Search results for: waste egg shell
906 A Thermodynamic Study of Parameters that Affect the Nitration of Glycerol with Nitric Acid
Authors: Erna Astuti, Supranto, Rochmadi, Agus Prasetya
Abstract:
Biodiesel production from vegetable oil will produce glycerol as by-product about 10% of the biodiesel production. The amount of glycerol that was produced needed alternative way to handling immediately so as to not become the waste that polluted environment. One of the solutions was to process glycerol to polyglycidyl nitrate (PGN). PGN is synthesized from glycerol by three-step reactions i.e. nitration of glycerol, cyclization of 13- dinitroglycerine and polymerization of glycosyl nitrate. Optimum condition of nitration of glycerol with nitric acid has not been known. Thermodynamic feasibility should be done before run experiments in the laboratory. The aim of this study was to determine the parameters those affect nitration of glycerol and nitric acid and chose the operation condition. Many parameters were simulated to verify its possibility to experiment under conditions which would get the highest conversion of 1, 3-dinitroglycerine and which was the ideal condition to get it. The parameters that need to be studied to obtain the highest conversion of 1, 3-dinitroglycerine were mol ratio of nitric acid/glycerol, reaction temperature, mol ratio of glycerol/dichloromethane and pressure. The highest conversion was obtained in the range of mol ratio of nitric acid /glycerol between 2/1 – 5/1, reaction temperature of 5-25o C and pressure of 1 atm. The parameters that need to be studied further to obtain the highest conversion of 1.3 DNG are mol ratio of nitric acid/glycerol and reaction temperature.Keywords: Nitration, glycerol, thermodynamic, optimum condition
Procedia PDF Downloads 316905 Hydroxyapatite from Biowaste for the Reinforcement of Polymer
Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam
Abstract:
Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.Keywords: biomaterial, biopolymer, bone, hydroxyapatite
Procedia PDF Downloads 321904 Cultivation And Production of Insects, Especially Mealworms (Mealworms) and Investigating Its Potential as Food for Animals and Even Humans
Authors: Marzieh Eshaghi Koupaei
Abstract:
By cultivating mealworm, we reduce greenhouse gases and avoid the use of transgenic products such as soybeans, and we provide food resources rich in protein, amino acids, minerals, etc. for humans and animals, and it has created employment and entrepreneurship. We serve the environment by producing oil from mealworm in the cosmetic industry, using its waste as organic fertilizer and its powder in bodybuilding, and by breaking down plastic by mealworm. The production and breeding of mealworm requires very little infrastructure and does not require much trouble, and requires very little food, and reproduces easily and quickly, and a mealworm production workshop is noiseless, odorless, and pollution-free And the costs are very low. It is possible to use third grade fruits and unsalable fruits of farmers to feed the mealworms, which is completely economical and cost-effective. Mealworms can break down plastic in their intestines and turn it into carbon dioxide. . This process was done in only 16 days, which is a very short time compared to several centuries for plastic to decompose. By producing mealworm, we have helped to preserve the environment and provided the source of protein needed by humans and animals. This industrial insect has the ability and value of commercialization and creates employment and helps the economy of the society.Keywords: breeding, production of insects, mealworms, research, animal feed, human feed
Procedia PDF Downloads 49903 Rational Approach to Analysis and Construction of Curved Composite Box Girders in Bridges
Authors: Dongming Feng, Fangyin Zhang, Liling Cao
Abstract:
Horizontally curved steel-concrete composite box girders are extensively used in highway bridges. They consist of reinforced concrete deck on top of prefabricated steel box section beam which exhibits a high torsional rigidity to resist torsional effects induced by the curved structural geometry. This type of structural system is often constructed in two stages. The composite section will take the tension mainly by the steel box and, the compression by the concrete deck. The steel girders are delivered in large pre-fabricated U-shaped sections that are designed for ease of construction. They are then erected on site and overlaid by cast-in-place reinforced concrete deck. The functionality of the composite section is not achieved until the closed section is formed by fully cured concrete. Since this kind of composite section is built in two stages, the erection of the open steel box presents some challenges to contractors. When the reinforced concrete slab is cast-in-place, special care should be taken on bracings that can prevent the open U-shaped steel box from