abstract:

Numerous anonymous chat apps that help people to connect with random strangers have been released in South Korea. However, they become a serious problem for young people since young people often use them for channels of prostitution or sexual violence. Although ISPs in South Korea are responsible for making inappropriate content inaccessible on their networks, they do not block traffic of random chat apps since 1) the use of random chat apps is entirely legal. 2) it is reported that they use HTTP proxy blocking so that non-HTTP traffic cannot be blocked. In this paper, we propose a service model that can block random chat apps at home routers. A service provider manages a blacklist that contains blocked apps’ information. Home routers that subscribe the service filter the traffic of the apps out using deep packet inspection. We have implemented a prototype of the proposed model, including a centralized server providing the blacklist, a Raspberry Pi-based home router that can filter traffic of the apps out, and an Android app used by the router’s administrator to locally customize the blacklist.

Keywords: deep packet inspection, internet filtering, juvenile protection, technical blocking

Procedia PDF Downloads 351
1684 Geothermal Prospect Prediction at Mt. Ciremai Using Fault and Fracture Density Method

Authors: Rifqi Alfadhillah Sentosa, Hasbi Fikru Syabi, Stephen

Abstract:

West Java is a province in Indonesia which has a number of volcanoes. One of those volcanoes is Mt. Ciremai, located administratively at Kuningan and Majalengka District, and is known for its significant geothermal potential in Java Island. This research aims to assume geothermal prospects at Mt. Ciremai using Fault and Fracture Density (FFD) Method, which is correlated to the geochemistry of geothermal manifestations around the mountain. This FFD method is using SRTM data to draw lineaments, which are assumed associated with fractures and faults in the research area. These faults and fractures were assumed as the paths for reservoir fluids to reached surface as geothermal manifestations. The goal of this method is to analyze the density of those lineaments found in the research area. Based on this FFD Method, it is known that area with high density of lineaments located on Mt. Kromong at the northern side of Mt. Ciremai. This prospect area is proven by its higher geothermometer values compared to geothermometer values calculated at the south area of Mt. Ciremai.

Keywords: geothermal prospect, fault and fracture density, Mt. Ciremai, surface manifestation

Procedia PDF Downloads 370
1683 Synoptic Analysis of a Heavy Flood in the Province of Sistan-Va-Balouchestan: Iran January 2020

Authors: N. Pegahfar, P. Ghafarian

Abstract:

In this research, the synoptic weather conditions during the heavy flood of 10-12 January 2020 in the Sistan-va-Balouchestan Province of Iran will be analyzed. To this aim, reanalysis data from the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR), NCEP Global Forecasting System (GFS) analysis data, measured data from a surface station together with satellite images from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) have been used from 9 to 12 January 2020. Atmospheric parameters both at the lower troposphere and also at the upper part of that have been used, including absolute vorticity, wind velocity, temperature, geopotential height, relative humidity, and precipitation. Results indicated that both lower-level and upper-level currents were strong. In addition, the transport of a large amount of humidity from the Oman Sea and the Red Sea to the south and southeast of Iran (Sistan-va-Balouchestan Province) led to the vast and unexpected precipitation and then a heavy flood.

Keywords: Sistan-va-Balouchestn Province, heavy flood, synoptic, analysis data

Procedia PDF Downloads 103
1682 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 151
1681 Tokenization of Blue Bonds to Scale Blue Carbon Projects

Authors: Rodrigo Buaiz Boabaid

Abstract:

Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change.

Keywords: blue bonds, blue carbon, tokenization, green finance

Procedia PDF Downloads 93
1680 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 405
1679 Managing the Cognitive Load of Medical Students during Anatomy Lecture

Authors: Siti Nurma Hanim Hadie, Asma’ Hassan, Zul Izhar Ismail, Ahmad Fuad Abdul Rahim, Mohd. Zarawi Mat Nor, Hairul Nizam Ismail

Abstract:

Anatomy is a medical subject, which contributes to high cognitive load during learning. Despite its complexity, anatomy remains as the most important basic sciences subject with high clinical relevancy. Although anatomy knowledge is required for safe practice, many medical students graduated without having sufficient knowledge. In fact, anatomy knowledge among the medical graduates was reported to be declining and this had led to various medico-legal problems. Applying cognitive load theory (CLT) in anatomy teaching particularly lecture would be able to address this issue since anatomy information is often perceived as cognitively challenging material. CLT identifies three types of loads which are intrinsic, extraneous and germane loads, which combine to form the total cognitive load. CLT describe that learning can only occur when the total cognitive load does not exceed human working memory capacity. Hence, managing these three types of loads with the aim of optimizing the working memory capacity would be beneficial to the students in learning anatomy and retaining the knowledge for future application.

