Search results for: order picking problem
17123 Linkages between Postponement Strategies and Flexibility in Organizations
Authors: Polycarpe Feussi
Abstract:
Globalization, technological and customer increasing changes, amongst other drivers, result in higher levels of uncertainty and unpredictability for organizations. In order for organizations to cope with the uncertain and fast-changing economic and business environment, these organizations need to innovate in order to achieve flexibility. In simple terms, the organizations must develop strategies leading to the ability of these organizations to provide horizontal information connections across the supply chain to create and deliver products that meet customer needs by synchronization of customer demands with product creation. The generated information will create efficiency and effectiveness throughout the whole supply chain regarding production, storage, and distribution, as well as eliminating redundant activities and reduction in response time. In an integrated supply chain, spanning activities include coordination with distributors and suppliers. This paper explains how through postponement strategies, flexibility can be achieved in an organization. In order to achieve the above, a thorough literature review was conducted via the search of online websites that contains material from scientific journal data-bases, articles, and textbooks on the subject of postponement and flexibility. The findings of the research are found in the last part of the paper. The first part introduces the concept of postponement and its importance in supply chain management. The second part of the paper provides the methodology used in the process of writing the paper.Keywords: postponement strategies, supply chain management, flexibility, logistics
Procedia PDF Downloads 19317122 An Economic Order Quantity Model for Deteriorating Items with Ramp Type Demand, Time Dependent Holding Cost and Price Discount Offered on Backorders
Authors: Arjun Paul, Adrijit Goswami
Abstract:
In our present work, an economic order quantity inventory model with shortages is developed where holding cost is expressed as linearly increasing function of time and demand rate is a ramp type function of time. The items considered in the model are deteriorating in nature so that a small fraction of the items is depleted with the passage of time. In order to consider a more realistic situation, the deterioration rate is assumed to follow a continuous uniform distribution with the parameters involved being triangular fuzzy numbers. The inventory manager offers his customer a discount in case he is willing to backorder his demand when there is a stock-out. The optimum ordering policy and the optimum discount offered for each backorder are determined by minimizing the total cost in a replenishment interval. For better illustration of our proposed model in both the crisp and fuzzy sense and for providing richer insights, a numerical example is cited to exemplify the policy and to analyze the sensitivity of the model parameters.Keywords: fuzzy deterioration rate, price discount on backorder, ramp type demand, shortage, time varying holding cost
Procedia PDF Downloads 19717121 A Legal Opinion on Mitigation and Adaptation on Air Pollution Strategies for Local Governments in South Africa
Authors: Marjone Van Der Bank, C. M. Van Der Bank
Abstract:
This paper presents an overview of the foundation and evolution of environmental related problems in local governments with specific reference on air pollution in South Africa. Local government has a direct mandate in terms of the Constitution of the Republic of South Africa, 1996 (hereafter, the Constitution). This mandate to protect, fulfil, respect and promote the Bill of Rights by local governments in respect of the powers and functions creates confusion around the role of where a local government fits in, in addressing the problem of climate change in South Africa. A reflection of the evolving legislations, developments, and processes regarding climate change that shaped local government dispensation in South Africa is addressed by the notion of developmental local governments. This paper seeks to examine the advances for mitigation and adaptation regulation of air pollution and application in South Africa. This study involves a qualitative approach that will involve South African national legislation as well as an interpretation of international strategies. A literature review study was conducted to undertake the various aspects of law in order to support the argument undertaken of mitigation and adaptation strategies. The paper presents a detailed discussion of the current legislation and the position as it currently stands, as well as the relevant protections as outlined in the National Environmental Management Act and the National Environmental Management: Air Quality Act. It then proceeds to outline the responsibilities of local governments in South Africa to mitigate and adapt to air pollution strategies.Keywords: adaptation, climate change, disaster, local governments and mitigation