global and local buckling. In the case of multiple steel boxes, the design detailing should pay enough attention to the installation requirement of the bracings connecting adjacent steel boxes to prevent the global buckling. The slope in transverse direction and grade in longitudinal direction will result in some local deformation of the steel boxes that affect the connection of the bracings. During the design phase, it is common for engineers to model the curved composite box girder using one-dimensional beam elements. This is adequate to analyze the global behavior, however, it is unable to capture the local deformation which affects the installation of the field bracing connection. The presence of the local deformation may become a critical component to control the construction tolerance, and overlooking this deformation will produce inadequate structural details that eventually cause misalignment in field and erection failure. This paper will briefly describe the construction issues we encountered in real structures, investigate the difference between beam element modeling and shell/solid element modeling, and their impact on the different construction stages. P-delta effect due to the slope and curvature of the composite box girder is analyzed, and the secondary deformation is compared to the first-order response and evaluated for its impact on installation of lateral bracings. The paper will discuss the rational approach to prepare construction documents and recommendations are made on the communications between engineers, erectors, and fabricators to smooth out construction process.Keywords: buckling, curved composite box girder, stage construction, structural detailing
Procedia PDF Downloads 122902 Evaluation of the Costs and Benefits of Mumbai Sewage Disposal Project, India
Authors: Indrani Gupta, Leena Vachasiddha, Rakesh Kumar
Abstract:
Municipal Corporation of Greater Mumbai intends to undertake Mumbai Sewage Disposal (MSDP) for improvement of environment in and around Mumbai city. Sewage generated from the city currently gets partly into the inadequate collection system for treatment and the rest into nearby marine water body through drains. This paper addresses the cost benefit analysis of MSDP works for better compliance of sewage treatment and disposal. Cost benefit analysis indicates that the investment in sewage treatment is economically beneficial and will provide immense social, environmental, health and economic benefits. Monetary values of positive benefits such as avoided health costs, enhanced fish catches and improved tourism have been quantified. The total capital cost of the project is estimated to be about INR 51,510 million and operation and maintenance cost is about INR 2240.6 million per year. The cost benefit analysis indicates that a benefit of about 25,882 million per year can be achieved due to the implementation of this project. Other than these benefits, better marine ecosystem quality; higher property cost; improved recreational opportunities were not included because of lack of information.Keywords: waste water treatment, cost-benefit analysis, health, tourism, fisheries
Procedia PDF Downloads 333901 Hydroclean Smartbin Solution for Plastic Pollution Crisis
Authors: Anish Bhargava
Abstract:
By 2050, there will be more plastic than fish in our oceans. 51 trillion micro-plastics pollute our waters and contaminate the food on our plates, increasing the risk of tumours and diseases such as cancer. Our product is a solution to the ever-growing problem of plastic pollution. We call it the SmartBin. The SmartBin is a cylindrical device which will float just below the surface of the water, able to move with the aid of 4 water thrusters situated on the sides. As it floats, our SmartBin will suck water into itself and pump it out through the bottom. All waste is collected into a reusable filter including microplastics measuring down to 1.5mm. A speaker emitting sound at a frequency of 9 hertz ensures marine life stays away from the SmartBin. Featured along with our product is a smartphone app which will enable the user to designate an area for the SmartBin to cover on a satellite image. The SmartBin will then return to its start position near the shore, configured through the app. As global pressure to tackle water pollution continues to increase, environmental spending increases too. As our product provides an effective solution to this issue, we can seize the opportunity and scale our company. Our product is unparalleled. It can move at a high speed, covering a wide area rather than being restricted to one position. We target not only oceans and sea-shores, but also rivers, lakes, reservoirs and canals, as they are much easier to access and control.Keywords: water, plastic, pollution, solution, hydroclean, smartbin, cleanup
Procedia PDF Downloads 206900 Investigation on the Fire Resistance of Ultra-High Performance Concrete with Natural Fibers
