Search results for: artificial microRNA approach
13185 Multidisciplinary Approach to Diagnosis of Primary Progressive Aphasia in a Younger Middle Aged Patient
Authors: Robert Krause
Abstract:
Primary progressive aphasia (PPA) is a neurodegenerative disease similar to frontotemporal and semantic dementia, while having a different clinical image and anatomic pathology topography. Nonetheless, they are often included under an umbrella term: frontotemporal lobar degeneration (FTLD). In the study, examples of diagnosing PPA are presented through the multidisciplinary lens of specialists from different fields (neurologists, psychiatrists, clinical speech therapists, clinical neuropsychologists and others) using a variety of diagnostic tools such as MR, PET/CT, genetic screening and neuropsychological and logopedic methods. Thanks to that, specialists can get a better and clearer understanding of PPA diagnosis. The study summarizes the concrete procedures and results of different specialists while diagnosing PPA in a patient of younger middle age and illustrates the importance of multidisciplinary approach to differential diagnosis of PPA.Keywords: primary progressive aphasia, etiology, diagnosis, younger middle age
Procedia PDF Downloads 19513184 Statistical Analysis of Extreme Flow (Regions of Chlef)
Authors: Bouthiba Amina
Abstract:
The estimation of the statistics bound to the precipitation represents a vast domain, which puts numerous challenges to meteorologists and hydrologists. Sometimes, it is necessary, to approach in value the extreme events for sites where there is little, or no datum, as well as their periods of return. The search for a model of the frequency of the heights of daily rains dresses a big importance in operational hydrology: It establishes a basis for predicting the frequency and intensity of floods by estimating the amount of precipitation in past years. The most known and the most common approach is the statistical approach, It consists in looking for a law of probability that fits best the values observed by the random variable " daily maximal rain " after a comparison of various laws of probability and methods of estimation by means of tests of adequacy. Therefore, a frequent analysis of the annual series of daily maximal rains was realized on the data of 54 pluviometric stations of the pond of high and average. This choice was concerned with five laws usually applied to the study and the analysis of frequent maximal daily rains. The chosen period is from 1970 to 2013. It was of use to the forecast of quantiles. The used laws are the law generalized by extremes to three components, those of the extreme values to two components (Gumbel and log-normal) in two parameters, the law Pearson typifies III and Log-Pearson III in three parameters. In Algeria, Gumbel's law has been used for a long time to estimate the quantiles of maximum flows. However, and we will check and choose the most reliable law.Keywords: return period, extreme flow, statistics laws, Gumbel, estimation
Procedia PDF Downloads 7813183 The Harada Method: A Method for Employee Development during Production Ramp Up
Authors: M. Goerke, J. Gehrmann
Abstract:
Caused by shorter product life cycles and higher product variety the importance of production ramp ups is increasing. Even though companies are aware of that fact, up to 40% of the ramp up projects still miss technical and economical requirements. The success of a ramp up depends on the planning of human factors, organizational aspects and technological solutions. Since only partly considered in scientific literature, this paper lays its focus on the human factor during production ramp up. There are only incoherent methods which address the problems in this area. A systematic and holistic method to improve the capabilities of the employees during ramp up is missing. The Harada Method is a relatively young approach for developing highly-skilled workers. It consists of different worksheets which help employees to set guidelines and reach overall objectives. This approach is going to be transferred into a tool for ramp up management.Keywords: employee development, Harada, production ramp up, organizational aspects
Procedia PDF Downloads 45813182 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 14613181 Social Network Analysis, Social Power in Water Co-Management (Case Study: Iran, Shemiranat, Jirood Village)
Authors: Fariba Ebrahimi, Mehdi Ghorbani, Ali Salajegheh
Abstract:
Comprehensively water management considers economic, environmental, technical and social and also sustainability of water resources for future generations. Grassland management implies cooperative approach and involves all stakeholders and also introduces issues to managers, decision and policy makers. Solving these issues needs integrated and system approach. According to the recognition of actors or key persons in necessary to apply cooperative management of Water. Therefore, based on stakeholder analysis and social network analysis can be used to demonstrate the most effective actors for environmental decisions. In this research, social powers according are specified to social network approach at Water utilizers’ level of Natural in Jirood catchment of Latian basin. In this paper, utilizers of water resources were recognized using field trips and then, trust and collaboration matrix produced using questionnaires. In the next step, degree centrality index were Examined. Finally, geometric position of each actor was illustrated in the network. The results of the research based on centrality index have a key role in recognition of cooperative management of Water in Jirood and also will help managers and planners of water in the case of recognition of social powers in order to organization and implementation of sustainable management of Water.Keywords: social network analysis, water co-management, social power, centrality index, local stakeholders network, Jirood catchment
