Search results for: arrival time prediction
17497 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling
Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed
Abstract:
Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.Keywords: machine learning, pattern recognition, facial pose classification, time series
Procedia PDF Downloads 35017496 [Keynote Talk]: Thermal Performance of Common Building Insulation Materials: Operating Temperature and Moisture Effect
Authors: Maatouk Khoukhi
Abstract:
An accurate prediction of the heat transfer through the envelope components of building is required to achieve an accurate cooling/heating load calculation which leads to precise sizing of the hvac equipment. This also depends on the accuracy of the thermal conductivity of the building insulation material. The proper use of thermal insulation in buildings (k-value) contribute significantly to reducing the HVAC size and consequently the annual energy cost. The first part of this paper presents an overview of building thermal insulation and their applications. The second part presents some results related to the change of the polystyrene insulation thermal conductivity with the change of the operating temperature and the moisture. Best-fit linear relationship of the k-value in term of the operating temperatures and different percentage of moisture content by weight has been established. The thermal conductivity of the polystyrene insulation material increases with the increase of both operating temperature and humidity content.Keywords: building insulation material, moisture content, operating temperature, thermal conductivity
Procedia PDF Downloads 32217495 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams
Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha
Abstract:
The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation
Procedia PDF Downloads 43117494 Number Variation of the Personal Pronoun We in American Spoken English
Abstract:
Language variation signals the newest usage of language community, which might become the developmental trend of that language. The personal pronoun we is prescribed as a plural pronoun in grammar, but its number value is more flexible in actual use. Based on the homemade Friends corpus, the present research explores the number value of the first person pronoun we in nowadays American spoken English. With consideration of the subjectivity of we, this paper used ‘we+ PCU (Perception-cognation-utterance) verbs’ collocations and ‘we+ plural categories’ as the parameters. Results from corpus data and manual annotation show that: 1) the overall frequency of we has been increasing; 2) we has been increasingly used with other plural categories, indicating a weakening of its plural reference; and 3) we has been increasingly used with PCU (perception-cognition-utterance) verbs of strong subjectivity, indicating a strengthening of its singular reference. All these seem to support our hypothesis that we is undergoing the process of further grammaticalization towards a singular reference, though future evidence is needed to attest the bold prediction.Keywords: number, PCU verbs, personal pronoun we,
Procedia PDF Downloads 23417493 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter
Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar
Abstract:
Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).Keywords: filter media, hydraulic loading rate, residence time distribution, tracer
Procedia PDF Downloads 27717492 Convergence Analysis of Cubic B-Spline Collocation Method for Time Dependent Parabolic Advection-Diffusion Equations
Authors: Bharti Gupta, V. K. Kukreja
Abstract:
A comprehensive numerical study is presented for the solution of time-dependent advection diffusion problems by using cubic B-spline collocation method. The linear combination of cubic B-spline basis, taken as approximating function, is evaluated using the zeros of shifted Chebyshev polynomials as collocation points in each element to obtain the best approximation. A comparison, on the basis of efficiency and accuracy, with the previous techniques is made which confirms the superiority of the proposed method. An asymptotic convergence analysis of technique is also discussed, and the method is found to be of order two. The theoretical analysis is supported with suitable examples to show second order convergence of technique. Different numerical examples are simulated using MATLAB in which the 3-D graphical presentation has taken at different time steps as well as different domain of interest.Keywords: cubic B-spline basis, spectral norms, shifted Chebyshev polynomials, collocation points, error estimates
Procedia PDF Downloads 22317491 A Low Insertion Loss Variation 10-35 GHz Phase Shifter
Authors: Soroush Rasti Boroujeni, S. Hassan Mousavi, Javad Ebrahimizadeh, Ardeshir Palizban, Mohammad-Reza Nezhad-Ahmadi, Safieddin Safavi-Naeini
Abstract:
This paper presents a wideband True Time Delay (TTD) phase shifter with low insertion loss variation. The circuit benefits from a controllable resistive load shunt with transmission line segments to optimize return loss variations, addressing the unbalanced capacitive nature of the varactor. The phase shifter reduces the complexity of the calibration process because the dependency of insertion loss on voltage controls is improved up to 3 dB. The TTD phase shifter provides a continuous changing delay time of 6.4 ps with low insertion loss (IL) in the 10-35 GHz frequency range. The proposed circuit benefits from lowloss phase shifters with a small footprint. Fabricated using a 65 nm CMOC process, the TTD phase shifter occupies only 388 × 615 μm² of chip area, achieving a 20% improvements compared to conventional TTD phase shifters.Keywords: millimeter-wave phased-array, true time delay phase shifter, insertion loss variation, compact size
Procedia PDF Downloads 717490 Variation of Clinical Manifestations of COVID-19 Over Time of Pandemic
Authors: Mahdi Asghari Ozma, Fatemeh Aghamohammadzadeh, Mahin Ahangar Oskouee
Abstract:
In late 2019, the people of the world were involved with a new infection by the coronavirus, named SARS-COV-2 (COVID-19), which disseminated around the world quickly. This infection has the ability to affect various systems of the body, including respiratory, gastrointestinal, urinary, and hematology, which can be transmitted by various body samples in different ways. To control this fast-transmitted infection by preventing its transmission to other people, rapid diagnosis is vital, which can be done by examining the patient's clinical symptoms and also using various serological, molecular, and radiological methods. Symptoms caused by COVID-19 in patients include fever, cough, sore throat, headache, fatigue, shortness of breath, loss of taste or smell, skin rash, myalgia, and conjunctivitis. These clinical features were appearing gradually in different time periods from the onset of the infection, and patients showed varied and new symptoms at different times, which show the variety of symptoms over time during the spread of the infection.Keywords: COVID-19, diagnosis, symptom, variation, novel coronavirus
Procedia PDF Downloads 8617489 Exploring Multi-Feature Based Action Recognition Using Multi-Dimensional Dynamic Time Warping
Authors: Guoliang Lu, Changhou Lu, Xueyong Li
Abstract:
In action recognition, previous studies have demonstrated the effectiveness of using multiple features to improve the recognition performance. We focus on two practical issues: i) most studies use a direct way of concatenating/accumulating multi features to evaluate the similarity between two actions. This way could be too strong since each kind of feature can include different dimensions, quantities, etc; ii) in many studies, the employed classification methods lack of a flexible and effective mechanism to add new feature(s) into classification. In this paper, we explore an unified scheme based on recently-proposed multi-dimensional dynamic time warping (MD-DTW). Experiments demonstrated the scheme's effectiveness of combining multi-feature and the flexibility of adding new feature(s) to increase the recognition performance. In addition, the explored scheme also provides us an open architecture for using new advanced classification methods in the future to enhance action recognition.Keywords: action recognition, multi features, dynamic time warping, feature combination
Procedia PDF Downloads 43717488 Dynamic Model of Heterogeneous Markets with Imperfect Information for the Optimization of Company's Long-Time Strategy
Authors: Oleg Oborin
Abstract:
This paper is dedicated to the development of the model, which can be used to evaluate the effectiveness of long-term corporate strategies and identify the best strategies. The theoretical model of the relatively homogenous product market (such as iron and steel industry, mobile services or road transport) has been developed. In the model, the market consists of a large number of companies with different internal characteristics and objectives. The companies can perform mergers and acquisitions in order to increase their market share. The model allows the simulation of long-time dynamics of the market (for a period longer than 20 years). Therefore, a large number of simulations on random input data was conducted in the framework of the model. After that, the results of the model were compared with the dynamics of real markets, such as the US steel industry from the beginning of the XX century to the present day, and the market of mobile services in Germany for the period between 1990 and 2015.Keywords: Economic Modelling, Long-Time Strategy, Mergers and Acquisitions, Simulation
Procedia PDF Downloads 36717487 Fault Tree Analysis and Bayesian Network for Fire and Explosion of Crude Oil Tanks: Case Study
Authors: B. Zerouali, M. Kara, B. Hamaidi, H. Mahdjoub, S. Rouabhia
Abstract:
In this paper, a safety analysis for crude oil tanks to prevent undesirable events that may cause catastrophic accidents. The estimation of the probability of damage to industrial systems is carried out through a series of steps, and in accordance with a specific methodology. In this context, this work involves developing an assessment tool and risk analysis at the level of crude oil tanks system, based primarily on identification of various potential causes of crude oil tanks fire and explosion by the use of Fault Tree Analysis (FTA), then improved risk modelling by Bayesian Networks (BNs). Bayesian approach in the evaluation of failure and quantification of risks is a dynamic analysis approach. For this reason, have been selected as an analytical tool in this study. Research concludes that the Bayesian networks have a distinct and effective method in the safety analysis because of the flexibility of its structure; it is suitable for a wide variety of accident scenarios.Keywords: bayesian networks, crude oil tank, fault tree, prediction, safety
Procedia PDF Downloads 66017486 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 8717485 Small Target Recognition Based on Trajectory Information
Authors: Saad Alkentar, Abdulkareem Assalem
Abstract:
Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).Keywords: small targets, drones, trajectory information, TBD, multivariate time series
Procedia PDF Downloads 4717484 Efficient Prediction of Surface Roughness Using Box Behnken Design
Authors: Ajay Kumar Sarathe, Abhinay Kumar
Abstract:
Production of quality products required for specific engineering applications is an important issue. The roughness of the surface plays an important role in the quality of the product by using appropriate machining parameters to eliminate wastage due to over machining. To increase the quality of the surface, the optimum machining parameter setting is crucial during the machining operation. The effect of key machining parameters- spindle speed, feed rate, and depth of cut on surface roughness has been evaluated. Experimental work was carried out using High Speed Steel tool and AlSI 1018 as workpiece material. In this study, the predictive model has been developed using Box-Behnken Design. An experimental investigation has been carried out for this work using BBD for three factors and observed that the predictive model of Ra value is closed to predictive value with a marginal error of 2.8648 %. Developed model establishes a correlation between selected key machining parameters that influence the surface roughness in a AISI 1018. FKeywords: ANOVA, BBD, optimisation, response surface methodology
Procedia PDF Downloads 15917483 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 24017482 Uncertainty of the Brazilian Earth System Model for Solar Radiation
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini
Abstract:
This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.Keywords: climate changes, projections, solar radiation, uncertainty
Procedia PDF Downloads 25017481 Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls
Authors: Ali Kezmane, Said Boukais, Mohand Hamizi
Abstract:
This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate.Keywords: shear strength, reinforced concrete walls, rectangular walls, shear walls, models
Procedia PDF Downloads 34317480 Time-Dependent Analysis of Composite Steel-Concrete Beams Subjected to Shrinkage
Authors: Rahal Nacer, Beghdad Houda, Tehami Mohamed, Souici Abdelaziz
Abstract:
Although the shrinkage of the concrete causes undesirable parasitic effects to the structure, it can then harm the resistance and the good appearance of the structure. Long term behaviourmodelling of steel-concrete composite beams requires the use of the time variable and the taking into account of all the sustained stress history of the concrete slab constituting the cross section. The work introduced in this article is a theoretical study of the behaviour of composite beams with respect to the phenomenon of concrete shrinkage. While using the theory of the linear viscoelasticity of the concrete, and on the basis of the rate of creep method, in proposing an analytical model, made up by a system of two linear differential equations, emphasizing the effects caused by shrinkage on the resistance of a steel-concrete composite beams. Results obtained from the application of the suggested model to a steel-concrete composite beam are satisfactory.Keywords: composite beams, shrinkage, time, rate of creep method, viscoelasticity theory
Procedia PDF Downloads 52817479 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization
Procedia PDF Downloads 28217478 Catalytic Degradation of Tetracycline in Aqueous Solution by Magnetic Ore Pyrite Nanoparticles
Authors: Allah Bakhsh Javid, Ali Mashayekh-Salehi, Fatemeh Davardoost
Abstract:
This study presents the preparation, characterization and catalytic activity of a novel natural mineral-based catalyst for destructive adsorption of tetracycline (TTC) as water emerging compounds. Degradation potential of raw and calcined magnetite catalyst was evaluated at different experiments situations such as pH, catalyst dose, reaction time and pollutant concentration. Calcined magnetite attained greater catalytic potential than the raw ore in the degradation of tetracycline, around 69% versus 3% at reaction time of 30 min and TTC aqueous solution of 50 mg/L, respectively. Complete removal of TTC could be obtained using 2 g/L calcined nanoparticles at reaction time of 60 min. The removal of TTC increased with the increase in solution temperature. Accordingly, considering its abundance in nature together with its very high catalytic potential, calcined pyrite is a promising and reliable catalytic material for destructive decomposition for catalytic decomposition and mineralization of such pharmaceutical compounds as TTC in water and wastewater.Keywords: catalytic degradation, tetracycline, pyrite, emerging pollutants
Procedia PDF Downloads 19217477 Virtual Screening and in Silico Toxicity Property Prediction of Compounds against Mycobacterium tuberculosis Lipoate Protein Ligase B (LipB)
Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy
Abstract:
The drug discovery and development process is generally known to be a very lengthy and labor-intensive process. Therefore, in order to be able to deliver prompt and effective responses to cure certain diseases, there is an urgent need to reduce the time and resources needed to design, develop, and optimize potential drugs. Computer-aided drug design (CADD) is able to alleviate this issue by applying computational power in order to streamline the whole drug discovery process, starting from target identification to lead optimization. This drug design approach can be predominantly applied to diseases that cause major public health concerns, such as tuberculosis. Hitherto, there has been no concrete cure for this disease, especially with the continuing emergence of drug resistant strains. In this study, CADD is employed for tuberculosis by first identifying a key enzyme in the mycobacterium’s metabolic pathway that would make a good drug target. One such potential target is the lipoate protein ligase B enzyme (LipB), which is a key enzyme in the M. tuberculosis metabolic pathway involved in the biosynthesis of the lipoic acid cofactor. Its expression is considerably up-regulated in patients with multi-drug resistant tuberculosis (MDR-TB) and it has no known back-up mechanism that can take over its function when inhibited, making it an extremely attractive target. Using cutting-edge computational methods, compounds from AnalytiCon Discovery Natural Derivatives database were screened and docked against the LipB enzyme in order to rank them based on their binding affinities. Compounds which have better binding affinities than LipB’s known inhibitor, decanoic acid, were subjected to in silico toxicity evaluation using the ADMET and TOPKAT protocols. Out of the 31,692 compounds in the database, 112 of these showed better binding energies than decanoic acid. Furthermore, 12 out of the 112 compounds showed highly promising ADMET and TOPKAT properties. Future studies involving in vitro or in vivo bioassays may be done to further confirm the therapeutic efficacy of these 12 compounds, which eventually may then lead to a novel class of anti-tuberculosis drugs.Keywords: pharmacophore, molecular docking, lipoate protein ligase B (LipB), ADMET, TOPKAT
Procedia PDF Downloads 42417476 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data
Authors: Arnaud Nougues
Abstract:
This paper describes a two-stage methodology derived from internal model control (IMC) for tuning a proportional-integral-derivative (PID) controller for levels or other integrating processes in an industrial environment. Focus is the ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need for time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary proportional-integral (PI) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and the application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation
Procedia PDF Downloads 22217475 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects
Authors: Toufic Abd El-Latif Sadek
Abstract:
The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.Keywords: asphalt, concrete, satellite thermal images, timing
Procedia PDF Downloads 32217474 Stock Price Informativeness and Profit Warnings: Empirical Analysis
Authors: Adel Almasarwah
Abstract:
This study investigates the nature of association between profit warnings and stock price informativeness in the context of Jordan as an emerging country. The analysis is based on the response of stock price synchronicity to profit warnings percentages that have been published in Jordanian firms throughout the period spanning 2005–2016 in the Amman Stock Exchange. The standard of profit warnings indicators have related negatively to stock price synchronicity in Jordanian firms, meaning that firms with a high portion of profit warnings integrate with more firm-specific information into stock price. Robust regression was used rather than OLS as a parametric test to overcome the variances inflation factor (VIF) and heteroscedasticity issues recognised as having occurred during running the OLS regression; this enabled us to obtained stronger results that fall in line with our prediction that higher profit warning encourages firm investors to collect and process more firm-specific information than common market information.Keywords: Profit Warnings, Jordanian Firms, Stock Price Informativeness, Synchronicity
Procedia PDF Downloads 14217473 The Effect of PM10 Dispersion from Industrial, Residential and Commercial Areas in Arid Environment
Authors: Meshari Al-Harbi
Abstract:
A comparative area-season-elemental-wise time series analysis by Dust Track monitor (2012-2013) revealed high PM10 dispersion in the outdoor environment in the sequence of industrial> express highways>residential>open areas. Time series analysis from 7AM-6AM (until next day), 30d (monthly), 3600sec. (for any given period of a month), and 12 months (yearly) showed peak PM10 dispersion during 1AM-7AM, 1d-4d and 25d-31d of every month, 1500-3600 with the exception in PM10 dispersion in residential areas, and in the months-March to June, respectively. This time-bound PM10 dispersion suggests the primary influence of human activities (peak mobility and productivity period for a given time frame) besides the secondary influence of meteorological parameters (high temperature and wind action) and, occasional dust storms. Whereas, gravimetric analysis reveals the influence of precipitation, low temperature and low volatility resulting high trace metals in PM10 during winter than in summer and primarily attributes to the influence of nature besides, the secondary attributes of smoke stack emission from various industries and automobiles. Furthermore, our study recommends residents to limit outdoor air pollution exposures and take precautionary measures to inhale PM10 pollutants from the atmosphere.Keywords: aerosol, pollution, respirable particulates, trace-metals
Procedia PDF Downloads 30617472 Fuzzy Logic Driven PID Controller for PWM Based Buck Converter
Authors: Bandreddy Anand Babu, Mandadi Srinivasa Rao, Chintala Pradeep Reddy
Abstract:
The main theme of this paper is to design fuzzy logic Proportional Integral Derivative controller for controlling of Pulse Width Modulator (PWM) based DCDC buck converter in continuous conduction mode of operation and comparing the results of FPID and ANFIS. Simulation is done to fuzzy the given input variables and membership functions of input values, creating the interference rules linking the input and output variables and after then defuzzfies the output variables. Fuzzy logic is simple for nonlinear models like buck converter. Fuzzy logic based PID controller technique is to control, nonlinear plants like buck converters in switching variables of power electronics. The characteristics of FPID are in terms of rise time, settling time, rise time, steady state errors for different inputs and load disturbances.Keywords: fuzzy logic, PID controller, DC-DC buck converter, pulse width modulation
Procedia PDF Downloads 101317471 Performance Evaluation of Vertical Handover on Silom Line BTS
Authors: Silumpa Suboonsan, Suwat Pattaramalai
Abstract:
In this paper, the performance of internet usage by using Vertical Handover (VHO) between cellular network and wireless local area network (WLAN) on Silom line Bangkok Mass Transit System (BTS) is evaluated. In the evaluation model, there is the WLAN on every BTS station and there are cellular base stations along the BTS path. The maximum data rates for cellular network are 7.2, 14.4, 42, and 100Mbps and for WLAN are 54, 150, and 300Mbps. The simulation are based on users using internet, watching VDOs and browsing web pages, on the BTS train from first station to the last station (full time usage) and on the BTS train for traveling some number of stations (random time). The results shows that VHO system has throughput a lot more than using only cellular network when the data rate of WLAN is more than one of cellular network. Lastly, the number of watching HD VDO and Full HD VDO is higher on VHO system on both regular time and rush hour of BTS travelling.Keywords: vertical handover, WLAN, cellular, silom line BTS
Procedia PDF Downloads 47817470 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges
Authors: Francesco Morgan Bono, Simone Cinquemani
Abstract:
This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.Keywords: structural health monitoring, dynamic models, sindy, railway bridges
Procedia PDF Downloads 3817469 Cognitive Stereotype Behaviors and Their Imprinting on the Individuals with Autism
Authors: Li-Ju Chen, Hsiang-Lin Chan, Hsin-Yi Kathy Cheng, Hui-Ju Chen