Keywords: cognitive load theory, intrinsic load, extraneous load, germane load

Procedia PDF Downloads 469
1678 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations

Authors: Sarra Hasni, Sami Faiz

Abstract:

In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.

Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation

Procedia PDF Downloads 29
1677 The Ethics of Jaw Wiring for Weight Loss by Dentists in South Africa: A Principlist Analysis

Authors: Jillian Gardner, Hilde D. Miniggio

Abstract:

The increasing prevalence of obesity has driven the pursuit of alternative weight loss strategies, such as jaw wiring (or ‘slimming wires’), a technique known in the medical community as maxillomandibular fixation, which has evolved beyond its original intention of treating temporomandibular joint disorders. Individuals have increasingly sought and utilized the procedure for weight loss purposes. Although legal in South Africa, this trend presents dentists with ethical dilemmas, as they face requests for interventions that prioritize aesthetic preferences over medical necessity. Drawing on scholarly literature and the four principles framework of Beauchamp and Childress, this ethical analysis offers guidance for dentists facing the ethical dilemma of patient requests for jaw wiring as a weight management intervention. The ethical analysis concludes that dentists who refuse autonomous requests to perform jaw wiring for purely weight loss purposes are ethically justified within the principlist framework in overriding these requests when the principles of non-maleficence and beneficence are at stake. The well-being and health of the patient, as well as societal and professional obligations, justify the refusal to perform jaw wiring purely for weight loss.

Keywords: ethics, jaw wiring, maxillomandibular fixation, principlism, weight loss

Procedia PDF Downloads 60
1676 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market

Authors: Zahra Hatami, Hesham Ali, David Volkman

Abstract:

Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.

Keywords: portfolio management performance, network analysis, centrality measurements, Sharpe ratio

Procedia PDF Downloads 158
1675 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts

Authors: Punit Kumar, Niraj Kumar

Abstract:

The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.

Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol

Procedia PDF Downloads 384
1674 Gender Differences in the Prediction of Smartphone Use While Driving: Personal and Social Factors

Authors: Erez Kita, Gil Luria

Abstract:

This study examines gender as a boundary condition for the relationship between the psychological variable of mindfulness and the social variable of income with regards to the use of smartphones by young drivers. The use of smartphones while driving increases the likelihood of a car accident, endangering young drivers and other road users. The study sample included 186 young drivers who were legally permitted to drive without supervision. The subjects were first asked to complete questionnaires on mindfulness and income. Next, their smartphone use while driving was monitored over a one-month period. This study is unique as it used an objective smartphone monitoring application (rather than self-reporting) to count the number of times the young participants actually touched their smartphones while driving. The findings show that gender moderates the effects of social and personal factors (i.e., income and mindfulness) on the use of smartphones while driving. The pattern of moderation was similar for both social and personal factors. For men, mindfulness and income are negatively associated with the use of smartphones while driving. These factors are not related to the use of smartphones by women drivers. Mindfulness and income can be used to identify male populations that are at risk of using smartphones while driving. Interventions that improve mindfulness can be used to reduce the use of smartphones by male drivers.

Keywords: mindfulness, using smartphones while driving, income, gender, young drivers

Procedia PDF Downloads 174
1673 Management of Religious Endowment Properties for Sustainable Development: A Case Study of Region of Kinniya, Sri Lanka

Authors: Muhammed Buhary Muhammed Thabith, Nor Asiah Mohamad

Abstract:

Religious Endowment (RE) (Waqf) has played an essential role in Islamic history and made a significant impact on the society, particularly in terms of socioeconomics. This has been made possible by having appropriate management of the RE propertiesin order to achieve the Sustainable Development Goals (SDGs), and the region of Kinniya, Sri Lanka, is not an exception. However, since the last Religious Endowment Act of 1982, a considerable deterioration has taken place, and cases of dormant properties have increased. This study proposes a conceptual model based on the SDGs initiatives to fill in the gaps. It analyses the application of the current RE properties management and identifies the issues as well as the challenges in the implementation of the RE Act. It adopts a doctrinal analysis involving the primary and secondary data, including statutes, practices, case law, and reports. The findings show that there are various management modes adopted by the stakeholders of RE. Some approaches are in tandem with the rules and practices of the SDGs with emphasis on support and cooperation from the community, private sector, and the government. Several initiatives such as awareness on RE, legal enforcements without fears and favours, as well as accounting and auditing, are recommended to minimize problems in managing the RE towards attaining the SDGs.

Keywords: sustainable development goals (SDGs), management, endowment, Sri Lanka

Procedia PDF Downloads 107
1672 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage

Authors: Andrew Laming, John Hattie, Mark Wilson

Abstract:

Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.  

Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean

Procedia PDF Downloads 69
1671 Creatures of the Clearing: Forests, People, and Ants in Imperial Brazil

Authors: Diogo de Carvalho Cabral

Abstract:

This article offers a non-declensionist account of tropical deforestation, arguing that, rather than social stamp upon the environment or ecological endgame, deforestation is part of social site-making and remaking, the process through which humans produce sociality by carrying out nature-mediated – and therefore nature-transforming – practices that inevitably reset the very conditions of those practices. Human landscape-shaping inadvertently alters other species’ habitats –most often decimating them, but sometimes improving them–, the outcomes of which always resonate back upon human inhabitation and land use. Despite the overall tendency of biotic homogenization resulting from modern deforestation processes, there are always winners, i.e., species that gain competitive advantages enabling them to thrive in the novel ecosystems. Here it is examined one such case of deforestation-boosted species, namely leafcutter ants, which wrought havoc in the rural landscapes of nineteenth-century Brazil by defoliating a wide range of crops. By combining Historical GIS analysis and qualitative interpretation, it is shown how agricultural deforestation might have changed the ant species' biogeographies, and how in turn these changes – construed as 'infestation' – stimulated social innovations and rearrangements such as technical ingenuity, legal-administrative practices, and even local electoral arenas.

Keywords: deforestation, leafcutter ants, nineteenth-century Brazil, socio-ecological change

Procedia PDF Downloads 126
1670 Mechanical Characterization of Brain Tissue in Compression

Authors: Abbas Shafiee, Mohammad Taghi Ahmadian, Maryam Hoviattalab

Abstract:

The biomechanical behavior of brain tissue is needed for predicting the traumatic brain injury (TBI). Each year over 1.5 million people sustain a TBI in the USA. The appropriate coefficients for injury prediction can be evaluated using experimental data. In this study, an experimental setup on brain soft tissue was developed to perform unconfined compression tests at quasistatic strain rates ∈0.0004 s-1 and 0.008 s-1 and 0.4 stress relaxation test under unconfined uniaxial compression with ∈ 0.67 s-1 ramp rate. The fitted visco-hyperelastic parameters were utilized by using obtained stress-strain curves. The experimental data was validated using finite element analysis (FEA) and previous findings. Also, influence of friction coefficient on unconfined compression and relaxation test and effect of ramp rate in relaxation test is investigated. Results of the findings are implemented on the analysis of a human brain under high acceleration due to impact.

Keywords: brain soft tissue, visco-hyperelastic, finite element analysis (FEA), friction, quasistatic strain rate

Procedia PDF Downloads 659
1669 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 108
1668 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 91
1667 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization

Authors: Ramakrishna Rao Mamidi

Abstract:

It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.