Procedia PDF Downloads 14317120 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile
Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali
Abstract:
Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile
Procedia PDF Downloads 45417119 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 14817118 Planning and Urban Climate Change Adaptation: Italian Literature Review
Authors: Mara Balestrieri
Abstract:
Climate change has long been the focus of attention for the growing impact of extreme weather events and global warming in many areas of the planet and the evidence of economic, social, and environmental damage caused by global warming. Nowadays, climate change is recognized as a critical global problem. Several initiatives have been undertaken over time to enhance the long theoretical debate and field experience in order to reduce Co2 emissions and contain climate alteration. However, the awareness that climate change is already taking place has led to a growing demand for adaptation. It is certainly a matter of anticipating the negative effects of climate change but, at the same time, implementing appropriate actions to prevent climate change-related damage, minimize the problems that may result, and also seize any opportunities that may arise. Consequently, adaptation has become a core element of climate policy and research. However, the attention to this issue has not developed in a uniform manner across countries. Some countries are further ahead than others. This paper examines the literature on climate change adaptation developed until 2018 in Italy, considering the urban dimension, to provide a framework for it, and to identify main topics and features. The papers were selected from Scopus and were analyzed through a matrix that we propose. Results demonstrate that adaptation to climate change studies attracted increasing attention from Italian scientific communities in the last years, although Italian scientific production is still quantitatively lower than in other countries and describes strengths and weaknesses in line with international panorama with respect to objectives, sectors, and problems.Keywords: adaptation, bibliometric literature, climate change, urban studies
Procedia PDF Downloads 7417117 Practices of Entomophagy and Entomotherapy in Baranggay Alambijud, Argao and Baranggay Lusaran, Cebu City, Philippines
Authors: Jake Joshua C. Garces, Zandra O. Jarito, Leslie Ann T. Barriga, Froilen C. Domicelo, Nimfa R. Pansit
Abstract:
The study was conducted in order to discover the medicinal and edible potentialities of different insect species in Baranggay Alambijud, Argao and Baranggay Lusaran, Cebu City, Cebu. In order to identify these entomological practices, a survey was carried out by the researchers in these key sites. Fourteen key informants were obtained and these were identified with the aide of two sampling methods- snowball technique and purposive sampling. Open-ended questionnaires were employed in order to obtain authentic and significant information from the key informants. Results portrayed that in the practice of entomotherapy, two insects were used as medicine namely: migratory locust (Locusta migratoria manillensis) and honey bee (Apis dorsata); and two insect by-products were utilized namely: feces of cockroach (Periplaneta Americana) and honey. White grub (Cotinis nitida) and bee eggs were also documented to manifest edible capability and were thus utilized in the entomophagic practices. After applying thematic analysis, it was determined that the causative factors of their entomological practices include their limited educational attainment, their inability to access urban societies and the influence brought about by their family and community.Keywords: entomophagy, entomotherapy, entomology, key informants
Procedia PDF Downloads 33517116 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning
Authors: Zhanna Dedovets
Abstract:
Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.