Authors: Dong Zhang, Kang Hai Tan, Aravind Dasari
Abstract:
Increasing concern on environmental sustainability and waste management has driven the construction and building sector towards renewable materials. In this work, we have explored the usage of natural fibers as an alternative to synthetic fibers like polypropylene (PP) in ultra-high performance concrete (UHPC). PP fibers are incorporated into concrete to resist explosive thermal spalling of UHPC during a fire exposure scenario. Experimental studies on the effect of natural fiber on the mechanical properties and spalling resistance of UHCP were conducted. The residual mechanical properties of UHPC with natural fibers were tested after heating to different temperatures. Spalling behavior of UHPC with natural fibers is also assessed by heating the samples according to ISO 834 fire curve. A range of analytical, physical and microscopic characterization techniques was also used on the concrete samples before and after being subjected to elevated temperature to investigate the phase and microstructural change of the sample. The findings show that natural fibers are able to improve fire resistance of UHPC. Adding natural fibers can prevent UHPC from spalling at high temperature. This study provides an alternative, which is at low cost and environmentally friendly, to prevent spalling of UHPC.Keywords: high temperature, natural fiber, spalling, ultra-high performance concrete
Procedia PDF Downloads 177899 Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia
Authors: Yetti Marlida, Syukri Arif, Nadirman Haska
Abstract:
Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013Keywords: oil palm trunk, enzymatic hydrolysis, saccharification
Procedia PDF Downloads 514898 The Utilisation of Two Types of Fly Ashes Used as Cement Replacement in Soft Soil Stabilisation
Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffill
Abstract:
This study represents the results of an experimental work using two types of fly ashes as a cement replacement in soft soil stabilisation. The fly ashes (FA1 and FA2) used in this study are by-products resulting from an incineration processes between 800 and 1200 ˚C. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were initially conducted on soil treated with different percentages of FA1 (0, 3, 6, 9, 12, and 15%) to identify the optimum FA1 content. Then FA1 was chemically activated by FA2 which has high alkalinity by blending the optimum content of FA1 with different portions of FA2. The improvement levels were evaluated dependent on the results obtained from consistency limits and compaction tests along with the results of unconfined compressive strength (UCS) tests which were conducted on specimens of soil treated with FA1 and FA2 and exposed to different periods of curing (zero, 7, 14, and 28 days). The results indicated that the FA1 and FA2 used in this study effectively improved the physical and geotechnical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.17 with 12% of FA1; however, there was a slight increase in IP with the use of FA2. Meanwhile, 12% of FA1 was identified as the optimum percentage improving the UCS of stabilised soil significantly. Furthermore, FA2 was found effective as a chemical activator to FA1 where the UCS was improved significantly after using FA2.Keywords: fly ashes, soft soil stabilisation, waste materials, unconfined compressive strength
Procedia PDF Downloads 235897 Effect of Temperature on the Water Retention Capacity of Liner Materials
Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla
Abstract:
Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.Keywords: soil water retention curve, sand-expansive clay liner, suction, temperature
Procedia PDF Downloads 139896 Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat
Authors: M. Venegas, M. De Vega, N. García-Hernando
Abstract:
Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers.Keywords: adiabatic absorption, air-cooled, membrane, solar thermal energy
Procedia PDF Downloads 285895 Improving the Strength Characteristics of Soil Using Cotton Fibers
Authors: Bindhu Lal, Karnika Kochal
Abstract:
Clayey soil contains clay minerals with traces of metal oxides and organic matter, which exhibits properties like low drainage, high plasticity, and shrinkage. To overcome these issues, various soil reinforcement techniques are used to elevate the stiffness, water tightness, and bearing capacity of the soil. Such techniques include cementation, bituminization, freezing, fiber inclusion, geo-synthetics, nailing, etc. Reinforcement of soil with fibers has been a cost-effective solution to soil improvement problems. An experimental study was undertaken involving the inclusion of cotton waste fibers in clayey soil as reinforcement with different fiber contents (1%, 1.5%, 2%, and 2.5% by weight) and analyzing its effects on the unconfined compressive strength of the soil. Two categories of soil were taken, comprising of natural clay and clay mixed with 5% sodium bentonite by weight. The soil specimens were subjected to proctor compaction and unconfined compression tests. The validated outcome shows that fiber inclusion has a strikingly positive impact on the compressive strength and axial strain at failure of the soil. Based on the commendatory results procured, compressive strength was found to be directly proportional to the fiber content, with the effect being more pronounced at lower water content.Keywords: bentonite clay, clay, cotton fibers, unconfined compressive strength