Keywords: direct search, flux plot, fourier analysis, permanent magnets

Procedia PDF Downloads 218
1666 Accounting for Cryptocurrency: Urgent Need for an Accounting Standard

Authors: Fatima Ali Abbass, Hassan Ibrahim Rkein

Abstract:

The number of entities worldwide that currently accept digital currency as payment is increasing; however, digital currency still is not widely accepted as a medium of exchange, nor they represent legal tender. At the same time, this makes accounting for cryptocurrency, as cash (Currency) is not possible under IAS 7 and IAS 32, Cryptocurrency also cannot be accounted for as Financial Assets at fair value through profit or loss under IFRS 9. Therefore, this paper studies the possible means to account for Cryptocurrency, since, as of today, there is not yet an accounting standard that deals with cryptocurrency. The request to have a specific accounting standard is increasing from top accounting firms and from professional accounting bodies. This study uses a mixture of qualitative and quantitative analysis in its quest to explore the best possible way to account for cryptocurrency. Interviews and surveys were conducted targeting accounting professionals. This study highlighted the deficiencies in the current way of accounting for Cryptocurrency as intangible Assets with an indefinite life. The deficiency becomes well highlighted, as the asset will then be subject to impairment, where under GAAP, only depreciation in the value of the intangible asset is recognized. On the other hand, appreciation in the value of the asset is ignored, and this prohibits the reporting entity from showing the true value of the cryptocurrency asset. This research highlights the gap that arises due to using accounting standards that are not specific for Cryptocurrency and this study confirmed that there is an urgent need to call upon the accounting standards setters (IASB and FASB) to issue accounting standards specifically for Cryptocurrency.

Keywords: cryptocurrency, accounting, IFRS, GAAP, classification, measurement

Procedia PDF Downloads 98
1665 A Comparative Analysis of Safety Orientation and Safety Performance in Organizations: A Project Management Perspective

Authors: Dina Alfreahat, Zoltan Sebestyen

Abstract:

Safety is considered as one of the project’s success factors. Poor safety management may result in accidents that impact human, economic, and legal issues. Therefore, it is necessary to consider safety and health as a project success factor along with other project success factors, such as time, cost, and quality. Organizations have a knowledge deficit of the implementation of long-term safety practices, and due to cost control, safety problems tend to receive the least priority. They usually assume that safety management involves expenditures unrelated to production goals, thereby considering it unnecessary for profitability and competitiveness. The purpose of this study is to introduce, analysis and identify the correlation between the orientation of the public safety procedures of an organization and the public safety standards applied in the project. Therefore, the authors develop the process and collect the possible mathematical-statistical tools supporting the previously mentioned goal. The result shows that the adoption of management to safety is a major factor in implementing the safety standard in the project and thereby improving safety performance. It may take time and effort to adopt the mindset of safety orientation service development, but at the same time, the higher organizational investment in safety and health programs will contribute to the loyalty of staff to safety compliance.

Keywords: project management perspective, safety orientation, safety performance, safety standards

Procedia PDF Downloads 183
1664 'Refugee Crisis' and Global Labour Relations: Syrian Labour in Turkish Textile Factories

Authors: Katarzyna Czarnota, Inga Hajdarowicz

Abstract:

Political mechanisms of legal, social and economic segregation of refugees and migrants have reproduced and deepened existing hierarchies and inequalities in global labour relations. The consequences of these processes strengthened by current, so called, ‘refugee crisis’, tightening of border regimes, militarisation and closing of Balkan Route, will have a significant impact on future integration policies. One of the fields that require further research is limited access to labour rights of migrants and refugees. Although this phenomenon is experienced by a significant proportion of migrant population, these are the poorest who are also exposed to economic racism. The presentation will tackle the influence of current migration policies on increasing social and class inequalities between migrants, refugees, on the example of Syrian labours in Turkish textile factories. The authors will critically analyse examples of integration policies, especially planned changes in labour law as well as examples of violation of labour rights and exploitation of refugees and migrants in textile factories and industry. The presentation will be based on interviews with Syrian workers, conducted in Turkey and Greece in 2016.

Keywords: refugee crisis, economic racism, global labour relations, exploatation

Procedia PDF Downloads 326
1663 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 198
1662 Determination of Elastic Constants for Scots Pine Grown in Turkey Using Ultrasound

Authors: Ergun Guntekin

Abstract:

This study investigated elastic constants of scots pine (Pinus sylvestris L.) grown in Turkey by means of ultrasonic waves. Three Young’s modulus, three shear modulus and six Poisson ratios were determined at constant moisture content (12 %). Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° with respect to the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector. The measured average longitudinal wave velocities for the sapwood in L, R, T directions were 4795, 1713 and 1117 m/s, respectively. The measured average shear wave velocities ranged from 682 to 1382 m/s. The measured quasi-shear wave velocities varied between 642 and 1280 m/s. The calculated average modulus of elasticity values for the sapwood in L, R, T directions were 11913, 1565 and 663 N/mm2, respectively. The calculated shear modulus in LR, LT and RT planes were 1031, 541, 415 N/mm2. Comparing with available literature, the predicted elastic constants are acceptable.