Procedia PDF Downloads 4617115 Effects of Temperature and the Use of Bacteriocins on Cross-Contamination from Animal Source Food Processing: A Mathematical Model
Authors: Benjamin Castillo, Luis Pastenes, Fernando Cerdova
Abstract:
The contamination of food by microbial agents is a common problem in the industry, especially regarding the elaboration of animal source products. Incorrect manipulation of the machinery or on the raw materials can cause a decrease in production or an epidemiological outbreak due to intoxication. In order to improve food product quality, different methods have been used to reduce or, at least, to slow down the growth of the pathogens, especially deteriorated, infectious or toxigenic bacteria. These methods are usually carried out under low temperatures and short processing time (abiotic agents), along with the application of antibacterial substances, such as bacteriocins (biotic agents). This, in a controlled and efficient way that fulfills the purpose of bacterial control without damaging the final product. Therefore, the objective of the present study is to design a secondary mathematical model that allows the prediction of both the biotic and abiotic factor impact associated with animal source food processing. In order to accomplish this objective, the authors propose a three-dimensional differential equation model, whose components are: bacterial growth, release, production and artificial incorporation of bacteriocins and changes in pH levels of the medium. These three dimensions are constantly being influenced by the temperature of the medium. Secondly, this model adapts to an idealized situation of cross-contamination animal source food processing, with the study agents being both the animal product and the contact surface. Thirdly, the stochastic simulations and the parametric sensibility analysis are compared with referential data. The main results obtained from the analysis and simulations of the mathematical model were to discover that, although bacterial growth can be stopped in lower temperatures, even lower ones are needed to eradicate it. However, this can be not only expensive, but counterproductive as well in terms of the quality of the raw materials and, on the other hand, higher temperatures accelerate bacterial growth. In other aspects, the use and efficiency of bacteriocins are an effective alternative in the short and medium terms. Moreover, an indicator of bacterial growth is a low-level pH, since lots of deteriorating bacteria are lactic acids. Lastly, the processing times are a secondary agent of concern when the rest of the aforementioned agents are under control. Our main conclusion is that when acclimating a mathematical model within the context of the industrial process, it can generate new tools that predict bacterial contamination, the impact of bacterial inhibition, and processing method times. In addition, the mathematical modeling proposed logistic input of broad application, which can be replicated on non-meat food products, other pathogens or even on contamination by crossed contact of allergen foods.Keywords: bacteriocins, cross-contamination, mathematical model, temperature
Procedia PDF Downloads 14417114 Evaluation of the Integration of a Direct Reduction Process into an Existing Steel Mill
Authors: Nils Mueller, Gregor Herz, Erik Reichelt, Matthias Jahn
Abstract:
In the context of climate change, the reduction of greenhouse gas emissions in all economic sectors is considered to be an important factor in order to meet the demands of a sustainable energy system. The steel industry as one of the large industrial CO₂ emitters is currently highly dependent on fossil resources. In order to reduce coke consumption and thereby CO₂ emissions while still being able to further utilize existing blast furnaces, the possibility of including a direct reduction process (DRP) into a fully integrated steel mill was investigated. Therefore, a blast furnace model, derived from literature data and implemented in Aspen Plus, was used to analyze the impact of DRI in the blast furnace process. Furthermore, a state-of-the-art DRP was modeled to investigate the possibility of substituting the reducing agent natural gas with hydrogen. A sensitivity analysis was carried out in order to find the boundary percentage of hydrogen as a reducing agent without penalty to the DRI quality. Lastly, the two modeled process steps were combined to form a route of producing pig iron. By varying boundary conditions of the DRP while recording the CO₂ emissions of the two process steps, the overall potential for the reduction of CO₂ emissions was estimated. Within the simulated range, a maximum reduction of CO₂ emissions of 23.5% relative to typical emissions of a blast furnace could be determined.Keywords: blast furnace, CO₂ mitigation, DRI, hydrogen
Procedia PDF Downloads 28417113 On the convergence of the Mixed Integer Randomized Pattern Search Algorithm