Procedia PDF Downloads 37213180 Heterogeneous Artifacts Construction for Software Evolution Control
Authors: Mounir Zekkaoui, Abdelhadi Fennan
Abstract:
The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.Keywords: heterogeneous software artifacts, software evolution control, unified approach, meta model, software architecture
Procedia PDF Downloads 44513179 The Nature of the Complicated Fabric Textures: How to Represent in Primary Visual Cortex
Authors: J. L. Liu, L. Wang, B. Zhu, J. Zhou, W. D. Gao
Abstract:
Fabric textures are very common in our daily life. However, we never explore the representation of fabric textures from neuroscience view. Theoretical studies suggest that primary visual cortex (V1) uses a sparse code to efficiently represent natural images. However, how the simple cells in V1 encode the artificial textures is still a mystery. So, here we will take fabric texture as stimulus to study the response of independent component analysis that is established to model the receptive field of simple cells in V1. Experimental results based on 140 classical fabric images indicate that the receptive fields of simple cells have obvious selectivity in orientation, frequency, and phase when drifting gratings are used to determine their tuning properties. Additionally, the distribution of optimal orientation and frequency shows that the patch size selected from each original fabric image has a significant effect on the frequency selectivity.Keywords: fabric texture, receptive filed, simple cell, spare coding
Procedia PDF Downloads 47513178 Electronic Tongue as an Innovative Non-Destructive Tool for the Quality Monitoring of Fruits
Authors: Mahdi Ghasemi-Varnamkhasti, Ayat Mohammad-Razdari, Seyedeh-Hoda Yoosefian
Abstract:
Taste is an important sensory property governing acceptance of products for administration through mouth. The advent of artificial sensorial systems as non-destructive tools able to mimic chemical senses such as those known as electronic tongue (ET) has open a variety of practical applications and new possibilities in many fields where the presence of taste is the phenomenon under control. In recent years, electronic tongue technology opened the possibility to exploit information on taste attributes of fruits providing real time information about quality and ripeness. Electronic tongue systems have received considerable attention in the field of sensor technology during the last two decade because of numerous applications in diverse fields of applied sciences. This paper deals with some facets of this technology in the quality monitoring of fruits along with more recent its applications.Keywords: fruit, electronic tongue, non-destructive, taste machine, horticultural
Procedia PDF Downloads 25613177 Unpacking Tourist Experience: A Case Study of Chinese Tourists Visiting the UK
Authors: Guanhao Tong, Li Li, Ben David
Abstract:
This study aims to provide an explanatory account of how the leisure tourist experience emerges from tourists and their surroundings through a critical realist lens. This was achieved by applying Archer’s realist social theory as the underlying theoretical ground to unpack the interplays between the external (tourism system or structure) and the internal (tourists or agency). This theory argues that social phenomena can be analyzed in three domains - structure, agency, and culture (SAC), and along three phases – structure conditioning, sociocultural interactions, and structure elaboration. From the realist perspective, the world is an open system; events and discourses are irreducible to present individuals and collectivities. Therefore, identifying the processes or mechanisms is key to help researchers understand how social reality is brought about. Based on the contextual nature of the tourist experience, the research focuses on Chinese tourists (from mainland China) to London as a destination and British culture conveyed through the concept of the destination image. This study uses an intensive approach based on Archer’s M/M approach to discover the mechanisms/processes of the emergence of the tourist experience. Individual interviews were conducted to reveal the underlying causes of lived experiences of the tourists. Secondary data was also collected to understand how British destinations are portrayed to Chinese tourists.Keywords: Chinese tourists, destination image, M/M approach, realist social theory, social mechanisms, tourist experience
Procedia PDF Downloads 7213176 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis
Authors: Avi Shrivastava
Abstract:
In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine
Procedia PDF Downloads 7213175 Modeling and Controlling Nonlinear Dynamical Effects in Non-Contact Superconducting and Diamagnetic Suspensions
Authors: Sergey Kuznetsov, Yuri Urman
Abstract:
We present an approach to investigate non-linear dynamical effects occurring in the noncontact superconducting and diamagnetic suspensions, when levitated body has finite size. This approach is based on the calculation of interaction energy between spherical finite size superconducting or diamagnetic body with external magnetic field. Effects of small deviations from spherical shape may be also taken into account by introducing small corrections to the energy. This model allows investigating dynamical effects important for practical applications, such as nonlinear resonances, change of vibration plane, coupling of rotational and translational motions etc. We also show how the geometry of suspension affects various dynamical effects and how an inverse problem may be formulated to enforce or diminish various dynamical effects.Keywords: levitation, non-linear dynamics, superconducting, diamagnetic stability
Procedia PDF Downloads 41013174 Enhancing Technical Trading Strategy on the Bitcoin Market using News Headlines and Language Models
Authors: Mohammad Hosein Panahi, Naser Yazdani
Abstract:
we present a technical trading strategy that leverages the FinBERT language model and financial news analysis with a focus on news related to a subset of Nasdaq 100 stocks. Our approach surpasses the baseline Range Break-out strategy in the Bitcoin market, yielding a remarkable 24.8% increase in the win ratio for all Friday trades and an impressive 48.9% surge in short trades specifically on Fridays. Moreover, we conduct rigorous hypothesis testing to establish the statistical significance of these improvements. Our findings underscore considerable potential of our NLP-driven approach in enhancing trading strategies and achieving greater profitability within financial markets.Keywords: quantitative finance, technical analysis, bitcoin market, NLP, language models, FinBERT, technical trading
Procedia PDF Downloads 7513173 Chemical-Induced Mutation for Development of Resistance in Banana cv. Nanjangud rasabale
Authors: H. Kishor, G. Prabhuling, D. S. Ambika, D. P. Prakash
Abstract:
The chemical mutagens have become important tool to enhance agronomic traits of banana crop. It is being used to develop fusarium resistance lines in various susceptible banana cultivars. There are several mutagens like EMS and NaN3 available for banana crop improvement and each mutagen has its own important role as positive or negative effects on growth and development of banana plants. Explants from shoot tip culture were treated with various EMS (0.30, 0.60, 0.90 and 0.12%) and NaN3 (0.01, 0.02 and 0.03%) concentrations. The putative mutants obtained after in vitro rooting were subjected for artificial inoculation of Fusarium oxysporum f.sp. cubense. Screening putative mutants resistance to Panama disease was carried out by using syringe method of inoculation. It was observed that, EMS treated mutants were more susceptible compared to NaN3 treatment. Among the NaN3 doses 0.01% found to produce 3 resistant lines during preliminary screening under greenhouse conditions.Keywords: Nanjangud rasabale, EMS, NaN3, putative mutants
Procedia PDF Downloads 18713172 The Impact of Artificial Intelligence on E-Learning
Authors: Sameil Hanna Samweil Botros
Abstract:
The variation of social networking websites inside higher training has garnered enormous hobby in recent years, with numerous researchers thinking about it as a possible shift from the conventional lecture room-based learning paradigm. However, this boom in research and carried out research, but the adaption of SNS-based modules has not proliferated inside universities. This paper commences its contribution with the aid of studying the numerous fashions and theories proposed in the literature and amalgamates together various effective aspects for the inclusion of social technology within e-gaining knowledge. A three-phased framework is similarly proposed, which informs the important concerns for the hit edition of SNS in improving the student's mastering experience. This suggestion outlines the theoretical foundations as a way to be analyzed in sensible implementation across worldwide university campuses.Keywords: eLearning, institutionalization, teaching and learning, transformation vtuber, ray tracing, avatar agriculture, adaptive, e-learning, technology eLearning, higher education, social network sites, student learning
Procedia PDF Downloads 2513171 Optimal Selection of Replenishment Policies Using Distance Based Approach
Authors: Amit Gupta, Deepak Juneja, Sorabh Gupta
Abstract:
This paper presents a model based on distance based approach (DBA) method employed for evaluation, selection, and ranking of replenishment policies for a single location inventory, which hitherto not developed in the literature. This work recognizes the significance of the selection problem, identifies the selection criteria, the relative importance of selection criteria for this research problem. The developed model is capable of comparing any number of alternate inventory policies for various selection criteria where cardinal values are assigned as a rating to alternate inventory polices for selection criteria and weights of selection criteria. The illustrated example demonstrates the model and presents the result in terms of ranking of replenishment policies.Keywords: DBA, ranking, replenishment policies, selection criteria
Procedia PDF Downloads 15713170 Adolescent and Adult Hip Dysplasia on Plain Radiographs. Analysis of Measurements and Attempt for Optimization of Diagnostic and Performance Approaches for Patients with Periacetabular Osteotomy (PAO).