Keywords: elastic constants, prediction, Scots pine, ultrasound

Procedia PDF Downloads 283
1661 The Role of Data Protection Officer in Managing Individual Data: Issues and Challenges

Authors: Nazura Abdul Manap, Siti Nur Farah Atiqah Salleh

Abstract:

For decades, the misuse of personal data has been a critical issue. Malaysia has accepted responsibility by implementing the Malaysian Personal Data Protection Act 2010 to secure personal data (PDPA 2010). After more than a decade, this legislation is set to be revised by the current PDPA 2023 Amendment Bill to align with the world's key personal data protection regulations, such as the European Union General Data Protection Regulations (GDPR). Among the other suggested adjustments is the Data User's appointment of a Data Protection Officer (DPO) to ensure the commercial entity's compliance with the PDPA 2010 criteria. The change is expected to be enacted in parliament fairly soon; nevertheless, based on the experience of the Personal Data Protection Department (PDPD) in implementing the Act, it is projected that there will be a slew of additional concerns associated with the DPO mandate. Consequently, the goal of this article is to highlight the issues that the DPO will encounter and how the Personal Data Protection Department should respond to this subject. The study result was produced using a qualitative technique based on an examination of the current literature. This research reveals that there are probable obstacles experienced by the DPO, and thus, there should be a definite, clear guideline in place to aid DPO in executing their tasks. It is argued that appointing a DPO is a wise measure in ensuring that the legal data security requirements are met.

Keywords: guideline, law, data protection officer, personal data

Procedia PDF Downloads 79
1660 Representative Concentration Pathways Approach on Wolbachia Controlling Dengue Virus in Aedes aegypti

Authors: Ida Bagus Mandhara Brasika, I Dewa Gde Sathya Deva

Abstract:

Wolbachia is recently developed as the natural enemy of Dengue virus (DENV). It inhibits the replication of DENV in Aedes aegypti. Both DENV and its vector, Aedes aegypty, are sensitive to climate factor especially temperature. The changing of climate has a direct impact on temperature which means changing the vector transmission. Temperature has been known to effect Wolbachia density as it has an ideal temperature to grow. Some scenarios, which are known as Representative Concentration Pathways (RCPs), have been developed by Intergovernmental Panel on Climate Change (IPCC) to predict the future climate based on greenhouse gases concentration. These scenarios are applied to mitigate the future change of Aedes aegypti migration and how Wolbachia could control the virus. The prediction will determine the schemes to release Wolbachia-injected Aedes aegypti to reduce DENV transmission.

Keywords: Aedes aegypti, climate change, dengue virus, Intergovernmental Panel on Climate Change, representative concentration pathways, Wolbachia

Procedia PDF Downloads 301
1659 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 155
1658 Exploring the Impact of Corruption on Human Rights in Cameroon: The Quest for Sustainable Solutions

Authors: Eugene Muambeh Muntoh

Abstract:

Corruption has a destructive effect on State institutions and on the capacity of States to respect, protect and fulfil human rights, particularly of those persons and groups in situation of vulnerability and marginalization. In Cameroon, corruption pose a major challenge as it divert public revenues and cripple public budgets that should provide healthcare, housing, education, and other essential services. Corruption has undermined the States’ ability to meet the minimum core obligations and pre-existing legal obligations to maximize all available resources to respect, protect and fulfil Economic, Social and Cultural Rights. This study therefore makes use of the qualitative research design, ranging from interviews, observations and content analysis of vital documents to provide evidence and associations between corruption and human rights concerns in Cameroon. The study made use of research material from both primary and secondary sources. Findings from the study reveals that the impact of corruption in Cameroon is especially pronounced regarding economic, social and cultural rights. In most cases, the right to be treated equally is violated, for example, when someone is requested to pay a bribe to obtain a public service. There is an urgent need for sustainable measures to counter corruption in order to protect and promote human rights.

Keywords: corruption, governance, human rights, law

Procedia PDF Downloads 91