Authors: Ebert Brea
Abstract:
We propose a novel direct search algorithm for identifying at least a local minimum of mixed integer nonlinear unconstrained optimization problems. The Mixed Integer Randomized Pattern Search Algorithm (MIRPSA), so-called by the author, is based on a randomized pattern search, which is modified by the MIRPSA for finding at least a local minimum of our problem. The MIRPSA has two main operations over the randomized pattern search: moving operation and shrinking operation. Each operation is carried out by the algorithm when a set of conditions is held. The convergence properties of the MIRPSA is analyzed using a Markov chain approach, which is represented by an infinite countable set of state space λ, where each state d(q) is defined by a measure of the qth randomized pattern search Hq, for all q in N. According to the algorithm, when a moving operation is carried out on the qth randomized pattern search Hq, the MIRPSA holds its state. Meanwhile, if the MIRPSA carries out a shrinking operation over the qth randomized pattern search Hq, the algorithm will visit the next state, this is, a shrinking operation at the qth state causes a changing of the qth state into (q+1)th state. It is worthwhile pointing out that the MIRPSA never goes back to any visited states because the MIRPSA only visits any qth by shrinking operations. In this article, we describe the MIRPSA for mixed integer nonlinear unconstrained optimization problems for doing a deep study of its convergence properties using Markov chain viewpoint. We herein include a low dimension case for showing more details of the MIRPSA, when the algorithm is used for identifying the minimum of a mixed integer quadratic function. Besides, numerical examples are also shown in order to measure the performance of the MIRPSA.Keywords: direct search, mixed integer optimization, random search, convergence, Markov chain
Procedia PDF Downloads 47017112 An Agile, Intelligent and Scalable Framework for Global Software Development
Authors: Raja Asad Zaheer, Aisha Tanveer, Hafza Mehreen Fatima
Abstract:
Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.Keywords: agile project management, agile tools/techniques, distributed teams, global software development
Procedia PDF Downloads 31417111 Liquid Tin(II) Alkoxide Initiators for Use in the Ring-Opening Polymerisation of Cyclic Ester Monomers
Authors: Sujitra Ruengdechawiwat, Robert Molloy, Jintana Siripitayananon, Runglawan Somsunan, Paul D. Topham, Brian J. Tighe
Abstract:
The main aim of this research has been to design and synthesize some completely soluble liquid tin(II) alkoxide initiators for use in the ring-opening polymerisation (ROP) of cyclic ester monomers. This is in contrast to conventional tin(II) alkoxides in solid form which tend to be molecular aggregates and difficult to dissolve. The liquid initiators prepared were bis(tin(II) monooctoate) diethylene glycol ([Sn(Oct)]2DEG) and bis(tin(II) monooctoate) ethylene glycol ([Sn(Oct)]2EG). Their efficiencies as initiators in the bulk ROP of ε-caprolactone (CL) at 130oC were studied kinetically by dilatometry. Kinetic data over the 20-70% conversion range was used to construct both first-order and zero-order rate plots. It was found that the rate data fitted more closely to first-order kinetics with respect to the monomer concentration and gave higher first-order rate constants than the corresponding tin(II) octoate/diol initiating systems normally used to generate the tin(II) alkoxide in situ. Since the ultimate objective of this work is to produce copolymers suitable for biomedical use as absorbable monofilament surgical sutures, poly(L-lactide-co-ε-caprolactone) 75:25 mol %, P(LL-co-CL), copolymers were synthesized using both solid and liquid tin(II) alkoxide initiators at 130°C for 48 hrs. The statistical copolymers were obtained in near-quantitative yields with compositions (from 1H-NMR) close to the initial comonomer feed ratios. The monomer sequencing (from 13C-NMR) was partly random and partly blocky (gradient-type) due to the much differing monomer reactivity ratios (rLL >> rCL). From GPC, the copolymers obtained using the soluble liquid tin(II) alkoxides were found to have higher molecular weights (Mn = 40,000-100,000) than those from the only partially soluble solid initiators (Mn = 30,000-52,000).Keywords: biodegradable polyesters, poly(L-lactide-co-ε-caprolactone), ring-opening polymerisation, tin(II) alkoxide
Procedia PDF Downloads 19417110 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network
Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.Keywords: anti-splash device, P/V valve, sloshing, artificial neural network
Procedia PDF Downloads 59017109 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm
Authors: Kristian Bautista, Ruben A. Idoy
Abstract:
A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization
Procedia PDF Downloads 23017108 A Comparative Analysis of Heuristics Applied to Collecting Used Lubricant Oils Generated in the City of Pereira, Colombia
Authors: Diana Fajardo, Sebastián Ortiz, Oscar Herrera, Angélica Santis
Abstract:
Currently, in Colombia is arising a problem related to collecting used lubricant oils which are generated by the increment of the vehicle fleet. This situation does not allow a proper disposal of this type of waste, which in turn results in a negative impact on the environment. Therefore, through the comparative analysis of various heuristics, the best solution to the VRP (Vehicle Routing Problem) was selected by comparing costs and times for the collection of used lubricant oils in the city of Pereira, Colombia; since there is no presence of management companies engaged in the direct administration of the collection of this pollutant. To achieve this aim, six proposals of through methods of solution of two phases were discussed. First, the assignment of the group of generator points of the residue was made (previously identified). Proposals one and four of through methods are based on the closeness of points. The proposals two and five are using the scanning method and the proposals three and six are considering the restriction of the capacity of collection vehicle. Subsequently, the routes were developed - in the first three proposals by the Clarke and Wright's savings algorithm and in the following proposals by the Traveling Salesman optimization mathematical model. After applying techniques, a comparative analysis of the results was performed and it was determined which of the proposals presented the most optimal values in terms of the distance, cost and travel time.Keywords: Heuristics, optimization Model, savings algorithm, used vehicular oil, V.R.P.
Procedia PDF Downloads 41417107 Application of Applied Behavior Analysis Treatment to Children with Down Syndrome
Authors: Olha Yarova
Abstract:
This study is a collaborative project between the American University of Central Asia and parent association of children with Down syndrome ‘Sunterra’ that took place in Bishkek, Kyrgyzstan. The purpose of the study was to explore whether principles and techniques of applied behavior analysis (ABA) could be used to teach children with Down syndrome socially significant behaviors. ABA is considered to be one of the most effective treatment for children with autism, but little research is done on the particularity of using ABA to children with Down syndrome. The data for the study was received during clinical observations; work with children with Down syndrome and interviews with their mothers. The results show that many ABA principles make the work with children with Down syndrome more effective. Although such children very rarely demonstrate aggressive behavior, they show a lot of escape-driven and attention seeking behaviors that are reinforced by their parents and educators. Thus functional assessment can be done to assess the function of problem behavior and to determine appropriate treatment. Prompting and prompting fading should be used to develop receptive and expressive language skills, and enhance motor development. Even though many children with Down syndrome work for praise, it is still relevant to use tangible reinforcement and to know how to remove them. Based on the results of the study, the training for parents of children with Down syndrome will be developed in Kyrgyzstan, country, where children with Down syndrome are not accepted to regular kindergartens and where doctors in maternity hospitals tell parents that their child will never talk, walk and recognize themKeywords: down syndrome, applied behavior analysis, functional assessment, problem behavior, reinforcement
Procedia PDF Downloads 27517106 Conception of a Regulated, Dynamic and Intelligent Sewerage in Ostrevent
Authors: Rabaa Tlili Yaakoubi, Hind Nakouri, Olivier Blanpain
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of the CARDIO project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 40 to 100%. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 60% of total volume rejected to the natural environment and of 80 % in the number of discharges.Keywords: RTC, paradigm, optimization, automation
Procedia PDF Downloads 28417105 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact by Using Particle Method
Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh
Abstract:
The slamming impact problem has a very important engineering background. For seaplane landing, recycling for the satellite re-entry capsule, and the impact load of the bow in the adverse sea conditions, the slamming problem always plays the important role. Due to its strong nonlinear effect, however, it seems to be not easy to obtain the accurate simulation results. Combined with the strong interaction between the fluid field and the elastic structure, the difficulty for the simulation leads to a new level for challenging. This paper presents a fully Lagrangian coupled solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with two different materials such as aluminum and steel on water entry. The present simulation results are compared with analytical solution derived using the hydrodynamic Wagner model and linear theory by Wan.Keywords: fluid-structure interaction, moving particle semi-implicit (MPS) method, elastic structure, incompressible flow, wedge slamming impact