Authors: Naum Simanovsky MD, Michael Zaidman MD, Vladimir Goldman MD.
Abstract:
105 plain AP radiographs of normal adult pelvises (210 hips) were evaluated. Different measurements of normal and dysplastic hip joints in 45 patients were analyzed. Attempt was made to establish reproducible, easy applicable in practice approach for evaluation and follow up of patients with hip dysplasia. The youngest of our patients was 11 years and the oldest was 47 years. Only one of our patients needed conversion to total hip replacement (THR) during ten years of follow-up. It was emphasized that selected set of measurements was built for purpose to serve, especially those who’s scheduled or undergone PAO. This approach was based on concept of acetabulum-femoral head complex and importance of reliable reference points of measurements. Comparative analysis of measured parameters between normal and dysplastic hips was performed. Among 10 selected parameters, we use already well established such as lateral center edge angle and head extrusion index, but to serve specific group of patients with PAO, new parameters were considered such as complex lateralization and complex proximal migration. By our opinion proposed approach is easy applicable in busy clinical practice, satisfactorily delineate hip pathology and give to surgeon who’s going to perform PAO guidelines in condensed form. It is also useful tools for postoperative follow up after PAO.Keywords: periacetabular osteotomy, plain radiograph’s measurements, adolescents, adult
Procedia PDF Downloads 6713169 Core Competence Development while Carrying out Organizational Changes
Authors: Olga A. Shvetsova
Abstract:
The paper contains the different issues of competence management in industrial companies. The theoretical bases of human resources management and practical issues of innovative enterprises’ competitiveness are considered. The research is focused on the modern industrial enterprise changes management problems; it focuses on the effective personnel management of industrial enterprises on the basis of competence approach. The influence of organizational changes on the competence development is discussed. The need for development of the new technologies is mentioned, proposal is based on competence-based approach in personnel management including in the conditions of carrying out organizational changes; methods of acquisition and development of missing key professional competences are discussed; importance of key competencies in forming competitive advantage of the organization is mentioned.Keywords: competence model, core competencies, development of industrial company, organizational changes, competitiveness
Procedia PDF Downloads 30313168 The Effect of LEADER and Community-Led Local Development in Spanish Municipal Unemployment: A Difference-in-Difference Approach
Authors: Miguel A. Borrella, Ana P. Fanjul, Suca Munoz, Liliana Herrera
Abstract:
This paper evaluates the impact of LEADER, a remarkable Community-Led Local Development (CLLD) approach of the European Program for Rural Development applied to rural municipalities of Spain in 2018 and 2019. Using a difference-in-difference estimation strategy and a newly-constructed database, results show that aided municipalities have significantly lower unemployment levels than non-aided municipalities. Results are significant for the decrease in unemployment for both women and people younger than 25 years old, two of the target groups of the policy. Nevertheless, they are larger for male and older workers. Therefore, findings suggest that LEADER 2017-2018 was successful in reducing unemployment in rural areas.Keywords: community-led local development, ex-post evaluation, LEADER, rural development
Procedia PDF Downloads 34113167 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks
Authors: Wided Abidi, Tahar Ezzedine
Abstract:
Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency
Procedia PDF Downloads 32913166 Indonesia’s Defense Diplomacy Strength Towards China’s Aggressive Maritime Policy
Authors: Pangihutan Panjaitan, Helda Risman, Devindra Oktaviano
Abstract:
This research is departed from the security issues generated from China’s unilateral claims in the South China Sea conflict. The diplomacy challenges come from Indonesia’s relations with China as well as with ASEAN-member countries involved in the conflict. It is estimated that the conflict in the South China Sea region will become an endless conflict. Comprehensively, Indonesia is implementing a gradual shift in diplomatic approach in creating positive and constructive ties among Indonesia, China, and ASEAN. In line with the rapid-changing world order, the conventional military approach becomes less significant in today’s modern inter-state interactions. This research is conducted in a qualitative literature review to explain how Indonesia’s recent soft diplomacy approach applied in the South China Sea conflict. This type of diplomacy theoretically assumed as one of the most preferred ways to establish mutual trust and confidence among conflicting parties. Maritime issues found its significance in contemporary foreign policy since the world’s most dynamic region has moved to the archipelagic Asia-Pacific. As mentioned by rationalists, every country, including Indonesia, has surely formulated its own prominent national interest, such as the defense aspect. Finally, this research will provide a deep analysis on Indonesia’s centrality in ASEAN as an effective way to ensure Indonesia’s strategic policy in the region well accommodated.Keywords: soft diplomacy, south China sea, national defense, China