Procedia PDF Downloads 179894 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment
Authors: J. Bolobajev, M. Trapido, A. Goi
Abstract:
The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant
Procedia PDF Downloads 294893 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment
Authors: Beena Sethi
Abstract:
This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.Keywords: degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis
Procedia PDF Downloads 422892 Biodiesel Production from Animal Fat Using Trans-Esterification Process with Zeolite as a Solid Catalyst to Improve the Efficiency of Production
Authors: Dinda A. Utami, Muhammad N. Alfarizi
Abstract:
The purpose of this study was to determine the ability of zeolite catalyst for the trans- esterification reaction in biodiesel production from animal fat. The ability of the zeolite as a catalyst is determined by the structure and composition of the zeolite. An important factor that determines the properties of zeolites in catalysis includes adsorption capability to the compound of the reactants. Zeolites with a pore size of specific properties selectively adsorbing molecules. A molecule can be adsorbed by either the zeolite cavities if the size and shape of the molecule in accordance with the size and shape of the cavity in the zeolite. At this time, it is common to use homogeneous catalysts for biodiesel. We know these catalysts have some disadvantages in its use. Such as the difficulty of separation of the product with the catalyst, the generation of waste that is harmful to the environment due to residual catalysts can’t be reused, and the difficulty of handling and storage. But nowadays, solid catalyst developed technically to improve the efficiency of biodiesel production. In this case of study, we used trans-esterification process wherein the triglyceride is reacted with an alcohol with zeolite as a solid catalyst and it will produce biodiesel and glycerol as a byproduct. Development of solid catalyst seems to be the perfect solution to address the problems associated with homogeneous catalysts.Keywords: biodiesel, animal fat, trans esterification, zeolite catalyst
Procedia PDF Downloads 262891 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 301890 Traffic Congestions Modeling and Predictions by Social Networks
Authors: Bojan Najdenov, Danco Davcev
Abstract:
Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android
Procedia PDF Downloads 482889 A Review on Nuclear Desalination Technology
Authors: Aiswarya C. L, Swatantra Pratap Singh
Abstract:
In recent years, most desalination plants have been powered by fossil fuels, and to a lesser extent, by green energy. Greenhouse gases emitted by fossil-fuelled plants significantly impact the global climate. So scientists are forced to develop a powerful energy source to protect the environment with greater sustainability due to climate change issues. Nuclear energy can supply much more fresh water than what is currently available. Furthermore, it is more affordable and does not emit any greenhouse gases. This review compares conventional desalination plants with nuclear-powered desalination plants in terms of cost, energy consumption, water recovery, and environmental issues. On the basis of the review conducted, nuclear desalination has been demonstrated to be technically feasible and economically competitive with a variety of fossil fuels, renewable energy sources, and waste heat sources. Nuclear sources have been criticized due to their lack of safety. But studies show, if we were able to handle the issue with care, the problems could be eliminated. Here we're looking at the Seawater Reverse Osmosis Plant (SWROP) at Kudankulam Nuclear Power Plant in Tamil Nadu, India and review the further possibility of implementing nuclear desalination technology in other states of India.Keywords: energy consumption, environmental impacts, nuclear desalination, water recovery
Procedia PDF Downloads 211888 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in Hong Kong Construction Industry
Authors: Kwok Tak Kit
Abstract:
The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2ᵒC above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.Keywords: sustainability, sustainable engineering, BIM, LEED
Procedia PDF Downloads 150887 Reuse of Wastewater from the Treated Water Pre-treatment Plant for Agricultural Purposes