Procedia PDF Downloads 60217104 Mixed Method Analysis to Propose a Policy Action against Racism and Xenophobia in India
Authors: Anwesha Das
Abstract:
There are numerous cases of racism and discriminatory practices in India against the northeast citizens and the African migrants. The right-wing extremism of the presently ruling political party in India has resulted in increased cases of xenophobia and Afrophobia. The rigid Indian caste system contributes to such practices of racism. The establishment of the ‘Hindu race’ by the present right-wing government, leading to instilling pride among Hindus being of a superior race, has resulted in more atrocious racist practices. This paper argues that policy action is required against racist, discriminatory practices. Policy actors in India do not ask the right questions and fail to give the needed redirection. It critically analyses Acts 14 and 15 of the Indian constitution in order to examine the cause of a policy action. In proposing the need for policy action, this paper places its arguments as a vital extension of the existing scholarship on public policy studies in India. It uses mixed-method analysis to examine the factors responsible for the policy problem and aims to suggest specific points of intervention in a policy progression. The study finds that despite anti-discriminatory policies in the mentioned Acts of the Indian constitution, there are rampant cases of racism owing to religious and cultural factors. The major findings of the study show how the present right-wing government violated the constitution in aggravating xenophobia. This paper proposes a policy action required to stop such further practices.Keywords: India, migrants, policy action, racism, xenophobia
Procedia PDF Downloads 4717103 PointNetLK-OBB: A Point Cloud Registration Algorithm with High Accuracy
Authors: Wenhao Lan, Ning Li, Qiang Tong
Abstract:
To improve the registration accuracy of a source point cloud and template point cloud when the initial relative deflection angle is too large, a PointNetLK algorithm combined with an oriented bounding box (PointNetLK-OBB) is proposed. In this algorithm, the OBB of a 3D point cloud is used to represent the macro feature of source and template point clouds. Under the guidance of the iterative closest point algorithm, the OBB of the source and template point clouds is aligned, and a mirror symmetry effect is produced between them. According to the fitting degree of the source and template point clouds, the mirror symmetry plane is detected, and the optimal rotation and translation of the source point cloud is obtained to complete the 3D point cloud registration task. To verify the effectiveness of the proposed algorithm, a comparative experiment was performed using the publicly available ModelNet40 dataset. The experimental results demonstrate that, compared with PointNetLK, PointNetLK-OBB improves the registration accuracy of the source and template point clouds when the initial relative deflection angle is too large, and the sensitivity of the initial relative position between the source point cloud and template point cloud is reduced. The primary contribution of this paper is the use of PointNetLK to avoid the non-convex problem of traditional point cloud registration and leveraging the regularity of the OBB to avoid the local optimization problem in the PointNetLK context.Keywords: mirror symmetry, oriented bounding box, point cloud registration, PointNetLK-OBB
Procedia PDF Downloads 15017102 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production
Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne
Abstract:
— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling
Procedia PDF Downloads 18817101 Difficulties in Pronouncing the English Bilabial Plosive Sounds among EFL Students
Authors: Ali Mohammed Saleh Al-Hamzi
Abstract:
This study aims at finding out the most difficult position in pronouncing the bilabial plosive sounds at the fourth level of English foreign language students of the Faculty of Education, Mahweet, Sana’a University in Yemen. The subject of this study were 50 participants from English foreign language students aged 22-25. In describing sounds according to their place of articulation, sounds are classified as bilabial, labiodental, dental, alveolar, post-alveolar, palato-alveolar retroflex, palatal, velar, uvular, and glottal. In much the same way, sounds can be described in their manner of articulation as plosives, nasals, affricates, flaps, taps, rolls, fricatives, laterals, frictionless continuants, and semi-vowels. For English foreign language students in Yemen, there are some articulators that are difficult to pronounce. In this study, the researcher focuses on difficulties in pronouncing the English bilabial plosive sounds among English foreign language students. It can be in the initial, medial, and final positions. The problem discussed in this study was: which position is the most difficult in pronouncing the English bilabial plosive sounds? To solve the problem, a descriptive qualitative method was conducted in this study. The data were collected from each English bilabial plosive sounds produced by students. Finally, the researcher reached that the most difficult position in pronouncing the English bilabial plosive sounds is when English bilabial plosive /p/ and /b/ occur word-finally, where both are voiceless.Keywords: difficulty, EFL students’ pronunciation, bilabial sounds, plosive sounds
Procedia PDF Downloads 14617100 Impact of Emotional Intelligence and Cognitive Intelligence on Radio Presenter's Performance in All India Radio, Kolkata, India
Authors: Soumya Dutta
Abstract:
This research paper aims at investigating the impact of emotional intelligence and cognitive intelligence on radio presenter’s performance in the All India Radio, Kolkata (India’s public service broadcaster). The ancient concept of productivity is the ratio of what is produced to what is required to produce it. But, father of modern management Peter F. Drucker (1909-2005) defined productivity of knowledge work and knowledge workers in a new form. In the other hand, the concept of Emotional Intelligence (EI) originated back in 1920’s when Thorndike (1920) for the first time proposed the emotional intelligence into three dimensions, i.e., abstract intelligence, mechanical intelligence, and social intelligence. The contribution of Salovey and Mayer (1990) is substantive, as they proposed a model for emotional intelligence by defining EI as part of the social intelligence, which takes measures the ability of an individual to regulate his/her personal and other’s emotions and feeling. Cognitive intelligence illustrates the specialization of general intelligence in the domain of cognition in ways that possess experience and learning about cognitive processes such as memory. The outcomes of past research on emotional intelligence show that emotional intelligence has a positive effect on social- mental factors of human resource; positive effects of emotional intelligence on leaders and followers in terms of performance, results, work, satisfaction; emotional intelligence has a positive and significant relationship with the teachers' job performance. In this paper, we made a conceptual framework based on theories of emotional intelligence proposed by Salovey and Mayer (1989-1990) and a compensatory model of emotional intelligence, cognitive intelligence, and job performance proposed by Stephen Cote and Christopher T. H. Miners (2006). For investigating the impact of emotional intelligence and cognitive intelligence on radio presenter’s performance, sample size consists 59 radio presenters (considering gender, academic qualification, instructional mood, age group, etc.) from All India Radio, Kolkata station. Questionnaires prepared based on cognitive (henceforth called C based and represented by C1, C2,.., C5) as well as emotional intelligence (henceforth called E based and represented by E1, E2,., E20). These were sent to around 59 respondents (Presenters) for getting their responses. Performance score was collected from the report of program executive of All India Radio, Kolkata. The linear regression has been carried out using all the E-based and C-based variables as the predictor variables. The possible problem of autocorrelation has been tested by having the Durbinson-Watson (DW) Statistic. Values of this statistic, almost within the range of 1.80-2.20, indicate the absence of any significant problem of autocorrelation. The possible problem of multicollinearity has been tested by having the Variable Inflation Factor (VIF) value. Values of this statistic, around within 2, indicates the absence of any significant problem of multicollinearity. It is inferred that the performance scores can be statistically regressed linearly on the E-based and C-based scores, which can explain 74.50% of the variations in the performance.Keywords: cognitive intelligence, emotional intelligence, performance, productivity
Procedia PDF Downloads 16317099 Modified Newton's Iterative Method for Solving System of Nonlinear Equations in Two Variables
Authors: Sara Mahesar, Saleem M. Chandio, Hira Soomro
Abstract:
Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method.Keywords: conventional Newton’s method, modified Newton’s method, order of convergence, system of nonlinear equations
Procedia PDF Downloads 25717098 Thermal Ageing Effect on Mechanical Behavior of Polycarbonate