Abstract:
Stereotype behavior is one of the maladaptive syndromes of the individuals with autism. Most of the previous researches focused on the stereotype behavior with stimulating type, while less on the stereotype behavior about cognition (This research names it cognitive stereotype behavior; CSB). This research explored CSB and the rationality to explain CSB with imprinting phenomenon. After excluding the samples without CSB described, the data that came from 271 individuals with autism were recruited and analyzed with quantitative and qualitative analyses. This research discovers that : (1) Most of the individuals with autism originally came out CSB at 3 years old and more than a half of them appeared before 4 years old; The average age which firstly came out CSB was 6.10 years old, the average time insisting or ossifying CSB was 31.71 minutes each time and the average longest time which they last was 358.35 minutes (5.97 hours). (2) CSB demonstrates various aspects, this research classified them into 4 fields with 26 categories. They were categorized into sudden CSB or habitual CSB by imprinting performance. (3) Most of the autism commented that their CSBs were not necessary but they could not control them well. One-third of them appeared CSB suddenly and the first occurrence accompanied a strong emotional or behavioral response. (4) Whether respondent is the person with autism himself/herself or not was the critical element: on the awareness of the severity degree, disturbance degree, and the emotional /behavioral intensity at the first-time CSB happened. This study concludes imprinting could reasonably explain the phenomenon CSB forms. There are implications leading the individuals with autism and their family to develop coping strategies to promote individuals with autism having a better learning accomplishment and life quality in their future.Keywords: autism, cognitive stereotype behavior, constructivism, imprinting, stereotype
Procedia PDF Downloads 13017468 “Japan’s New Security Outlook: Implications for the US-Japan Alliance”
Authors: Agustin Maciel-Padilla
Abstract:
This paper explores the most significant change to Japan’s security strategy since the end of World War II, in particular Prime Minister Fumio Kishida’s government publication, in late 2022, of 3 policy documents (the National Security Strategy [NSS], the National Defense Strategy and the Defense Buildup Program) that basically propose to expand the country’s military capabilities and to increase military spending over a 5-year period. These policies represent a remarkable transformation of Japan’s defense-oriented policy followed since 1946. These proposals have been under analysis and debate since they were announced, as it was also Japan’s historic ambition to strengthening its deterrence capabilities in the context of a more complex regional security environment. Even though this new defense posture has attracted significant international attention, it is far from representing a done deal because of the fact that there is still a long way to go to implement this vision because of a wide variety of political and economic issues. Japan is currently experiencing the most dangerous security environment since the end of World War II, and this situation led Japan to intensify its dialogue with the United States to reflect a re-evaluation of deterrence in the face of a rapidly worsening security environment, a changing balance of power in East Asia, and the arrival of a new era of “great power competition”. Japan’s new documents, for instance, identify China and North Korea’s as posing, respectively, a strategic challenge and an imminent threat. Japan has also noted that Russia’s invasion of Ukraine has contributed to erode the foundation of the international order. It is considered that Russia’s aggression was possible because Ukraine’s defense capability was not enough for effective deterrence. Moreover, Japan’s call for “counterstrike capabilities” results from a recognition that China and North Korea’s ballistic and cruise missiles could overwhelm Japan’s air and missile defense systems, and therefore there is an urgent need to strengthen deterrence and resilience. In this context, this paper will focus on the impact of these changes on the US-Japan alliance. Adapting this alliance to Tokyo’s new ambitions and capabilities could be critical in terms of updating their traditional protection/access to bases arrangement, interoperability and joint command and control issues, as well as regarding the security–economy nexus. While China is Japan’s largest trading partner, and trade between the two has been growing, US-Japan economic relationship has been slower, notwithstanding the fact that US-Japan security cooperation has strengthened significantly in recent years.Keywords: us-japan alliance, japan security, great power competition, interoperability
Procedia PDF Downloads 65