Authors: Aicha Assal, El Mostapha Lotfi
Abstract:
According to data from the Directorate General of Meteorology (DGM), the average amount of precipitation recorded nationwide between September 1, 2021, and January 31, 2022, is 38.8 millimeters. This is well below the climatological normal of 106.8 millimeters for the same period between 1981 and 2010. This situation is becoming increasingly worrying, particularly for farmers who are finding it difficult to irrigate their land and feed their livestock. Drought is greatly influenced by the effects of climate change, mainly caused by pollution and greenhouse gases (GHGs). The aim of this work is to contribute to the purification of wastewater (considered as polluting) in order to reuse it for irrigation in agricultural areas or for livestock watering. This will be achieved once physico-chemical treatment tests on these waters have been carried out and validated. The main parameters analyzed in this study, after carrying out discoloration tests on domestic wastewater, include COD (chemical oxygen demand), BOD5 (biochemical oxygen demand), pH, conductivity, dissolved oxygen, suspended solids (SS), phosphate, nitrate, nitrite and ammonium ions, faecal and total coliforms, as well as monitoring heavy metal concentrations. This work is also aimed at reclaiming the sludge produced by the decantation process, which will enable the waste to be transformed and reused as compost in agriculture and gardening.Keywords: wastewater, irrigation, COD, COB, SS
Procedia PDF Downloads 68886 From Waste to Wealth: A Future Paradigm for Plastic Management Using Blockchain Technology
Authors: Jim Shi, Jasmine Chang, Nesreen El-Rayes
Abstract:
The world has been experiencing a steadily increasing trend in both the production and consumption of plastic. The global consumer revolution should not have been possible without plastic, thanks to its salient feature of inexpensiveness and durability. But, as a two-edged sword, its durable quality has returned to haunt and even jeopardized us. That exacerbating the plastic crisis has attracted various global initiatives and actions. Simultaneously, firms are eager to adopt new technology as they witness and perceive more potential and merit of Industry 4.0 technologies. For example, Blockchain technology (BCT) is drawing the attention of numerous stakeholders because of its wide range of outstanding features that promise to enhance supply chain operations. However, from a research perspective, most of the literature addresses the plastic crisis from either environmental or social perspectives. In contrast, analysis from the data science perspective and technology is relatively scarce. To this end, this study aims to fill this gap and cover the plastic crisis from a holistic view of environmental, social, technological, and business perspectives. In particular, we propose a mathematical model to examine the inclusion of BCT to enhance and improve the efficiency on the upstream and the downstream sides of the plastic value, where the whole value chain is coordinated systematically, and its interoperability can be optimized. Consequently, the Environmental, Social, and Governance (ESG) goal and Circular Economics (CE) sustainability can be maximized.Keywords: blockchain technology, plastic, circular economy, sustainability
Procedia PDF Downloads 81885 Risk Reduction of Household Refuse, a Case Study of Shagari Low-Cost, Mubi North (LGA) Adamawa State, Nigeria
Authors: Maryam Tijjani Kolo
Abstract:
Lack of refuse dumping points has made the residents of Shagari low-cost well armed with some health and environmental related hazards. These studies investigate the effect of household refuse on the resident of Shagari low-cost. A well structured questionnaire was administered to elicit views of the respondent in the study area through adopting cluster sampling method. A total of 100 questionnaires were selected and divided into 50, each to both sections of the study area. Interview was conducted to each household head. Data obtained were analyzed using simple parentages to determine the major hazard in the area. Result showed that majority of the household are civil servant and traders, earning reasonable monthly income. 68% of the respondent has experienced the effect of living close to waste dumping areas, which include unpleasant smell and polluted smoke when refuse is burnt, which causes eye and respiratory induction, human injury from broken bottles or sharp objects as well as water, insect and air borne diseases. Hence, the need to urgently address these menace before it overwhelms the capacities of the community becomes paramount. Thus, the community should be given more enlightenment and refuse dumping sites should be created by the local government area.Keywords: household, refuse, refuse dumping points, Shagari low-cost
Procedia PDF Downloads 320884 Heterogeneous Catalytic Hydroesterification of Soybean Oil to Develop a Biodiesel Formation