Authors: H. Babou, S. Ridjla, B. Amerate, R. Ferhoum, M. Aberkane
Abstract:
This work is devoted to the experimental study of thermal ageing effect on the mechanical and micro structural behavior of polycarbonate (PC). A simple compression tests, micro hardness and an IRTF analysis were completed in order to characterize the response of material on specimens after ageing at a temperature of order 100 C° and for serval maintain duration 72, 144 and 216 hours. These investigations showed a decrease of the intrinsic properties of polycarbonate (Young modulus, yield stress, etc.); the superposition of spectra IRTF shows that the intensity of chemical connections C=C, C-O, CH3 and C-H are influenced by the duration of thermal ageing; in addition, an increase of 30 % of micro hardness was detected after 216 hour of ageing.Keywords: amorphous polymer, polycarbonate, mechanical behavior, compression test, thermal ageing
Procedia PDF Downloads 40917097 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena
Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho
Abstract:
To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics
Procedia PDF Downloads 48517096 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions
Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong
Abstract:
A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition
Procedia PDF Downloads 15317095 Household Socioeconomic Factors Associated with Teenage Pregnancies in Kigali City, Rwanda
Authors: Dieudonne Uwizeye, Reuben Muhayiteto
Abstract:
Teenage pregnancy is a challenging problem for sustainable development due to restrictions it poses to socioeconomic opportunities for young mothers, their children and families. Being unable to take appropriate economic and social responsibilities, teen mothers get trapped into poverty and become economic burden to their family and country. Besides, teenage pregnancy is also a health problem because children born to very young mothers are vulnerable with greater risk of illnesses and deaths, and teenage mothers are more likely to be exposed to greater risk of maternal mortality and to other health and psychological problems. In Kigali city, in Rwanda, teenage pregnancy rate is currently high and its increase in recent years is worrisome. However, only individual factors influencing the teenage pregnancy tend to be the basis of interventions. It is important to understand the important socioeconomic factors at the household level that are associated with teenage pregnancy to help government, parents, and other stakeholders to appropriately address the problem with sustainable measures. This study analyzed secondary data from the Fifth Rwanda Demographic and Health Survey (RDHS-V 2014-2015) conducted by the National Institute of Statistics of Rwanda (NISR). The aim was to examine household socio-economic factors that are associated with incidence of teenage pregnancies in Kigali city. In addition to descriptive analysis, Pearson’s Chi Square and Binary Logistic Regression were used in the analysis. Findings indicate that marital status and age of household head, number of members in a household, number of rooms used for sleeping, educational level of the household head and household's wealth are significantly associated with teenage pregnancy in Rwanda ( p< 0.05). It was found that teenagers living with parents, those having parents with higher education and those from richer families are less likely to become pregnant. Age of household head was pinpointed as factor to teenage pregnancy, with teenage-headed households being more vulnerable. The findings also revealed that household composition correlates with the probability of teenage pregnancy (p < 0.05) with teenagers from households with less number of members being more vulnerable. Regarding the size of the house, the study suggested that the more rooms available in households, the less incidences of teenage pregnancy are likely to be observed (p < 0.05). However, teenage pregnancy was not significantly associated with physical violence among parents (p = 0.65) and sex of household heads (p = 0.52), except in teen-headed households of which female are predominantly heads. The study concludes that teenage pregnancy remains a serious social, economic and health problem in Rwanda. The study informs government officials, parents and other stakeholders to take interventions and preventive measures through community sex education, policies and strategies to foster effective parental guidance, care and control of young girls through meeting their necessary social and financial needs within households.Keywords: household socio-economic factors, Rwanda, Rwanda demographic and health survey, teenage pregnancy
Procedia PDF Downloads 17917094 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — in the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to realworld data.Keywords: rule induction, decision table, missing data, noise
Procedia PDF Downloads 396