Procedia PDF Downloads 16013165 Two-Dimensional WO₃ and TiO₂ Semiconductor Oxides Developed by Atomic Layer Deposition with Controllable Nano-Thickness on Wafer-Scale
Authors: S. Zhuiykov, Z. Wei
Abstract:
Conformal defect-free two-dimensional (2D) WO₃ and TiO₂ semiconductors have been developed by the atomic layer deposition (ALD) technique on wafer scale with unique approach to the thickness control with precision of ± 10% from the monolayer of nanomaterial (less than 1.0 nm thick) to the nano-layered 2D structures with thickness of ~3.0-7.0 nm. Developed 2D nanostructures exhibited unique, distinguishable properties at nanoscale compare to their thicker counterparts. Specifically, 2D TiO₂-Au bilayer demonstrated improved photocatalytic degradation of palmitic acid under UV and visible light illumination. Improved functional capabilities of 2D semiconductors would be advantageous to various environmental, nano-energy and bio-sensing applications. The ALD-enabled approach is proven to be versatile, scalable and applicable to the broader range of 2D semiconductors.Keywords: two-dimensional (2D) semiconductors, ALD, WO₃, TiO₂, wafer scale
Procedia PDF Downloads 15313164 Assisted Approach as a Tool for Increasing Attention When Using the iPad in a Special Elementary School: Action Research
Authors: Vojtěch Gybas, Libor Klubal, Kateřina Kostolányová
Abstract:
Nowadays, mobile touch technologies, such as tablets, are an integral part of teaching and learning in many special elementary schools. Many special education teachers tend to choose an iPad tablet with iOS. The reason is simple; the iPad has a function for pupils with special educational needs. If we decide to use tablets in teaching, in general, first we should try to stimulate the cognitive abilities of the pupil at the highest level, while holding the pupil’s attention on the task, when working with the device. This paper will describe how student attention can be increased by eliminating the working environment of selected applications, while using iPads with pupils in a special elementary school. Assisted function approach is highly effective at eliminating unwanted touching by a pupil when working on the desktop iPad, thus actively increasing the pupil´s attention while working on specific educational applications. During the various stages of the action, the research was conducted via data collection and interpretation. After a phase of gaining results and ideas for practice and actions, we carried out the check measurement, this time using the tool-assisted approach. In both cases, the pupils worked in the Math Board application and the resulting differences were evident.Keywords: special elementary school, a mobile touch device, iPad, attention, Math Board
Procedia PDF Downloads 25413163 Relationship between Food Inflation and Agriculture Lending Rate in Ghana: A Vector Autoregressive Approach
Authors: Raymond K. Dziwornu
Abstract:
Lending rate of agriculture loan has persistently been high and attributed to risk in the sector. This study examined how food inflation and agriculture lending rate react to each other in Ghana using vector autoregressive approach. Quarterly data from 2006 to 2018 was obtained from the Bank of Ghana quarterly bulletin and the Ghana Statistical Service reports. The study found that a positive standard deviation shock to food inflation causes lending rate of agriculture loan to react negatively in the short run, but positively and steadily in the long run. This suggests the need to direct appropriate policy measures to reduce food inflation and consequently, the cost of credit to the agricultural sector for its growth.Keywords: food inflation, agriculture, lending rate, vector autoregressive, Ghana
Procedia PDF Downloads 15013162 Internationalization and Multilingualism in Brazil: Possibilities of Content and Language Integrated Learning and Intercomprehension Approaches
Authors: Kyria Rebeca Finardi
Abstract:
The study discusses the role of foreign languages in general and of English in particular in the process of internationalization of higher education (IHE), defined as the intentional integration of an international, intercultural or global dimension in the purpose, function or offer of higher education. The study is bibliographical and offers a brief outline of the current political, economic and educational scenarios in Brazil, before discussing some possibilities and challenges for the development of multilingualism and IHE there. The theoretical background includes a review of Brazilian language and internationalization policies. The review and discussion concludes that the use of the Content and Language Integrated Learning (CLIL) approach and the Intercomprehension approach to foreign language teaching/learning are relevant alternatives to foster multilingualism in that context.Keywords: Brazil, higher education, internationalization, multilingualism