Authors: O. Mowla, E. Kennedy, M. Stockenhuber
Abstract:
Finding alternative renewable resources of energy has attracted the attentions in consequence of limitation of the traditional fossil fuel resources, increasing of crude oil price and environmental concern over greenhouse gas emissions. Biodiesel (or Fatty Acid Methyl Esters (FAME)), an alternative energy source, is synthesised from renewable sources such as vegetable oils and animal fats and can be produced from waste oils. FAME can be produced via hydroesterification of oils. The process involves two stages. In the first stage of this process, fatty acids and glycerol are being obtained by hydrolysis of the feed stock oil. In the second stage, the recovered fatty acids are then esterified with an alcohol to methyl esters. The presence of a catalyst accelerates the rate of the hydroesterification reaction of oils. The overarching aim of this study is to find the effect of using zeolite as a catalyst in the heterogeneous hydroesterification of soybean oil. Both stages of the catalytic hydroesterification of soybean oil had been conducted at atmospheric and high-pressure conditions using reflux glass reactor and Parr reactor, respectively. The effect of operating parameters such as temperature and reaction time on the overall yield of biodiesel formation was also investigated.Keywords: biodiesel, heterogeneous catalytic hydroesterification, soybean oil, zeolite
Procedia PDF Downloads 433883 Integrated Wastewater Reuse Project of the Faculty of Sciences AinChock, Morocco
Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Fouad Amraoui
Abstract:
In Morocco, water scarcity requires the exploitation of non-conventional resources. Rural areas are under-equipped with sanitation infrastructure, unlike urban areas. Decentralized and low-cost solutions could improve the quality of life of the population and the environment. In this context, the Faculty of Sciences Ain Chock "FSAC" has undertaken an integrated project to treat part of its wastewater using a decentralized compact system. The project will propose alternative solutions that are inexpensive and adapted to the context of peri-urban and rural areas in order to treat the wastewater generated and use it for irrigation, watering, and cleaning. For this purpose, several tests were carried out in the laboratory in order to develop a liquid waste treatment system optimized for local conditions. Based on the results obtained at the laboratory scale of the different proposed scenarios, we designed and implemented a prototype of a mini wastewater treatment plant for the Faculty. In this article, we will outline the steps of dimensioning, construction, and monitoring of the mini-station in our Faculty.Keywords: wastewater, purification, optimization, vertical filter, MBBR process, sizing, decentralized pilot, reuse, irrigation, sustainable development
Procedia PDF Downloads 114882 Barriers Facing the Implementation of Lean Manufacturing in Libyan Manufacturing Companies
Authors: Mohamed Abduelmula, Martin Birkett, Chris Connor
Abstract:
Lean Manufacturing has developed from being a set of tools and methods to becoming a management philosophy which can be used to remove or reduce waste in manufacturing processes and so enhance the operational productivity of an enterprise. Several enterprises around the world have applied the lean manufacturing system and gained great improvements. This paper investigates the barriers and obstacles that face Libyan manufacturing companies to implement lean manufacturing. A mixed-method approach is suggested, starting with conducting a questionnaire to get quantitative data then using this to develop semi-structured interviews to collect qualitative data. The findings of the questionnaire results and how these can be used further develop the semi-structured interviews are then discussed. The survey was distributed to 65 manufacturing companies in Libya, and a response rate of 64.6% was obtained. The results showed that these are five main barriers to implementing lean in Libya, namely organizational culture, skills and expertise, and training program, financial capability, top management, and communication. These barriers were also identified from the literature as being significant obstacles to implementing Lean in other countries industries. Having an understanding of the difficulties that face the implementation of lean manufacturing systems, as a new and modern system and using this to develop a suitable framework will help to improve the manufacturing sector in Libya.Keywords: lean manufacturing, barriers, questionnaire, Libyan manufacturing companies
Procedia PDF Downloads 247881 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods
Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad
Abstract:
we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical designKeywords: hydrogen gas, lightning energy, power plant, resistive element
Procedia PDF Downloads 141880 Synthesis of Biofuels of New Generation
Authors: Selena Gutiérrez, Araceli Martínez
Abstract:
One of the most important challenges worldwide, scientific and technological, is to have a sustainable energy source; friendly to the environment and widely available. Currently, the 85% of the energy used comes from the fossil sources. Another important environmental problem is that several rubber products (tires, gloves, hoses, among others) are discarded practically without any treatment. In nature, the degradation of such products will take at least 500 years. In 2009, the worldwide rubber production was about 23.6 million tons. In order to solve this problems, our research focus in an alternative synthesis of biofuels in a two-step approach: The metathesis degradation of industrial rubber (models of rubber waste), and the oligomers transesterification. Thus, cis-1,4-polybutadiene (Mn= 9.1x105, Mw/Mn= 2.2) and styrene-butadiene block copolymers with 30% (Mn= 1.61x105; Mw/Mn= 1.3) and 21% wt styrene (Mn= 1.92x105; Mw/Mn= 1.4) were degraded via metathesis with soybean oil as chain transfer agent (CTA) and green solvent; using [(PCy3)2Cl2Ru=CHPh] and [(1,3-diphenyl-4,5-dihydroimidazol-2-ylidene)(PCy3)Ru=CHPh] catalysts. Afterwards, the products were transesterified by basic homogeneous catalysis. Before transesterification, the polystyrene microblocks (Mn= 16,761; Mw/Mn= 1.2) were isolated. Finally, the biofuels obtained (BO) were purified, characterized and showed similar properties to standards biodiesel (SB) (Norms: EN 14214-03 and ASTM D6751-02), i.e. (SB / BO): molecular weight [Daltons] (570 / 543-596), density [g/cm3] (0.86-0.90 / 0.88), kinematic viscosity [mm2/s] (1.90-6.0 / 3.5-4.5), iodine (97 / 97-98) and cetane number (Min.47 / 56-58).Keywords: biofuels, industrial rubber, metathesis, vegetable oils
Procedia PDF Downloads 258879 A Comprehensive Safety Analysis for a Pressurized Water Reactor Fueled with Mixed-Oxide Fuel as an Accident Tolerant Fuel
Authors: Mohamed Y. M. Mohsen
Abstract:
The viability of utilising mixed-oxide fuel (MOX) ((U₀.₉, rgPu₀.₁) O₂) as an accident-tolerant fuel (ATF) has been thoroughly investigated. MOX fuel provides the best example of a nuclear waste recycling process. The MCNPX 2.7 code was used to determine the main neutronic features, especially the radial power distribution, to identify the hot channel on which the thermal-hydraulic (TH) study was performed. Based on the computational fluid dynamics technique, the simulation of the rod-centered thermal-hydraulic subchannel model was implemented using COMSOL Multiphysics. TH analysis was utilised to determine the axially and radially distributed temperatures of the fuel and cladding materials, as well as the departure from the nucleate boiling ratio (DNBR) along the coolant channel. COMSOL Multiphysics can simulate reality by coupling multiphysics, such as coupling between heat transfer and solid mechanics. The main solid structure parameters, such as the von Mises stress, volumetric strain, and displacement, were simulated using this coupling. When the neutronic, TH, and solid structure performances of UO₂ and ((U₀.₉, rgPu₀.₁) O₂) were compared, the results showed considerable improvement and an increase in safety margins with the use of ((U₀.₉, rgPu₀.₁) O₂).Keywords: mixed-oxide, MCNPX, neutronic analysis, COMSOL-multiphysics, thermal-hydraulic, solid structure
Procedia PDF Downloads 106878 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw
Authors: N. Ouslimani, M. T. Abadlia
Abstract:
Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption
Procedia PDF Downloads 263877 Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste
Authors: Surasak Siripornadulsil, Nutt Poomai, Wilailak Siripornadulsil
Abstract:
Due to a high ethanol demand, the approach for effective ethanol production is important and has been developed rapidly worldwide. Several agricultural wastes are highly abundant in celluloses and the effective cellulose enzymes do exist widely among microorganisms. Accordingly, the cellulose degradation using microbial cellulose to produce a low-cost substrate for ethanol production has attracted more attention. In this study, the cellulose producing bacterial strain has been isolated from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulose activity. The optimal temperature for its growth and cellulose production is 37 °C. The optimal temperature of bacterial cellulose activity is 60 °C. The cellulose enzyme from Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36 h. showed highest cellulose activity at 120 U/mL when grown in LB medium containing 2% (w/v). The capability of Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulose activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production.Keywords: cellulose enzyme, bagasse, rice straw, rice husk, acinetobacter sp. KKU44
Procedia PDF Downloads 313