Procedia PDF Downloads 15513161 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach
Authors: Jerry Q. Cheng
Abstract:
Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing
Procedia PDF Downloads 16613160 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 7113159 Texture-Based Image Forensics from Video Frame
Authors: Li Zhou, Yanmei Fang
Abstract:
With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.Keywords: multimedia forensics, video frame, LBP, MTP, SVM
Procedia PDF Downloads 42713158 A Posteriori Trading-Inspired Model-Free Time Series Segmentation
Authors: Plessen Mogens Graf
Abstract:
Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.Keywords: time series segmentation, model-free, trading-inspired, multivariate data
Procedia PDF Downloads 13613157 Blended Learning Instructional Approach to Teach Pharmaceutical Calculations
Authors: Sini George
Abstract:
Active learning pedagogies are valued for their success in increasing 21st-century learners’ engagement, developing transferable skills like critical thinking or quantitative reasoning, and creating deeper and more lasting educational gains. 'Blended learning' is an active learning pedagogical approach in which direct instruction moves from the group learning space to the individual learning space, and the resulting group space is transformed into a dynamic, interactive learning environment where the educator guides students as they apply concepts and engage creatively in the subject matter. This project aimed to develop a blended learning instructional approach to teaching concepts around pharmaceutical calculations to year 1 pharmacy students. The wrong dose, strength or frequency of a medication accounts for almost a third of medication errors in the NHS therefore, progression to year 2 requires a 70% pass in this calculation test, in addition to the standard progression requirements. Many students were struggling to achieve this requirement in the past. It was also challenging to teach these concepts to students of a large class (> 130) with mixed mathematical abilities, especially within a traditional didactic lecture format. Therefore, short screencasts with voice-over of the lecturer were provided in advance of a total of four teaching sessions (two hours/session), incorporating core content of each session and talking through how they approached the calculations to model metacognition. Links to the screencasts were posted on the learning management. Viewership counts were used to determine that the students were indeed accessing and watching the screencasts on schedule. In the classroom, students had to apply the knowledge learned beforehand to a series of increasingly difficult set of questions. Students were then asked to create a question in group settings (two students/group) and to discuss the questions created by their peers in their groups to promote deep conceptual learning. Students were also given time for question-and-answer period to seek clarifications on the concepts covered. Student response to this instructional approach and their test grades were collected. After collecting and organizing the data, statistical analysis was carried out to calculate binomial statistics for the two data sets: the test grade for students who received blended learning instruction and the test grades for students who received instruction in a standard lecture format in class, to compare the effectiveness of each type of instruction. Student response and their performance data on the assessment indicate that the learning of content in the blended learning instructional approach led to higher levels of student engagement, satisfaction, and more substantial learning gains. The blended learning approach enabled each student to learn how to do calculations at their own pace freeing class time for interactive application of this knowledge. Although time-consuming for an instructor to implement, the findings of this research demonstrate that the blended learning instructional approach improves student academic outcomes and represents a valuable method to incorporate active learning methodologies while still maintaining broad content coverage. Satisfaction with this approach was high, and we are currently developing more pharmacy content for delivery in this format.Keywords: active learning, blended learning, deep conceptual learning, instructional approach, metacognition, pharmaceutical calculations
Procedia PDF Downloads 17213156 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry
Authors: Harneet Walia, Morteza Zihayat
Abstract:
Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis
Procedia PDF Downloads 124